tsarm_machdep.c revision 1.4 1 1.4 mrg /* $NetBSD: tsarm_machdep.c,v 1.4 2006/05/17 04:22:46 mrg Exp $ */
2 1.1 joff
3 1.1 joff /*
4 1.1 joff * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 1.1 joff * All rights reserved.
6 1.1 joff *
7 1.1 joff * Based on code written by Jason R. Thorpe and Steve C. Woodford for
8 1.1 joff * Wasabi Systems, Inc.
9 1.1 joff *
10 1.1 joff * Redistribution and use in source and binary forms, with or without
11 1.1 joff * modification, are permitted provided that the following conditions
12 1.1 joff * are met:
13 1.1 joff * 1. Redistributions of source code must retain the above copyright
14 1.1 joff * notice, this list of conditions and the following disclaimer.
15 1.1 joff * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 joff * notice, this list of conditions and the following disclaimer in the
17 1.1 joff * documentation and/or other materials provided with the distribution.
18 1.1 joff * 3. All advertising materials mentioning features or use of this software
19 1.1 joff * must display the following acknowledgement:
20 1.1 joff * This product includes software developed for the NetBSD Project by
21 1.1 joff * Wasabi Systems, Inc.
22 1.1 joff * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 1.1 joff * or promote products derived from this software without specific prior
24 1.1 joff * written permission.
25 1.1 joff *
26 1.1 joff * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 1.1 joff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 joff * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 joff * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
30 1.1 joff * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 joff * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 joff * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 joff * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 joff * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 joff * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 joff * POSSIBILITY OF SUCH DAMAGE.
37 1.1 joff */
38 1.1 joff
39 1.1 joff /*
40 1.1 joff * Copyright (c) 1997,1998 Mark Brinicombe.
41 1.1 joff * Copyright (c) 1997,1998 Causality Limited.
42 1.1 joff * All rights reserved.
43 1.1 joff *
44 1.1 joff * Redistribution and use in source and binary forms, with or without
45 1.1 joff * modification, are permitted provided that the following conditions
46 1.1 joff * are met:
47 1.1 joff * 1. Redistributions of source code must retain the above copyright
48 1.1 joff * notice, this list of conditions and the following disclaimer.
49 1.1 joff * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 joff * notice, this list of conditions and the following disclaimer in the
51 1.1 joff * documentation and/or other materials provided with the distribution.
52 1.1 joff * 3. All advertising materials mentioning features or use of this software
53 1.1 joff * must display the following acknowledgement:
54 1.1 joff * This product includes software developed by Mark Brinicombe
55 1.1 joff * for the NetBSD Project.
56 1.1 joff * 4. The name of the company nor the name of the author may be used to
57 1.1 joff * endorse or promote products derived from this software without specific
58 1.1 joff * prior written permission.
59 1.1 joff *
60 1.1 joff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 1.1 joff * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 1.1 joff * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 1.1 joff * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 1.1 joff * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 1.1 joff * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 1.1 joff * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 1.1 joff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 1.1 joff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 1.1 joff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 1.1 joff * SUCH DAMAGE.
71 1.1 joff *
72 1.1 joff * Machine dependant functions for kernel setup for Iyonix.
73 1.1 joff */
74 1.1 joff
75 1.1 joff #include <sys/cdefs.h>
76 1.4 mrg __KERNEL_RCSID(0, "$NetBSD: tsarm_machdep.c,v 1.4 2006/05/17 04:22:46 mrg Exp $");
77 1.1 joff
78 1.1 joff #include "opt_ddb.h"
79 1.1 joff #include "opt_kgdb.h"
80 1.1 joff #include "opt_pmap_debug.h"
81 1.1 joff
82 1.1 joff #include <sys/param.h>
83 1.1 joff #include <sys/device.h>
84 1.1 joff #include <sys/systm.h>
85 1.1 joff #include <sys/kernel.h>
86 1.1 joff #include <sys/exec.h>
87 1.1 joff #include <sys/proc.h>
88 1.1 joff #include <sys/msgbuf.h>
89 1.1 joff #include <sys/reboot.h>
90 1.1 joff #include <sys/termios.h>
91 1.1 joff #include <sys/ksyms.h>
92 1.1 joff
93 1.1 joff #include <uvm/uvm_extern.h>
94 1.1 joff
95 1.1 joff #include <dev/cons.h>
96 1.1 joff
97 1.1 joff #include <machine/db_machdep.h>
98 1.1 joff #include <ddb/db_sym.h>
99 1.1 joff #include <ddb/db_extern.h>
100 1.1 joff
101 1.1 joff #include <acorn32/include/bootconfig.h>
102 1.1 joff #include <machine/bus.h>
103 1.1 joff #include <machine/cpu.h>
104 1.1 joff #include <machine/frame.h>
105 1.1 joff #include <arm/undefined.h>
106 1.1 joff
107 1.1 joff #include <arm/arm32/machdep.h>
108 1.1 joff
109 1.1 joff #include <arm/ep93xx/ep93xxreg.h>
110 1.1 joff #include <arm/ep93xx/ep93xxvar.h>
111 1.1 joff
112 1.1 joff #include <dev/ic/comreg.h>
113 1.1 joff #include <dev/ic/comvar.h>
114 1.1 joff
115 1.1 joff #include "epcom.h"
116 1.1 joff #if NEPCOM > 0
117 1.1 joff #include <arm/ep93xx/epcomvar.h>
118 1.1 joff #endif
119 1.1 joff
120 1.1 joff #include "isa.h"
121 1.1 joff #if NISA > 0
122 1.1 joff #include <dev/isa/isareg.h>
123 1.1 joff #include <dev/isa/isavar.h>
124 1.1 joff #endif
125 1.1 joff
126 1.1 joff #include <machine/isa_machdep.h>
127 1.1 joff
128 1.1 joff #include <evbarm/tsarm/tsarmreg.h>
129 1.1 joff
130 1.1 joff #include "opt_ipkdb.h"
131 1.1 joff #include "ksyms.h"
132 1.1 joff
133 1.1 joff /* Kernel text starts 2MB in from the bottom of the kernel address space. */
134 1.1 joff #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
135 1.1 joff #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
136 1.1 joff
137 1.1 joff /*
138 1.1 joff * The range 0xc1000000 - 0xccffffff is available for kernel VM space
139 1.1 joff * Core-logic registers and I/O mappings occupy 0xf0000000 - 0xffffffff
140 1.1 joff */
141 1.1 joff #define KERNEL_VM_SIZE 0x0C000000
142 1.1 joff
143 1.1 joff /*
144 1.1 joff * Address to call from cpu_reset() to reset the machine.
