kb3310.c revision 1.2 1 /* $OpenBSD: kb3310.c,v 1.16 2010/10/14 21:23:04 pirofti Exp $ */
2 /*
3 * Copyright (c) 2010 Otto Moerbeek <otto (at) drijf.net>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <sys/param.h>
19 #include <sys/kernel.h>
20 #include <sys/systm.h>
21 #include <sys/device.h>
22 #include <sys/sensors.h>
23 #include <sys/timeout.h>
24
25 #include <mips64/archtype.h>
26 #include <machine/apmvar.h>
27 #include <evbmips/loongson/autoconf.h>
28 #include <machine/bus.h>
29 #include <dev/isa/isavar.h>
30
31 #include <dev/pci/glxreg.h>
32
33 #include <loongson/dev/bonitoreg.h>
34 #include <loongson/dev/kb3310var.h>
35
36 #include "apm.h"
37 #include "pckbd.h"
38 #include "hidkbd.h"
39
40 #if NPCKBD > 0 || NHIDKBD > 0
41 #include <dev/ic/pckbcvar.h>
42 #include <dev/pckbc/pckbdvar.h>
43 #include <dev/usb/hidkbdvar.h>
44 #endif
45
46 struct cfdriver ykbec_cd = {
47 NULL, "ykbec", DV_DULL,
48 };
49
50 #ifdef KB3310_DEBUG
51 #define DPRINTF(x) printf x
52 #else
53 #define DPRINTF(x)
54 #endif
55
56 #define IO_YKBEC 0x381
57 #define IO_YKBECSIZE 0x3
58
59 static const struct {
60 const char *desc;
61 int type;
62 } ykbec_table[] = {
63 #define YKBEC_FAN 0
64 { NULL, SENSOR_FANRPM },
65 #define YKBEC_ITEMP 1
66 { "Internal temperature", SENSOR_TEMP },
67 #define YKBEC_FCAP 2
68 { "Battery full charge capacity", SENSOR_AMPHOUR },
69 #define YKBEC_BCURRENT 3
70 { "Battery current", SENSOR_AMPS },
71 #define YKBEC_BVOLT 4
72 { "Battery voltage", SENSOR_VOLTS_DC },
73 #define YKBEC_BTEMP 5
74 { "Battery temperature", SENSOR_TEMP },
75 #define YKBEC_CAP 6
76 { "Battery capacity", SENSOR_PERCENT },
77 #define YKBEC_CHARGING 7
78 { "Battery charging", SENSOR_INDICATOR },
79 #define YKBEC_AC 8
80 { "AC-Power", SENSOR_INDICATOR }
81 #define YKBEC_NSENSORS 9
82 };
83
84 struct ykbec_softc {
85 bus_space_tag_t sc_iot;
86 bus_space_handle_t sc_ioh;
87 struct ksensor sc_sensor[YKBEC_NSENSORS];
88 struct ksensordev sc_sensordev;
89 #if NPCKBD > 0 || NHIDKBD > 0
90 struct timeout sc_bell_tmo;
91 #endif
92 };
93
94 static struct ykbec_softc *ykbec_sc;
95 static int ykbec_chip_config;
96
97 extern void loongson_set_isa_imr(uint);
98
99 int ykbec_match(device_t, cfdata_t, void *);
100 void ykbec_attach(device_t, device_t, void *);
101
102 const struct cfattach ykbec_ca = {
103 sizeof(struct ykbec_softc), ykbec_match, ykbec_attach
104 };
105
106 int ykbec_apminfo(struct apm_power_info *);
107 void ykbec_bell(void *, u_int, u_int, u_int, int);
108 void ykbec_bell_stop(void *);
109 void ykbec_print_bat_info(struct ykbec_softc *);
110 u_int ykbec_read(struct ykbec_softc *, u_int);
111 u_int ykbec_read16(struct ykbec_softc *, u_int);
112 void ykbec_refresh(void *arg);
113 void ykbec_write(struct ykbec_softc *, u_int, u_int);
114
115 #if NAPM > 0
116 struct apm_power_info ykbec_apmdata;
117 const char *ykbec_batstate[] = {
118 "high",
119 "low",
120 "critical",
121 "charging",
122 "unknown"
123 };
124 #define BATTERY_STRING(x) ((x) < nitems(ykbec_batstate) ? \
125 ykbec_batstate[x] : ykbec_batstate[4])
126 #endif
127
128 int
129 ykbec_match(device_t parent, cfdata_t match, void *aux)
130 {
