viper_machdep.c revision 1.1 1 /* $NetBSD: viper_machdep.c,v 1.1 2005/06/06 20:24:11 pooka Exp $ */
2
3 /*
4 * Startup routines for the Arcom Viper. Below you can trace the
5 * impressive lineage ;)
6 *
7 * Modified for the Viper by Antti Kantee <pooka (at) netbsd.org>
8 */
9
10 /*
11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 * promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Machine dependant functions for kernel setup for
39 * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
40 * Based on iq80310_machhdep.c
41 */
42 /*
43 * Copyright (c) 2001 Wasabi Systems, Inc.
44 * All rights reserved.
45 *
46 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. All advertising materials mentioning features or use of this software
57 * must display the following acknowledgement:
58 * This product includes software developed for the NetBSD Project by
59 * Wasabi Systems, Inc.
60 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
61 * or promote products derived from this software without specific prior
62 * written permission.
63 *
64 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
66 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
67 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
68 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
69 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
70 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
71 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
72 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
73 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
74 * POSSIBILITY OF SUCH DAMAGE.
75 */
76
77 /*
78 * Copyright (c) 1997,1998 Mark Brinicombe.
79 * Copyright (c) 1997,1998 Causality Limited.
80 * All rights reserved.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by Mark Brinicombe
93 * for the NetBSD Project.
94 * 4. The name of the company nor the name of the author may be used to
95 * endorse or promote products derived from this software without specific
96 * prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
99 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
100 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
101 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
102 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
103 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
104 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
111 * boards using RedBoot firmware.
112 */
113
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: viper_machdep.c,v 1.1 2005/06/06 20:24:11 pooka Exp $");
116
117 #include "opt_ddb.h"
118 #include "opt_kgdb.h"
119 #include "opt_ipkdb.h"
120 #include "opt_pmap_debug.h"
121 #include "opt_md.h"
122 #include "opt_com.h"
123 #include "md.h"
124 #include "lcd.h"
125
126 #include <sys/param.h>
127 #include <sys/device.h>
128 #include <sys/systm.h>
129 #include <sys/kernel.h>
130 #include <sys/exec.h>
131 #include <sys/proc.h>
132 #include <sys/msgbuf.h>
133 #include <sys/reboot.h>
134 #include <sys/termios.h>
135 #include <sys/ksyms.h>
136
137 #include <uvm/uvm_extern.h>
138
139 #include <sys/conf.h>
140 #include <dev/cons.h>
141 #include <dev/md.h>
142 #include <dev/ic/smc91cxxreg.h>
143
144 #include <machine/db_machdep.h>
145 #include <ddb/db_sym.h>
146 #include <ddb/db_extern.h>
147 #ifdef KGDB
148 #include <sys/kgdb.h>
149 #endif
150
151 #include <machine/bootconfig.h>
152 #include <machine/bus.h>
153 #include <machine/cpu.h>
154 #include <machine/frame.h>
155 #include <arm/undefined.h>
156
157 #include <arm/arm32/machdep.h>
158
159 #include <arm/xscale/pxa2x0reg.h>
160 #include <arm/xscale/pxa2x0var.h>
161 #include <arm/xscale/pxa2x0_gpio.h>
162 #include <arm/sa11x0/sa1111_reg.h>
163 #include <evbarm/viper/viper_reg.h>
164
165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
166 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
167 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
168
169 /*
170 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
171 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
172 */
173 #define KERNEL_VM_SIZE 0x0C000000
174
175
176 /*
177 * Address to call from cpu_reset() to reset the machine.
178 * This is machine architecture dependant as it varies depending
179 * on where the ROM appears when you turn the MMU off.