145 1.1 joff * This is machine architecture dependant as it varies depending
146 1.1 joff * on where the ROM appears when you turn the MMU off.
147 1.1 joff */
148 1.1 joff
149 1.1 joff u_int cpu_reset_address = 0x00000000;
150 1.1 joff
151 1.1 joff /* Define various stack sizes in pages */
152 1.1 joff #define IRQ_STACK_SIZE 8
153 1.1 joff #define ABT_STACK_SIZE 8
154 1.1 joff #ifdef IPKDB
155 1.1 joff #define UND_STACK_SIZE 16
156 1.1 joff #else
157 1.1 joff #define UND_STACK_SIZE 8
158 1.1 joff #endif
159 1.1 joff
160 1.1 joff struct bootconfig bootconfig; /* Boot config storage */
161 1.1 joff char *boot_args = NULL;
162 1.1 joff char *boot_file = NULL;
163 1.1 joff
164 1.1 joff vm_offset_t physical_start;
165 1.1 joff vm_offset_t physical_freestart;
166 1.1 joff vm_offset_t physical_freeend;
167 1.1 joff vm_offset_t physical_freeend_low;
168 1.1 joff vm_offset_t physical_end;
169 1.1 joff u_int free_pages;
170 1.1 joff int physmem = 0;
171 1.1 joff
172 1.1 joff /* Physical and virtual addresses for some global pages */
173 1.1 joff pv_addr_t systempage;
174 1.1 joff pv_addr_t irqstack;
175 1.1 joff pv_addr_t undstack;
176 1.1 joff pv_addr_t abtstack;
177 1.1 joff pv_addr_t kernelstack;
178 1.1 joff
179 1.1 joff vm_offset_t msgbufphys;
180 1.1 joff
181 1.1 joff static struct arm32_dma_range tsarm_dma_ranges[4];
182 1.1 joff
183 1.1 joff #if NISA > 0
184 1.1 joff extern void isa_tsarm_init(u_int, u_int);
185 1.1 joff #endif
186 1.1 joff
187 1.1 joff extern u_int data_abort_handler_address;
188 1.1 joff extern u_int prefetch_abort_handler_address;
189 1.1 joff extern u_int undefined_handler_address;
190 1.1 joff
191 1.1 joff #ifdef PMAP_DEBUG
192 1.1 joff extern int pmap_debug_level;
193 1.1 joff #endif
194 1.1 joff
195 1.1 joff #define KERNEL_PT_SYS 0 /* L2 table for mapping vectors page */
196 1.1 joff
197 1.1 joff #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
198 1.1 joff #define KERNEL_PT_KERNEL_NUM 4
199 1.1 joff /* L2 tables for mapping kernel VM */
200 1.1 joff #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
201 1.1 joff
202 1.1 joff #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
203 1.1 joff #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
204 1.1 joff
205 1.1 joff pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
206 1.1 joff
207 1.1 joff struct user *proc0paddr;
208 1.1 joff
209 1.1 joff /* Prototypes */
210 1.1 joff
211 1.1 joff void consinit(void);
212 1.1 joff /*
213 1.1 joff * Define the default console speed for the machine.