131 struct isa_attach_args *ia = aux;
132 bus_space_handle_t ioh;
133
134 if (sys_platform->system_type != LOONGSON_YEELOONG)
135 return (0);
136
137 if ((ia->ia_iobase != IOBASEUNK && ia->ia_iobase != IO_YKBEC) ||
138 /* (ia->ia_iosize != 0 && ia->ia_iosize != IO_YKBECSIZE) || XXX isa.c */
139 ia->ia_maddr != MADDRUNK || ia->ia_msize != 0 ||
140 ia->ia_irq != IRQUNK || ia->ia_drq != DRQUNK)
141 return (0);
142
143 if (bus_space_map(ia->ia_iot, IO_YKBEC, IO_YKBECSIZE, 0, &ioh))
144 return (0);
145
146 bus_space_unmap(ia->ia_iot, ioh, IO_YKBECSIZE);
147
148 ia->ia_iobase = IO_YKBEC;
149 ia->ia_iosize = IO_YKBECSIZE;
150
151 return (1);
152 }
153
154 void
155 ykbec_attach(device_t parent, device_t self, void *aux)
156 {
157 struct isa_attach_args *ia = aux;
158 struct ykbec_softc *sc = device_private(self);
159 int i;
160
161 sc->sc_iot = ia->ia_iot;
162 if (bus_space_map(sc->sc_iot, ia->ia_iobase, ia->ia_iosize, 0,
163 &sc->sc_ioh)) {
164 aprint_error(": couldn't map I/O space");
165 return;
166 }
167
168 /* Initialize sensor data. */
169 strlcpy(sc->sc_sensordev.xname, device_xname(self),
170 sizeof(sc->sc_sensordev.xname));
171 if (sensor_task_register(sc, ykbec_refresh, 5) == NULL) {
172 aprint_error(", unable to register update task\n");
173 return;
174 }
175
176 #ifdef DEBUG
177 ykbec_print_bat_info(sc);
178 #endif
179 aprint_normal("\n");
180
181 for (i = 0; i < YKBEC_NSENSORS; i++) {
182 sc->sc_sensor[i].type = ykbec_table[i].type;
183 if (ykbec_table[i].desc)
184 strlcpy(sc->sc_sensor[i].desc, ykbec_table[i].desc,
185 sizeof(sc->sc_sensor[i].desc));
186 sensor_attach(&sc->sc_sensordev, &sc->sc_sensor[i]);
187 }
188
189 sensordev_install(&sc->sc_sensordev);
190
191 #if NAPM > 0
192 /* make sure we have the apm state initialized before apm attaches */
193 ykbec_refresh(sc);
194 apm_setinfohook(ykbec_apminfo);
195 #endif
196 #if NPCKBD > 0 || NHIDKBD > 0
197 timeout_set(&sc->sc_bell_tmo, ykbec_bell_stop, sc);
198 #if NPCKBD > 0
199 pckbd_hookup_bell(ykbec_bell, sc);
200 #endif
201 #if NHIDKBD > 0
202 hidkbd_hookup_bell(ykbec_bell, sc);
203 #endif
204 #endif
205 ykbec_sc = sc;
206 }
207
208 void
209 ykbec_write(struct ykbec_softc *mcsc, u_int reg, u_int datum)
210 {
211 struct ykbec_softc *sc = (struct ykbec_softc *)mcsc;
212 bus_space_tag_t iot = sc->sc_iot;
213 bus_space_handle_t ioh = sc->sc_ioh;
214
215 bus_space_write_1(iot, ioh, 0, (reg >> 8) & 0xff);
216 bus_space_write_1(iot, ioh, 1, (reg >> 0) & 0xff);
217 bus_space_write_1(iot, ioh, 2, datum);
218 }
219
220 u_int
221 ykbec_read(struct ykbec_softc *mcsc, u_int reg)
222 {
223 struct ykbec_softc *sc = (struct ykbec_softc *)mcsc;
224 bus_space_tag_t iot = sc->sc_iot;
225 bus_space_handle_t ioh = sc->sc_ioh;
226
227 bus_space_write_1(iot, ioh, 0, (reg >> 8) & 0xff);
228 bus_space_write_1(iot, ioh, 1, (reg >> 0) & 0xff);
229 return bus_space_read_1(iot, ioh, 2);
230 }
231
232 u_int
233 ykbec_read16(struct ykbec_softc *mcsc, u_int reg)
234 {
235 u_int val;
236
237 val = ykbec_read(mcsc, reg);
238 return (val << 8) | ykbec_read(mcsc, reg + 1);
239 }
240
241 #define KB3310_FAN_SPEED_DIVIDER 480000
242
243 #define ECTEMP_CURRENT_REG 0xf458