180 */
181
182 u_int cpu_reset_address = 0;
183
184 /* Define various stack sizes in pages */
185 #define IRQ_STACK_SIZE 1
186 #define ABT_STACK_SIZE 1
187 #ifdef IPKDB
188 #define UND_STACK_SIZE 2
189 #else
190 #define UND_STACK_SIZE 1
191 #endif
192
193 BootConfig bootconfig; /* Boot config storage */
194 char *boot_args = NULL;
195 char *boot_file = NULL;
196
197 vm_offset_t physical_start;
198 vm_offset_t physical_freestart;
199 vm_offset_t physical_freeend;
200 vm_offset_t physical_end;
201 u_int free_pages;
202 vm_offset_t pagetables_start;
203 int physmem = 0;
204
205 /*int debug_flags;*/
206 #ifndef PMAP_STATIC_L1S
207 int max_processes = 64; /* Default number */
208 #endif /* !PMAP_STATIC_L1S */
209
210 /* Physical and virtual addresses for some global pages */
211 pv_addr_t systempage;
212 pv_addr_t irqstack;
213 pv_addr_t undstack;
214 pv_addr_t abtstack;
215 pv_addr_t kernelstack;
216 pv_addr_t minidataclean;
217
218 vm_offset_t msgbufphys;
219
220 extern u_int data_abort_handler_address;
221 extern u_int prefetch_abort_handler_address;
222 extern u_int undefined_handler_address;
223
224 #ifdef PMAP_DEBUG
225 extern int pmap_debug_level;
226 #endif
227
228 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
229 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
230 #define KERNEL_PT_KERNEL_NUM 4
231 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
232 /* Page tables for mapping kernel VM */
233 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
234 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
235
236 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
237
238 struct user *proc0paddr;
239
240 /* Prototypes */
241
242 #if 0
243 void process_kernel_args(char *);
244 void parse_mi_bootargs(char *args);
245 #endif
246
247 void consinit(void);
248 void kgdb_port_init(void);
249 void change_clock(uint32_t v);
250
251 bs_protos(bs_notimpl);
252
253 #include "com.h"
254 #if NCOM > 0
255 #include <dev/ic/comreg.h>
256 #include <dev/ic/comvar.h>
257 #endif
258
259 #ifndef CONSPEED
260 #define CONSPEED B115200 /* What RedBoot uses */
261 #endif
262 #ifndef CONMODE
263 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
264 #endif
265
266 int comcnspeed = CONSPEED;
267 int comcnmode = CONMODE;
268
269 /*
270 * void cpu_reboot(int howto, char *bootstr)
271 *
272 * Reboots the system
273 *
274 * Deal with any syncing, unmounting, dumping and shutdown hooks,
275 * then reset the CPU.
276 */
277 void
278 cpu_reboot(int howto, char *bootstr)
279 {
280 #ifdef DIAGNOSTIC
281 /* info */
282 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
283 #endif
284
285 /*
286 * If we are still cold then hit the air brakes
287 * and crash to earth fast
288 */
289 if (cold) {
290 doshutdownhooks();
291 printf("The operating system has halted.\n");
292 printf("Please press any key to reboot.\n\n");
293 cngetc();
294 printf("rebooting...\n");
295 cpu_reset();
296 /*NOTREACHED*/
297 }
298
299 /* Disable console buffering */
300 /* cnpollc(1);*/
301
302 /*
303 * If RB_NOSYNC was not specified sync the discs.
304 * Note: Unless cold is set to 1 here, syslogd will die during the
305 * unmount. It looks like syslogd is getting woken up only to find
306 * that it cannot page part of the binary in as the filesystem has
307 * been unmounted.
308 */
309 if (!(howto & RB_NOSYNC))
310 bootsync();
311
312 /* Say NO to interrupts */
313 splhigh();
314
315 /* Do a dump if requested. */
316 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
317 dumpsys();
318
319 /* Run any shutdown hooks */
320 doshutdownhooks();
321
322 /* Make sure IRQ's are disabled */
323 IRQdisable;
324
325 if (howto & RB_HALT) {
326 printf("The operating system has halted.\n");
327 printf("Please press any key to reboot.\n\n");
328 cngetc();
329 }
330
331 printf("rebooting...\n");
332 cpu_reset();
333 /*NOTREACHED*/
334 }
335
336 /*
337 * Static device mappings. These peripheral registers are mapped at
338 * fixed virtual addresses very early in viper_start() so that we
339 * can use them while booting the kernel, and stay at the same address
340 * throughout whole kernel's life time.
341 *
342 * We use this table twice; once with bootstrap page table, and once
343 * with kernel's page table which we build up in initarm().