214 1.1 joff */
215 1.1 joff #ifndef CONSPEED
216 1.1 joff #define CONSPEED B115200
217 1.1 joff #endif /* ! CONSPEED */
218 1.1 joff
219 1.1 joff #ifndef CONMODE
220 1.1 joff #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
221 1.1 joff #endif
222 1.1 joff
223 1.1 joff int comcnspeed = CONSPEED;
224 1.1 joff int comcnmode = CONMODE;
225 1.1 joff
226 1.1 joff #if KGDB
227 1.1 joff #ifndef KGDB_DEVNAME
228 1.1 joff #error Must define KGDB_DEVNAME
229 1.1 joff #endif
230 1.1 joff const char kgdb_devname[] = KGDB_DEVNAME;
231 1.1 joff
232 1.1 joff #ifndef KGDB_DEVADDR
233 1.1 joff #error Must define KGDB_DEVADDR
234 1.1 joff #endif
235 1.1 joff unsigned long kgdb_devaddr = KGDB_DEVADDR;
236 1.1 joff
237 1.1 joff #ifndef KGDB_DEVRATE
238 1.1 joff #define KGDB_DEVRATE CONSPEED
239 1.1 joff #endif
240 1.1 joff int kgdb_devrate = KGDB_DEVRATE;
241 1.1 joff
242 1.1 joff #ifndef KGDB_DEVMODE
243 1.1 joff #define KGDB_DEVMODE CONMODE
244 1.1 joff #endif
245 1.1 joff int kgdb_devmode = KGDB_DEVMODE;
246 1.1 joff #endif /* KGDB */
247 1.1 joff
248 1.1 joff /*
249 1.1 joff * void cpu_reboot(int howto, char *bootstr)
250 1.1 joff *
251 1.1 joff * Reboots the system
252 1.1 joff *
253 1.1 joff * Deal with any syncing, unmounting, dumping and shutdown hooks,
254 1.1 joff * then reset the CPU.
255 1.1 joff */
256 1.1 joff void
257 1.1 joff cpu_reboot(int howto, char *bootstr)
258 1.1 joff {
259 1.1 joff
260 1.1 joff /*
261 1.1 joff * If we are still cold then hit the air brakes
262 1.1 joff * and crash to earth fast
263 1.1 joff */
264 1.1 joff if (cold) {
265 1.1 joff doshutdownhooks();
266 1.1 joff printf("\r\n");
267 1.1 joff printf("The operating system has halted.\r\n");
268 1.1 joff printf("Please press any key to reboot.\r\n");
269 1.1 joff cngetc();
270 1.1 joff printf("\r\nrebooting...\r\n");
271 1.1 joff goto reset;
272 1.1 joff }
273 1.1 joff
274 1.1 joff /* Disable console buffering */
275 1.1 joff
276 1.1 joff /*
277 1.1 joff * If RB_NOSYNC was not specified sync the discs.
278 1.1 joff * Note: Unless cold is set to 1 here, syslogd will die during the
279 1.1 joff * unmount. It looks like syslogd is getting woken up only to find
280 1.1 joff * that it cannot page part of the binary in as the filesystem has
281 1.1 joff * been unmounted.
282 1.1 joff */
283 1.1 joff if (!(howto & RB_NOSYNC))
284 1.1 joff bootsync();
285 1.1 joff
286 1.1 joff /* Say NO to interrupts */
287 1.1 joff splhigh();
288 1.1 joff
289 1.1 joff /* Do a dump if requested. */
290 1.1 joff if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
291 1.1 joff dumpsys();
292 1.1 joff
293 1.1 joff /* Run any shutdown hooks */
294 1.1 joff doshutdownhooks();
295 1.1 joff
296 1.1 joff /* Make sure IRQ's are disabled */
297 1.1 joff IRQdisable;
298 1.1 joff
299 1.1 joff if (howto & RB_HALT) {
300 1.1 joff printf("\r\n");
301 1.1 joff printf("The operating system has halted.\r\n");
302 1.1 joff printf("Please press any key to reboot.\r\n");
303 1.1 joff cngetc();
304 1.1 joff }
305 1.1 joff
306 1.1 joff printf("\r\nrebooting...\r\n");
307 1.1 joff reset:
308 1.1 joff /*
309 1.1 joff * Make really really sure that all interrupts are disabled,
310 1.1 joff * and poke the Internal Bus and Peripheral Bus reset lines.
311 1.1 joff */
312 1.1 joff (void) disable_interrupts(I32_bit|F32_bit);
313 1.1 joff
314 1.1 joff {
315 1.1 joff u_int32_t feed, ctrl;
316 1.1 joff
317 1.1 joff feed = TS7XXX_IO16_VBASE + TS7XXX_WDOGFEED;
318 1.1 joff ctrl = TS7XXX_IO16_VBASE + TS7XXX_WDOGCTRL;
319 1.1 joff
320 1.3 perry __asm volatile (
321 1.1 joff "mov r0, #0x5\n"
322 1.1 joff "mov r1, #0x1\n"
323 1.1 joff "strh r0, [%0]\n"
324 1.1 joff "strh r1, [%1]\n"
325 1.1 joff :
326 1.1 joff : "r" (feed), "r" (ctrl)
327 1.1 joff : "r0", "r1"
328 1.1 joff );
329 1.1 joff }
330 1.1 joff
331 1.1 joff for (;;);
332 1.1 joff }
333 1.1 joff
334 1.1 joff /* Static device mappings. */
335 1.1 joff static const struct pmap_devmap tsarm_devmap[] = {
336 1.1 joff {
337 1.1 joff EP93XX_AHB_VBASE,
338 1.1 joff EP93XX_AHB_HWBASE,
339 1.1 joff EP93XX_AHB_SIZE,
340 1.1 joff VM_PROT_READ|VM_PROT_WRITE,
341 1.1 joff PTE_NOCACHE,
342 1.1 joff },
343 1.1 joff
344 1.1 joff {
345 1.1 joff EP93XX_APB_VBASE,
346 1.1 joff EP93XX_APB_HWBASE,
347 1.1 joff EP93XX_APB_SIZE,
348 1.1 joff VM_PROT_READ|VM_PROT_WRITE,
349 1.1 joff PTE_NOCACHE,
350 1.1 joff },
351 1.1 joff
352 1.1 joff /*
353 1.1 joff * IO8 and IO16 space *must* be mapped contiguously with
354 1.1 joff * IO8_VA == IO16_VA - 64 Mbytes. ISA busmap driver depends
355 1.1 joff * on that!