244 #define REG_FAN_SPEED_HIGH 0xfe22
245 #define REG_FAN_SPEED_LOW 0xfe23
246
247 #define REG_DESIGN_CAP_HIGH 0xf77d
248 #define REG_DESIGN_CAP_LOW 0xf77e
249 #define REG_FULLCHG_CAP_HIGH 0xf780
250 #define REG_FULLCHG_CAP_LOW 0xf781
251
252 #define REG_DESIGN_VOL_HIGH 0xf782
253 #define REG_DESIGN_VOL_LOW 0xf783
254 #define REG_CURRENT_HIGH 0xf784
255 #define REG_CURRENT_LOW 0xf785
256 #define REG_VOLTAGE_HIGH 0xf786
257 #define REG_VOLTAGE_LOW 0xf787
258 #define REG_TEMPERATURE_HIGH 0xf788
259 #define REG_TEMPERATURE_LOW 0xf789
260 #define REG_RELATIVE_CAT_HIGH 0xf492
261 #define REG_RELATIVE_CAT_LOW 0xf493
262 #define REG_BAT_VENDOR 0xf4c4
263 #define REG_BAT_CELL_COUNT 0xf4c6
264
265 #define REG_BAT_CHARGE 0xf4a2
266 #define BAT_CHARGE_AC 0x00
267 #define BAT_CHARGE_DISCHARGE 0x01
268 #define BAT_CHARGE_CHARGE 0x02
269
270 #define REG_POWER_FLAG 0xf440
271 #define POWER_FLAG_ADAPTER_IN (1<<0)
272 #define POWER_FLAG_POWER_ON (1<<1)
273 #define POWER_FLAG_ENTER_SUS (1<<2)
274
275 #define REG_BAT_STATUS 0xf4b0
276 #define BAT_STATUS_BAT_EXISTS (1<<0)
277 #define BAT_STATUS_BAT_FULL (1<<1)
278 #define BAT_STATUS_BAT_DESTROY (1<<2)
279 #define BAT_STATUS_BAT_LOW (1<<5)
280
281 #define REG_CHARGE_STATUS 0xf4b1
282 #define CHARGE_STATUS_PRECHARGE (1<<1)
283 #define CHARGE_STATUS_OVERHEAT (1<<2)
284
285 #define REG_BAT_STATE 0xf482
286 #define BAT_STATE_DISCHARGING (1<<0)
287 #define BAT_STATE_CHARGING (1<<1)
288
289 #define REG_BEEP_CONTROL 0xf4d0
290 #define BEEP_ENABLE (1<<0)
291
292 #define REG_PMUCFG 0xff0c
293 #define PMUCFG_STOP_MODE (1<<7)
294 #define PMUCFG_IDLE_MODE (1<<6)
295 #define PMUCFG_LPC_WAKEUP (1<<5)
296 #define PMUCFG_RESET_8051 (1<<4)
297 #define PMUCFG_SCI_WAKEUP (1<<3)
298 #define PMUCFG_WDT_WAKEUP (1<<2)
299 #define PMUCFG_GPWU_WAKEUP (1<<1)
300 #define PMUCFG_IRQ_IDLE (1<<0)
301
302 #define REG_USB0 0xf461
303 #define REG_USB1 0xf462
304 #define REG_USB2 0xf463
305 #define USB_FLAG_ON 1
306 #define USB_FLAG_OFF 0
307
308 #define REG_FAN_CONTROL 0xf4d2
309 #define REG_FAN_ON 1
310 #define REG_FAN_OFF 0
311
312 #define YKBEC_SCI_IRQ 0xa
313
314 #ifdef DEBUG
315 void
316 ykbec_print_bat_info(struct ykbec_softc *sc)
317 {
318 uint bat_status, count, dvolt, dcap;
319
320 printf(": battery ");
321 bat_status = ykbec_read(sc, REG_BAT_STATUS);
322 if (!ISSET(bat_status, BAT_STATUS_BAT_EXISTS)) {
323 printf("absent");
324 return;
325 }
326
327 count = ykbec_read(sc, REG_BAT_CELL_COUNT);
328 dvolt = ykbec_read16(sc, REG_DESIGN_VOL_HIGH);
329 dcap = ykbec_read16(sc, REG_DESIGN_CAP_HIGH);
330 printf("%d cells, design capacity %dmV %dmAh", count, dvolt, dcap);
331 }
332 #endif
333
334 void
335 ykbec_refresh(void *arg)
336 {
337 struct ykbec_softc *sc = (struct ykbec_softc *)arg;
338 u_int val, bat_charge, bat_status, charge_status, bat_state, power_flag;
339 u_int cap_pct, fullcap;
340 int current;
341 #if NAPM > 0
342 struct apm_power_info old;
343 #endif
344
345 val = ykbec_read16(sc, REG_FAN_SPEED_HIGH) & 0xfffff;
346 if (val != 0) {
347 val = KB3310_FAN_SPEED_DIVIDER / val;
348 sc->sc_sensor[YKBEC_FAN].value = val;
349 CLR(sc->sc_sensor[YKBEC_FAN].flags, SENSOR_FINVALID);
350 } else