344 */
345
346 static const struct pmap_devmap viper_devmap[] = {
347 {
348 VIPER_GPIO_VBASE,
349 PXA2X0_GPIO_BASE,
350 L1_S_SIZE,
351 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
352 },
353 {
354 VIPER_CLKMAN_VBASE,
355 PXA2X0_CLKMAN_BASE,
356 L1_S_SIZE,
357 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
358 },
359 {
360 VIPER_INTCTL_VBASE,
361 PXA2X0_INTCTL_BASE,
362 L1_S_SIZE,
363 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
364 },
365 {
366 VIPER_FFUART_VBASE,
367 PXA2X0_FFUART_BASE,
368 L1_S_SIZE,
369 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
370 },
371 {
372 VIPER_BTUART_VBASE,
373 PXA2X0_BTUART_BASE,
374 L1_S_SIZE,
375 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
376 },
377
378 {0, 0, 0, 0,}
379 };
380
381 #ifndef MEMSTART
382 #define MEMSTART 0xa0000000
383 #endif
384 #ifndef MEMSIZE
385 #define MEMSIZE 0x4000000
386 #endif
387
388 /*
389 * u_int initarm(...)
390 *
391 * Initial entry point on startup. This gets called before main() is
392 * entered.
393 * It should be responsible for setting up everything that must be
394 * in place when main is called.
395 * This includes
396 * Taking a copy of the boot configuration structure.
397 * Initialising the physical console so characters can be printed.
398 * Setting up page tables for the kernel
399 * Relocating the kernel to the bottom of physical memory
400 */
401 u_int
402 initarm(void *arg)
403 {
404 extern vaddr_t xscale_cache_clean_addr;
405 int loop;
406 int loop1;
407 u_int l1pagetable;
408 pv_addr_t kernel_l1pt;
409 #ifdef DIAGNOSTIC
410 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
411 #endif
412
413 /* Register devmap for devices we mapped in start */
414 pmap_devmap_register(viper_devmap);
415
416 /* start 32.768KHz OSC */
417 ioreg_write(VIPER_CLKMAN_VBASE + 0x08, 2);
418 /* Get ready for splfoo() */
419 pxa2x0_intr_bootstrap(VIPER_INTCTL_VBASE);
420
421 /*
422 * Heads up ... Setup the CPU / MMU / TLB functions
423 */
424 if (set_cpufuncs())
425 panic("cpu not recognized!");
426
427 #if 0
428 /* Calibrate the delay loop. */
429 #endif
430
431 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
432 pxa2x0_gpio_bootstrap(VIPER_GPIO_VBASE);
433 pxa2x0_gpio_set_function(42, GPIO_ALT_FN_1_IN);
434 pxa2x0_gpio_set_function(43, GPIO_ALT_FN_2_OUT);
435 pxa2x0_gpio_set_function(44, GPIO_ALT_FN_1_IN);
436 pxa2x0_gpio_set_function(45, GPIO_ALT_FN_2_OUT);
437
438 /* turn on clock to UART block.
439 XXX: this should not be done here. */
440 ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
441 ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN));
442
443 consinit();
444 #ifdef KGDB
445 kgdb_port_init();
446 #endif
447 /* Talk to the user */
448 printf("\nNetBSD/evbarm (viper) booting ...\n");
449
450 #if 0
451 /*
452 * Examine the boot args string for options we need to know about
453 * now.
454 */
455 process_kernel_args((char *)nwbootinfo.bt_args);
456 #endif
457
458 printf("initarm: Configuring system ...\n");
459
460 /* Fake bootconfig structure for the benefit of pmap.c */
461 /* XXX must make the memory description h/w independant */
462 bootconfig.dramblocks = 1;
463 bootconfig.dram[0].address = MEMSTART;
464 bootconfig.dram[0].pages = MEMSIZE / PAGE_SIZE;
465
466 /*
467 * Set up the variables that define the availablilty of
468 * physical memory. For now, we're going to set
469 * physical_freestart to 0xa0200000 (where the kernel
470 * was loaded), and allocate the memory we need downwards.
471 * If we get too close to the page tables that RedBoot
472 * set up, we will panic. We will update physical_freestart
473 * and physical_freeend later to reflect what pmap_bootstrap()
474 * wants to see.
475 *
476 * XXX pmap_bootstrap() needs an enema.