356 1.1 joff */
357 1.1 joff {
358 1.1 joff TS7XXX_IO8_VBASE,
359 1.1 joff TS7XXX_IO8_HWBASE,
360 1.1 joff TS7XXX_IO8_SIZE,
361 1.1 joff VM_PROT_READ|VM_PROT_WRITE,
362 1.1 joff PTE_NOCACHE,
363 1.1 joff },
364 1.1 joff
365 1.1 joff {
366 1.1 joff TS7XXX_IO16_VBASE,
367 1.1 joff TS7XXX_IO16_HWBASE,
368 1.1 joff TS7XXX_IO16_SIZE,
369 1.1 joff VM_PROT_READ|VM_PROT_WRITE,
370 1.1 joff PTE_NOCACHE,
371 1.1 joff },
372 1.1 joff
373 1.1 joff {
374 1.1 joff 0,
375 1.1 joff 0,
376 1.1 joff 0,
377 1.1 joff 0,
378 1.1 joff 0,
379 1.1 joff }
380 1.1 joff };
381 1.1 joff
382 1.1 joff /*
383 1.1 joff * u_int initarm(...)
384 1.1 joff *
385 1.1 joff * Initial entry point on startup. This gets called before main() is
386 1.1 joff * entered.
387 1.1 joff * It should be responsible for setting up everything that must be
388 1.1 joff * in place when main is called.
389 1.1 joff * This includes
390 1.1 joff * Taking a copy of the boot configuration structure.
391 1.1 joff * Initialising the physical console so characters can be printed.
392 1.1 joff * Setting up page tables for the kernel
393 1.1 joff * Initialising interrupt controllers to a sane default state
394 1.1 joff */
395 1.1 joff u_int
396 1.1 joff initarm(void *arg)
397 1.1 joff {
398 1.1 joff #ifdef FIXME
399 1.1 joff struct bootconfig *passed_bootconfig = arg;
400 1.1 joff extern char _end[];
401 1.1 joff #endif
402 1.1 joff int loop;
403 1.1 joff int loop1;
404 1.1 joff u_int l1pagetable;
405 1.1 joff pv_addr_t kernel_l1pt;
406 1.1 joff paddr_t memstart;
407 1.1 joff psize_t memsize;
408 1.1 joff
409 1.1 joff #ifdef FIXME
410 1.1 joff /* Calibrate the delay loop. */
411 1.1 joff i80321_calibrate_delay();
412 1.1 joff #endif
413 1.1 joff
414 1.1 joff /*
415 1.1 joff * Since we map the on-board devices VA==PA, and the kernel
416 1.1 joff * is running VA==PA, it's possible for us to initialize
417 1.1 joff * the console now.
418 1.1 joff */
419 1.1 joff consinit();
420 1.1 joff
421 1.1 joff #ifdef VERBOSE_INIT_ARM
422 1.1 joff /* Talk to the user */
423 1.1 joff printf("\nNetBSD/tsarm booting ...\n");
424 1.1 joff #endif
425 1.1 joff
426 1.1 joff /*
427 1.1 joff * Heads up ... Setup the CPU / MMU / TLB functions
428 1.1 joff */
429 1.1 joff if (set_cpufuncs())
430 1.1 joff panic("cpu not recognized!");
431 1.1 joff
432 1.1 joff /*
433 1.1 joff * We are currently running with the MMU enabled
434 1.1 joff */
435 1.1 joff
436 1.1 joff #ifdef FIXME
437 1.1 joff /*
438 1.1 joff * Fetch the SDRAM start/size from the i80321 SDRAM configuration
439 1.1 joff * registers.
440 1.1 joff */
441 1.1 joff i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
442 1.1 joff &memstart, &memsize);
443 1.1 joff #else
444 1.1 joff memstart = 0x0;
445 1.1 joff memsize = 0x2000000;
446 1.1 joff #endif
447 1.1 joff
448 1.1 joff #ifdef VERBOSE_INIT_ARM
449 1.1 joff printf("initarm: Configuring system ...\n");
450 1.1 joff #endif
451 1.1 joff
452 1.1 joff /* Fake bootconfig structure for the benefit of pmap.c */
453 1.1 joff /* XXX must make the memory description h/w independant */
454 1.1 joff bootconfig.dramblocks = 4;
455 1.1 joff bootconfig.dram[0].address = 0x0UL;
456 1.1 joff bootconfig.dram[0].pages = 0x800000UL / PAGE_SIZE;
457 1.1 joff bootconfig.dram[1].address = 0x1000000UL;
458 1.1 joff bootconfig.dram[1].pages = 0x800000UL / PAGE_SIZE;
459 1.1 joff bootconfig.dram[2].address = 0x4000000UL;
460 1.1 joff bootconfig.dram[2].pages = 0x800000UL / PAGE_SIZE;
461 1.1 joff bootconfig.dram[3].address = 0x5000000UL;
462 1.1 joff bootconfig.dram[3].pages = 0x800000UL / PAGE_SIZE;
463 1.1 joff
464 1.1 joff /*
465 1.1 joff * Set up the variables that define the availablilty of
466 1.1 joff * physical memory. For now, we're going to set
467 1.1 joff * physical_freestart to 0x00200000 (where the kernel
468 1.1 joff * was loaded), and allocate the memory we need downwards.
469 1.1 joff * If we get too close to the L1 table that we set up, we
470 1.1 joff * will panic. We will update physical_freestart and
471 1.1 joff * physical_freeend later to reflect what pmap_bootstrap()
472 1.1 joff * wants to see.
473 1.1 joff *
474 1.1 joff * XXX pmap_bootstrap() needs an enema.
475 1.1 joff */
476 1.1 joff physical_start = bootconfig.dram[0].address;
477 1.1 joff physical_end = bootconfig.dram[0].address +
478 1.1 joff (bootconfig.dram[0].pages * PAGE_SIZE);
479 1.1 joff
480 1.1 joff physical_freestart = 0x00009000UL;
481 1.1 joff physical_freeend = 0x00200000UL;
482 1.1 joff
483 1.1 joff physmem = (physical_end - physical_start) / PAGE_SIZE;
484 1.1 joff
485 1.1 joff #ifdef VERBOSE_INIT_ARM
486 1.1 joff /* Tell the user about the memory */
487 1.1 joff printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
488 1.1 joff physical_start, physical_end - 1);
489 1.1 joff #endif
490 1.1 joff
491 1.1 joff /*
492 1.1 joff * Okay, the kernel starts 2MB in from the bottom of physical
493 1.1 joff * memory. We are going to allocate our bootstrap pages downwards
494 1.1 joff * from there.
495 1.1 joff *
496 1.1 joff * We need to allocate some fixed page tables to get the kernel
497 1.1 joff * going. We allocate one page directory and a number of page
498 1.1 joff * tables and store the physical addresses in the kernel_pt_table
499 1.1 joff * array.
500 1.1 joff *
501 1.1 joff * The kernel page directory must be on a 16K boundary. The page
502 1.1 joff * tables must be on 4K bounaries. What we do is allocate the
503 1.1 joff * page directory on the first 16K boundary that we encounter, and
504 1.1 joff * the page tables on 4K boundaries otherwise. Since we allocate
505 1.1 joff * at least 3 L2 page tables, we are guaranteed to encounter at
506 1.1 joff * least one 16K aligned region.
507 1.1 joff */
508 1.1 joff
509 1.1 joff #ifdef VERBOSE_INIT_ARM
510 1.1 joff printf("Allocating page tables\n");
511 1.1 joff #endif
512 1.1 joff
513 1.1 joff free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
514 1.1 joff
515 1.1 joff #ifdef VERBOSE_INIT_ARM
516 1.1 joff printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
517 1.1 joff physical_freestart, free_pages, free_pages);
518 1.1 joff #endif
519 1.1 joff
520 1.1 joff /* Define a macro to simplify memory allocation */
521 1.1 joff #define valloc_pages(var, np) \
522 1.1 joff alloc_pages((var).pv_pa, (np)); \
523 1.1 joff (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
524 1.1 joff
525 1.1 joff #define alloc_pages(var, np) \
526 1.1 joff physical_freeend -= ((np) * PAGE_SIZE); \
527 1.1 joff if (physical_freeend < physical_freestart) \
528 1.1 joff panic("initarm: out of memory"); \
529 1.1 joff (var) = physical_freeend; \
530 1.1 joff free_pages -= (np); \
531 1.1 joff memset((char *)(var), 0, ((np) * PAGE_SIZE));
532 1.1 joff
533 1.1 joff loop1 = 0;
534 1.1 joff kernel_l1pt.pv_pa = 0;
535 1.4 mrg kernel_l1pt.pv_va = 0;
536 1.1 joff for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
537 1.1 joff /* Are we 16KB aligned for an L1 ? */
538 1.1 joff if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
539 1.1 joff && kernel_l1pt.pv_pa == 0) {
540 1.1 joff valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
541 1.1 joff } else {
542 1.1 joff valloc_pages(kernel_pt_table[loop1],
543 1.1 joff L2_TABLE_SIZE / PAGE_SIZE);
544 1.1 joff ++loop1;
545 1.1 joff }
546 1.1 joff }
547 1.1 joff
548 1.1 joff /* This should never be able to happen but better confirm that. */
549 1.1 joff if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
550 1.1 joff panic("initarm: Failed to align the kernel page directory");
551 1.1 joff
552 1.1 joff /*
553 1.1 joff * Allocate a page for the system vectors page
554 1.1 joff */
555 1.1 joff alloc_pages(systempage.pv_pa, 1);
556 1.1 joff
557 1.1 joff /* Allocate stacks for all modes */
558 1.1 joff valloc_pages(irqstack, IRQ_STACK_SIZE);
559 1.1 joff valloc_pages(abtstack, ABT_STACK_SIZE);
560 1.1 joff valloc_pages(undstack, UND_STACK_SIZE);
561 1.1 joff valloc_pages(kernelstack, UPAGES);
562 1.1 joff
563 1.1 joff #ifdef VERBOSE_INIT_ARM
564 1.1 joff printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
565 1.1 joff irqstack.pv_va);
566 1.1 joff printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
567 1.1 joff abtstack.pv_va);
568 1.1 joff printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
569 1.1 joff undstack.pv_va);
570 1.1 joff printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
571 1.1 joff kernelstack.pv_va);
572 1.1 joff #endif
573 1.1 joff
574 1.1 joff alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
575 1.1 joff
576 1.1 joff /*
577 1.1 joff * Ok we have allocated physical pages for the primary kernel
578 1.1 joff * page tables. Save physical_freeend for when we give whats left
579 1.1 joff * of memory below 2Mbyte to UVM.