477 * (now that would be truly hardcore XXX)
478 */
479 physical_start = bootconfig.dram[0].address;
480 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
481
482 physical_freestart = 0xa0009000UL;
483 physical_freeend = 0xa0200000UL;
484
485 physmem = (physical_end - physical_start) / PAGE_SIZE;
486
487 #ifdef VERBOSE_INIT_ARM
488 /* Tell the user about the memory */
489 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
490 physical_start, physical_end - 1);
491 #endif
492
493 /*
494 * Okay, the kernel starts 2MB in from the bottom of physical
495 * memory. We are going to allocate our bootstrap pages downwards
496 * from there.
497 *
498 * We need to allocate some fixed page tables to get the kernel
499 * going. We allocate one page directory and a number of page
500 * tables and store the physical addresses in the kernel_pt_table
501 * array.
502 *
503 * The kernel page directory must be on a 16K boundary. The page
504 * tables must be on 4K boundaries. What we do is allocate the
505 * page directory on the first 16K boundary that we encounter, and
506 * the page tables on 4K boundaries otherwise. Since we allocate
507 * at least 3 L2 page tables, we are guaranteed to encounter at
508 * least one 16K aligned region.
509 */
510
511 #ifdef VERBOSE_INIT_ARM
512 printf("Allocating page tables\n");
513 #endif
514
515 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
516
517 #ifdef VERBOSE_INIT_ARM
518 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
519 physical_freestart, free_pages, free_pages);
520 #endif
521
522 /* Define a macro to simplify memory allocation */
523 #define valloc_pages(var, np) \
524 alloc_pages((var).pv_pa, (np)); \
525 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
526
527 #define alloc_pages(var, np) \
528 physical_freeend -= ((np) * PAGE_SIZE); \
529 if (physical_freeend < physical_freestart) \
530 panic("initarm: out of memory"); \
531 (var) = physical_freeend; \
532 free_pages -= (np); \
533 memset((char *)(var), 0, ((np) * PAGE_SIZE));
534
535 loop1 = 0;
536 kernel_l1pt.pv_pa = 0;
537 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
538 /* Are we 16KB aligned for an L1 ? */
539 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
540 && kernel_l1pt.pv_pa == 0) {
541 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
542 } else {
543 valloc_pages(kernel_pt_table[loop1],
544 L2_TABLE_SIZE / PAGE_SIZE);
545 ++loop1;
546 }
547 }
548
549 /* This should never be able to happen but better confirm that. */
550 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
551 panic("initarm: Failed to align the kernel page directory");
552
553 /*
554 * Allocate a page for the system page mapped to V0x00000000
555 * This page will just contain the system vectors and can be
556 * shared by all processes.
557 */
558 alloc_pages(systempage.pv_pa, 1);
559
560 /* Allocate stacks for all modes */
561 valloc_pages(irqstack, IRQ_STACK_SIZE);
562 valloc_pages(abtstack, ABT_STACK_SIZE);
563 valloc_pages(undstack, UND_STACK_SIZE);
564 valloc_pages(kernelstack, UPAGES);
565
566 /* Allocate enough pages for cleaning the Mini-Data cache. */
567 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
568 valloc_pages(minidataclean, 1);
569
570 #ifdef VERBOSE_INIT_ARM
571 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
572 irqstack.pv_va);
573 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
574 abtstack.pv_va);
575 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
576 undstack.pv_va);
577 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
578 kernelstack.pv_va);
579 #endif
580
581 /*
582 * XXX Defer this to later so that we can reclaim the memory
583 * XXX used by the RedBoot page tables.
584 */
585 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
586
587 /*
588 * Ok we have allocated physical pages for the primary kernel
589 * page tables
590 */
591
592 #ifdef VERBOSE_INIT_ARM
593 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
594 #endif
595
596 /*
597 * Now we start construction of the L1 page table
598 * We start by mapping the L2 page tables into the L1.