580 1.1 joff */
581 1.1 joff
582 1.1 joff physical_freeend_low = physical_freeend;
583 1.1 joff
584 1.1 joff #ifdef VERBOSE_INIT_ARM
585 1.1 joff printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
586 1.1 joff #endif
587 1.1 joff
588 1.1 joff /*
589 1.1 joff * Now we start construction of the L1 page table
590 1.1 joff * We start by mapping the L2 page tables into the L1.
591 1.1 joff * This means that we can replace L1 mappings later on if necessary
592 1.1 joff */
593 1.1 joff l1pagetable = kernel_l1pt.pv_pa;
594 1.1 joff
595 1.1 joff /* Map the L2 pages tables in the L1 page table */
596 1.1 joff pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
597 1.1 joff &kernel_pt_table[KERNEL_PT_SYS]);
598 1.1 joff for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
599 1.1 joff pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
600 1.1 joff &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
601 1.1 joff for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
602 1.1 joff pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
603 1.1 joff &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
604 1.1 joff
605 1.1 joff /* update the top of the kernel VM */
606 1.1 joff pmap_curmaxkvaddr =
607 1.1 joff KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
608 1.1 joff
609 1.1 joff #ifdef VERBOSE_INIT_ARM
610 1.1 joff printf("Mapping kernel\n");
611 1.1 joff #endif
612 1.1 joff
613 1.1 joff /* Now we fill in the L2 pagetable for the kernel static code/data */
614 1.1 joff {
615 1.1 joff extern char etext[], _end[];
616 1.1 joff size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
617 1.1 joff size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
618 1.1 joff u_int logical;
619 1.1 joff
620 1.1 joff textsize = (textsize + PGOFSET) & ~PGOFSET;
621 1.1 joff totalsize = (totalsize + PGOFSET) & ~PGOFSET;
622 1.1 joff
623 1.1 joff logical = 0x00200000; /* offset of kernel in RAM */
624 1.1 joff logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
625 1.1 joff physical_start + logical, textsize,
626 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
627 1.1 joff logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
628 1.1 joff physical_start + logical, totalsize - textsize,
629 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
630 1.1 joff }
631 1.1 joff
632 1.1 joff #ifdef VERBOSE_INIT_ARM
633 1.1 joff printf("Constructing L2 page tables\n");
634 1.1 joff #endif
635 1.1 joff
636 1.1 joff /* Map the stack pages */
637 1.1 joff pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
638 1.1 joff IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
639 1.1 joff pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
640 1.1 joff ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
641 1.1 joff pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
642 1.1 joff UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
643 1.1 joff pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
644 1.1 joff UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
645 1.1 joff
646 1.1 joff pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
647 1.1 joff L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
648 1.1 joff
649 1.1 joff for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
650 1.1 joff pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
651 1.1 joff kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
652 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
653 1.1 joff }
654 1.1 joff
655 1.1 joff /* Map the vector page. */
656 1.1 joff pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
657 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
658 1.1 joff
659 1.1 joff /* Map the statically mapped devices. */
660 1.1 joff pmap_devmap_bootstrap(l1pagetable, tsarm_devmap);
661 1.1 joff
662 1.1 joff /*
663 1.1 joff * Update the physical_freestart/physical_freeend/free_pages
664 1.1 joff * variables.
665 1.1 joff */
666 1.1 joff {
667 1.1 joff extern char _end[];
668 1.1 joff
669 1.1 joff physical_freestart = physical_start +
670 1.1 joff (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
671 1.1 joff KERNEL_BASE);
672 1.1 joff physical_freeend = physical_end;
673 1.1 joff free_pages =
674 1.1 joff (physical_freeend - physical_freestart) / PAGE_SIZE;
675 1.1 joff }
676 1.1 joff
677 1.1 joff /*
678 1.1 joff * Now we have the real page tables in place so we can switch to them.
679 1.1 joff * Once this is done we will be running with the REAL kernel page
680 1.1 joff * tables.
681 1.1 joff */
682 1.1 joff
683 1.1 joff /* Switch tables */
684 1.1 joff #ifdef VERBOSE_INIT_ARM
685 1.1 joff printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
686 1.1 joff physical_freestart, free_pages, free_pages);
687 1.1 joff printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
688 1.1 joff #endif
689 1.1 joff cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
690 1.1 joff setttb(kernel_l1pt.pv_pa);
691 1.1 joff cpu_tlb_flushID();
692 1.1 joff cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
693 1.1 joff
694 1.1 joff /*
695 1.1 joff * Moved from cpu_startup() as data_abort_handler() references
696 1.1 joff * this during uvm init
697 1.1 joff */
698 1.1 joff proc0paddr = (struct user *)kernelstack.pv_va;
699 1.1 joff lwp0.l_addr = proc0paddr;
700 1.1 joff
701 1.1 joff #ifdef VERBOSE_INIT_ARM
702 1.1 joff printf("done!\n");
703 1.1 joff #endif
704 1.1 joff
705 1.1 joff #ifdef VERBOSE_INIT_ARM
706 1.1 joff printf("bootstrap done.\n");
707 1.1 joff #endif
708 1.1 joff
709 1.1 joff arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
710 1.1 joff
711 1.1 joff /*
712 1.1 joff * Pages were allocated during the secondary bootstrap for the
713 1.1 joff * stacks for different CPU modes.
714 1.1 joff * We must now set the r13 registers in the different CPU modes to
715 1.1 joff * point to these stacks.
716 1.1 joff * Since the ARM stacks use STMFD etc. we must set r13 to the top end
717 1.1 joff * of the stack memory.
718 1.1 joff */
719 1.1 joff #ifdef VERBOSE_INIT_ARM
720 1.1 joff printf("init subsystems: stacks ");
721 1.1 joff #endif
722 1.1 joff
723 1.1 joff set_stackptr(PSR_IRQ32_MODE,
724 1.1 joff irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
725 1.1 joff set_stackptr(PSR_ABT32_MODE,
726 1.1 joff abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
727 1.1 joff set_stackptr(PSR_UND32_MODE,
728 1.1 joff undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
729 1.1 joff
730 1.1 joff /*
731 1.1 joff * Well we should set a data abort handler.
732 1.1 joff * Once things get going this will change as we will need a proper
733 1.1 joff * handler.
734 1.1 joff * Until then we will use a handler that just panics but tells us
735 1.1 joff * why.
736 1.1 joff * Initialisation of the vectors will just panic on a data abort.
737 1.1 joff * This just fills in a slightly better one.
738 1.1 joff */
739 1.1 joff #ifdef VERBOSE_INIT_ARM
740 1.1 joff printf("vectors ");
741 1.1 joff #endif
742 1.1 joff data_abort_handler_address = (u_int)data_abort_handler;
743 1.1 joff prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
744 1.1 joff undefined_handler_address = (u_int)undefinedinstruction_bounce;
745 1.1 joff
746 1.1 joff /* Initialise the undefined instruction handlers */
747 1.1 joff #ifdef VERBOSE_INIT_ARM
748 1.1 joff printf("undefined ");
749 1.1 joff #endif
750 1.1 joff undefined_init();
751 1.1 joff
752 1.1 joff /* Load memory into UVM. */
753 1.1 joff #ifdef VERBOSE_INIT_ARM
754 1.1 joff printf("page ");
755 1.1 joff #endif
756 1.1 joff uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
757 1.1 joff uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
758 1.1 joff atop(physical_freestart), atop(physical_freeend),
759 1.1 joff VM_FREELIST_DEFAULT);
760 1.1 joff uvm_page_physload(0, atop(physical_freeend_low),
761 1.1 joff 0, atop(physical_freeend_low),
762 1.1 joff VM_FREELIST_DEFAULT);
763 1.1 joff /*
764 1.1 joff * There is 32 Mb of memory on the TS-7200 in 4 8Mb chunks, so far
765 1.1 joff * we've only been working with the first one mapped at 0x0. Tell
766 1.1 joff * UVM about the others.