599 * This means that we can replace L1 mappings later on if necessary
600 */
601 l1pagetable = kernel_l1pt.pv_pa;
602
603 /* Map the L2 pages tables in the L1 page table */
604 pmap_link_l2pt(l1pagetable, 0x00000000,
605 &kernel_pt_table[KERNEL_PT_SYS]);
606 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
607 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
608 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
609 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
610 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
611 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
612
613 /* update the top of the kernel VM */
614 pmap_curmaxkvaddr =
615 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
616
617 #ifdef VERBOSE_INIT_ARM
618 printf("Mapping kernel\n");
619 #endif
620
621 /* Now we fill in the L2 pagetable for the kernel static code/data */
622 {
623 extern char etext[], _end[];
624 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
625 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
626 u_int logical;
627
628 textsize = (textsize + PGOFSET) & ~PGOFSET;
629 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
630
631 logical = 0x00200000; /* offset of kernel in RAM */
632
633 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
634 physical_start + logical, textsize,
635 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
636 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
637 physical_start + logical, totalsize - textsize,
638 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
639 }
640
641 #ifdef VERBOSE_INIT_ARM
642 printf("Constructing L2 page tables\n");
643 #endif
644
645 /* Map the stack pages */
646 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
647 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
648 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
649 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
650 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
651 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
652 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
653 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
654
655 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
656 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
657
658 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
659 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
660 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
661 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
662 }
663
664 /* Map the Mini-Data cache clean area. */
665 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
666 minidataclean.pv_pa);
667
668 /* Map the vector page. */
669 #if 1
670 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
671 * cache-clean code there. */
672 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
673 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
674 #else
675 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
676 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
677 #endif
678
679 /*
680 * map integrated peripherals at same address in l1pagetable
681 * so that we can continue to use console.
682 */
683 pmap_devmap_bootstrap(l1pagetable, viper_devmap);
684
685 /*
686 * Give the XScale global cache clean code an appropriately
687 * sized chunk of unmapped VA space starting at 0xff000000
688 * (our device mappings end before this address).
689 */
690 xscale_cache_clean_addr = 0xff000000U;
691
692 /*
693 * Now we have the real page tables in place so we can switch to them.
694 * Once this is done we will be running with the REAL kernel page
695 * tables.
696 */
697
698 /*
699 * Update the physical_freestart/physical_freeend/free_pages
700 * variables.
701 */
702 {
703 extern char _end[];
704
705 physical_freestart = physical_start +
706 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
707 KERNEL_BASE);
708 physical_freeend = physical_end;
709 free_pages =
710 (physical_freeend - physical_freestart) / PAGE_SIZE;
711 }
712
713 /* Switch tables */
714 #ifdef VERBOSE_INIT_ARM
715 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
716 physical_freestart, free_pages, free_pages);
717 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
718 #endif
719
720 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
721 setttb(kernel_l1pt.pv_pa);
722 cpu_tlb_flushID();
723 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
724
725 /*
726 * Moved from cpu_startup() as data_abort_handler() references
727 * this during uvm init
728 */
729 proc0paddr = (struct user *)kernelstack.pv_va;
730 lwp0.l_addr = proc0paddr;
731
732 #ifdef VERBOSE_INIT_ARM
733 printf("bootstrap done.\n");
734 #endif
735
736 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
737
738 /*
739 * Pages were allocated during the secondary bootstrap for the
740 * stacks for different CPU modes.
741 * We must now set the r13 registers in the different CPU modes to
742 * point to these stacks.
743 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
744 * of the stack memory.
745 */
746 printf("init subsystems: stacks ");
747
748 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
749 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
750 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
751
752 /*
753 * Well we should set a data abort handler.
754 * Once things get going this will change as we will need a proper
755 * handler.
756 * Until then we will use a handler that just panics but tells us
757 * why.
758 * Initialisation of the vectors will just panic on a data abort.
759 * This just fills in a slightly better one.