767 1.1 joff */
768 1.1 joff uvm_page_physload(atop(0x1000000), atop(0x1800000),
769 1.1 joff atop(0x1000000), atop(0x1800000),
770 1.1 joff VM_FREELIST_DEFAULT);
771 1.1 joff uvm_page_physload(atop(0x4000000), atop(0x4800000),
772 1.1 joff atop(0x4000000), atop(0x4800000),
773 1.1 joff VM_FREELIST_DEFAULT);
774 1.1 joff uvm_page_physload(atop(0x5000000), atop(0x5800000),
775 1.1 joff atop(0x5000000), atop(0x5800000),
776 1.1 joff VM_FREELIST_DEFAULT);
777 1.1 joff
778 1.1 joff physmem = 0x2000000 / PAGE_SIZE;
779 1.1 joff
780 1.1 joff
781 1.1 joff /* Boot strap pmap telling it where the kernel page table is */
782 1.1 joff #ifdef VERBOSE_INIT_ARM
783 1.1 joff printf("pmap ");
784 1.1 joff #endif
785 1.1 joff pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
786 1.1 joff KERNEL_VM_BASE + KERNEL_VM_SIZE);
787 1.1 joff
788 1.1 joff /* Setup the IRQ system */
789 1.1 joff #ifdef VERBOSE_INIT_ARM
790 1.1 joff printf("irq ");
791 1.1 joff #endif
792 1.1 joff ep93xx_intr_init();
793 1.1 joff #if NISA > 0
794 1.1 joff isa_intr_init();
795 1.1 joff
796 1.1 joff #ifdef VERBOSE_INIT_ARM
797 1.1 joff printf("isa ");
798 1.1 joff #endif
799 1.1 joff isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO,
800 1.1 joff TS7XXX_IO16_VBASE + TS7XXX_ISAMEM);
801 1.1 joff #endif
802 1.1 joff
803 1.1 joff #ifdef VERBOSE_INIT_ARM
804 1.1 joff printf("done.\n");
805 1.1 joff #endif
806 1.1 joff
807 1.1 joff #ifdef BOOTHOWTO
808 1.1 joff boothowto = BOOTHOWTO;
809 1.1 joff #endif
810 1.1 joff
811 1.1 joff #ifdef IPKDB
812 1.1 joff /* Initialise ipkdb */
813 1.1 joff ipkdb_init();
814 1.1 joff if (boothowto & RB_KDB)
815 1.1 joff ipkdb_connect(0);
816 1.1 joff #endif
817 1.1 joff
818 1.1 joff #if NKSYMS || defined(DDB) || defined(LKM)
819 1.1 joff /* Firmware doesn't load symbols. */
820 1.1 joff ksyms_init(0, NULL, NULL);
821 1.1 joff #endif
822 1.1 joff
823 1.1 joff #ifdef DDB
824 1.1 joff db_machine_init();
825 1.1 joff if (boothowto & RB_KDB)
826 1.1 joff Debugger();
827 1.1 joff #endif
828 1.1 joff
829 1.1 joff /* We return the new stack pointer address */
830 1.1 joff return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
831 1.1 joff }
832 1.1 joff
833 1.1 joff void
834 1.1 joff consinit(void)
835 1.1 joff {
836 1.1 joff static int consinit_called;
837 1.1 joff bus_space_handle_t ioh;
838 1.1 joff
839 1.1 joff if (consinit_called != 0)
840 1.1 joff return;
841 1.1 joff
842 1.1 joff consinit_called = 1;
843 1.1 joff
844 1.1 joff /*
845 1.1 joff * Console devices are already mapped in VA. Our devmap reflects
846 1.1 joff * this, so register it now so drivers can map the console
847 1.1 joff * device.
848 1.1 joff */
849 1.1 joff pmap_devmap_register(tsarm_devmap);
850 1.1 joff #if 0
851 1.1 joff isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO,
852 1.1 joff TS7XXX_IO16_VBASE + TS7XXX_ISAMEM);
853 1.1 joff
854 1.1 joff if (comcnattach(&isa_io_bs_tag, 0x3e8, comcnspeed,
855 1.1 joff COM_FREQ, COM_TYPE_NORMAL, comcnmode))
856 1.1 joff {
857 1.1 joff panic("can't init serial console");
858 1.1 joff }
859 1.1 joff #endif
860 1.1 joff
861 1.1 joff #if NEPCOM > 0
862 1.1 joff bus_space_map(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1,
863 1.1 joff EP93XX_APB_UART_SIZE, 0, &ioh);
864 1.1 joff if (epcomcnattach(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1,
865 1.1 joff ioh, comcnspeed, comcnmode))
866 1.1 joff {
867 1.1 joff panic("can't init serial console");
868 1.1 joff }
869 1.1 joff #else
870 1.1 joff panic("serial console not configured");
871 1.1 joff #endif
872 1.1 joff #if KGDB
873 1.1 joff #if NEPCOM > 0
874 1.1 joff if (strcmp(kgdb_devname, "epcom") == 0) {
875 1.1 joff com_kgdb_attach(&ep93xx_bs_tag, kgdb_devaddr, kgdb_devrate,
876 1.1 joff kgdb_devmode);
877 1.1 joff }
878 1.1 joff #endif /* NEPCOM > 0 */
879 1.1 joff #endif /* KGDB */
880 1.1 joff }
881 1.1 joff
882 1.1 joff
883 1.1 joff bus_dma_tag_t
884 1.1 joff ep93xx_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
885 1.1 joff {
886 1.1 joff int i;
887 1.1 joff struct arm32_bus_dma_tag *dmat;
888 1.1 joff
889 1.1 joff for (i = 0; i < bootconfig.dramblocks; i++) {
890 1.1 joff tsarm_dma_ranges[i].dr_sysbase = bootconfig.dram[i].address;
891 1.1 joff tsarm_dma_ranges[i].dr_busbase = bootconfig.dram[i].address;
892 1.1 joff tsarm_dma_ranges[i].dr_len = bootconfig.dram[i].pages *
893 1.1 joff PAGE_SIZE;
894 1.1 joff }
895 1.1 joff
896 1.1 joff dmat = dma_tag_template;
897 1.1 joff
898 1.1 joff dmat->_ranges = tsarm_dma_ranges;
899 1.1 joff dmat->_nranges = bootconfig.dramblocks;
900 1.1 joff
901 1.1 joff return dmat;
902 1.1 joff }
903