760 */
761 printf("vectors ");
762 data_abort_handler_address = (u_int)data_abort_handler;
763 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
764 undefined_handler_address = (u_int)undefinedinstruction_bounce;
765
766 /* Initialise the undefined instruction handlers */
767 printf("undefined ");
768 undefined_init();
769
770 /* Load memory into UVM. */
771 printf("page ");
772 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
773 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
774 atop(physical_freestart), atop(physical_freeend),
775 VM_FREELIST_DEFAULT);
776
777 /* Boot strap pmap telling it where the kernel page table is */
778 printf("pmap ");
779 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
780 KERNEL_VM_BASE + KERNEL_VM_SIZE);
781
782 #ifdef __HAVE_MEMORY_DISK__
783 md_root_setconf(memory_disk, sizeof memory_disk);
784 #endif
785
786 #ifdef IPKDB
787 /* Initialise ipkdb */
788 ipkdb_init();
789 if (boothowto & RB_KDB)
790 ipkdb_connect(0);
791 #endif
792
793 #ifdef KGDB
794 if (boothowto & RB_KDB) {
795 kgdb_debug_init = 1;
796 kgdb_connect(1);
797 }
798 #endif
799
800 #ifdef DDB
801 db_machine_init();
802
803 /* Firmware doesn't load symbols. */
804 ddb_init(0, NULL, NULL);
805
806 if (boothowto & RB_KDB)
807 Debugger();
808 #endif
809
810 /* We return the new stack pointer address */
811 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
812 }
813
814 #if 0
815 void
816 process_kernel_args(char *args)
817 {
818
819 boothowto = 0;
820
821 /* Make a local copy of the bootargs */
822 strncpy(bootargs, args, MAX_BOOT_STRING);
823
824 args = bootargs;
825 boot_file = bootargs;
826
827 /* Skip the kernel image filename */
828 while (*args != ' ' && *args != 0)
829 ++args;
830
831 if (*args != 0)
832 *args++ = 0;
833
834 while (*args == ' ')
835 ++args;
836
837 boot_args = args;
838
839 printf("bootfile: %s\n", boot_file);
840 printf("bootargs: %s\n", boot_args);
841
842 parse_mi_bootargs(boot_args);
843 }
844 #endif
845
846 #ifdef KGDB
847 #ifndef KGDB_DEVNAME
848 #define KGDB_DEVNAME "ffuart"
849 #endif
850 const char kgdb_devname[] = KGDB_DEVNAME;
851
852 #if (NCOM > 0)
853 #ifndef KGDB_DEVMODE
854 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
855 #endif
856 int comkgdbmode = KGDB_DEVMODE;
857 #endif /* NCOM */
858
859 #endif /* KGDB */
860
861
862 void
863 consinit(void)
864 {
865 static int consinit_called = 0;
866 uint32_t ckenreg = ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN);
867 #if 0
868 char *console = CONSDEVNAME;
869 #endif
870
871 if (consinit_called != 0)
872 return;
873 consinit_called = 1;
874
875 #if NCOM > 0
876
877 #ifdef FFUARTCONSOLE
878 #ifdef KGDB
879 if (0 == strcmp(kgdb_devname, "ffuart")) {
880 /* port is reserved for kgdb */
881 } else
882 #endif
883 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
884 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
885
886 #if 0
887 /* XXX: can't call pxa2x0_clkman_config yet */
888 pxa2x0_clkman_config(CKEN_FFUART, 1);
889 #else
890 ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN,
891 ckenreg|CKEN_FFUART);
892 #endif
893
894 return;
895 }
896
897 #endif /* FFUARTCONSOLE */
898
899 #ifdef BTUARTCONSOLE
900 #ifdef KGDB
901 if (0 == strcmp(kgdb_devname, "btuart")) {
902 /* port is reserved for kgdb */
903 } else
904 #endif
905 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
906 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
907 ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN,
908 ckenreg|CKEN_BTUART);
909 return;
910 }
911 #endif /* BTUARTCONSOLE */
912
913 /* no console, guess we're flying blind */
914
915 #endif /* NCOM */
916
917 }
918
919 #ifdef KGDB
920 void
921 kgdb_port_init(void)
922 {
923 #if (NCOM > 0) && defined(COM_PXA2X0)
924 paddr_t paddr = 0;
925 uint32_t ckenreg = ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN);
926
927 if (0 == strcmp(kgdb_devname, "ffuart")) {
928 paddr = PXA2X0_FFUART_BASE;
929 ckenreg |= CKEN_FFUART;
930 }
931 else if (0 == strcmp(kgdb_devname, "btuart")) {
932 paddr = PXA2X0_BTUART_BASE;
933 ckenreg |= CKEN_BTUART;
934 }
935
936 if (paddr &&
937 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
938 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
939
940 ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
941 }
942 #endif
943 }
944 #endif
945