351 SET(sc->sc_sensor[YKBEC_FAN].flags, SENSOR_FINVALID);
352
353 val = ykbec_read(sc, ECTEMP_CURRENT_REG);
354 sc->sc_sensor[YKBEC_ITEMP].value = val * 1000000 + 273150000;
355
356 fullcap = ykbec_read16(sc, REG_FULLCHG_CAP_HIGH);
357 sc->sc_sensor[YKBEC_FCAP].value = fullcap * 1000;
358
359 current = ykbec_read16(sc, REG_CURRENT_HIGH);
360 /* sign extend short -> int, int -> int64 will be done next statement */
361 current |= -(current & 0x8000);
362 sc->sc_sensor[YKBEC_BCURRENT].value = -1000 * current;
363
364 sc->sc_sensor[YKBEC_BVOLT].value = ykbec_read16(sc, REG_VOLTAGE_HIGH) *
365 1000;
366
367 val = ykbec_read16(sc, REG_TEMPERATURE_HIGH);
368 sc->sc_sensor[YKBEC_BTEMP].value = val * 1000000 + 273150000;
369
370 cap_pct = ykbec_read16(sc, REG_RELATIVE_CAT_HIGH);
371 sc->sc_sensor[YKBEC_CAP].value = cap_pct * 1000;
372
373 bat_charge = ykbec_read(sc, REG_BAT_CHARGE);
374 bat_status = ykbec_read(sc, REG_BAT_STATUS);
375 charge_status = ykbec_read(sc, REG_CHARGE_STATUS);
376 bat_state = ykbec_read(sc, REG_BAT_STATE);
377 power_flag = ykbec_read(sc, REG_POWER_FLAG);
378
379 sc->sc_sensor[YKBEC_CHARGING].value = !!ISSET(bat_state,
380 BAT_STATE_CHARGING);
381 sc->sc_sensor[YKBEC_AC].value = !!ISSET(power_flag,
382 POWER_FLAG_ADAPTER_IN);
383
384 sc->sc_sensor[YKBEC_CAP].status = ISSET(bat_status, BAT_STATUS_BAT_LOW) ?
385 SENSOR_S_CRIT : SENSOR_S_OK;
386
387 #if NAPM > 0
388 bcopy(&ykbec_apmdata, &old, sizeof(old));
389 ykbec_apmdata.battery_life = cap_pct;
390 ykbec_apmdata.ac_state = ISSET(power_flag, POWER_FLAG_ADAPTER_IN) ?
391 APM_AC_ON : APM_AC_OFF;
392 if (!ISSET(bat_status, BAT_STATUS_BAT_EXISTS)) {
393 ykbec_apmdata.battery_state = APM_BATTERY_ABSENT;
394 ykbec_apmdata.minutes_left = 0;
395 ykbec_apmdata.battery_life = 0;
396 } else {
397 if (ISSET(bat_state, BAT_STATE_CHARGING))
398 ykbec_apmdata.battery_state = APM_BATT_CHARGING;
399 else if (ISSET(bat_status, BAT_STATUS_BAT_LOW))
400 ykbec_apmdata.battery_state = APM_BATT_CRITICAL;
401 /* XXX arbitrary */
402 else if (cap_pct > 60)
403 ykbec_apmdata.battery_state = APM_BATT_HIGH;
404 else
405 ykbec_apmdata.battery_state = APM_BATT_LOW;
406
407 /* if charging, current is positive */
408 if (ISSET(bat_state, BAT_STATE_CHARGING))
409 current = 0;
410 else
411 current = -current;
412 /* XXX Yeeloong draw is about 1A */
413 if (current <= 0)
414 current = 1000;
415 /* XXX at 5?%, the Yeeloong shuts down */
416 if (cap_pct <= 5)
417 cap_pct = 0;
418 else
419 cap_pct -= 5;
420 fullcap = cap_pct * 60 * fullcap / 100;
421 ykbec_apmdata.minutes_left = fullcap / current;
422
423 }
424 if (old.ac_state != ykbec_apmdata.ac_state)
425 apm_record_event(APM_POWER_CHANGE, "AC power",
426 ykbec_apmdata.ac_state ? "restored" : "lost");
427 if (old.battery_state != ykbec_apmdata.battery_state)
428 apm_record_event(APM_POWER_CHANGE, "battery",
429 BATTERY_STRING(ykbec_apmdata.battery_state));
430 #endif
431 }
432
433
434 #if NAPM > 0
435 int
436 ykbec_apminfo(struct apm_power_info *info)
437 {
438 bcopy(&ykbec_apmdata, info, sizeof(struct apm_power_info));
439 return 0;
440 }
441
442 int
443 ykbec_suspend()
444 {
445 struct ykbec_softc *sc = ykbec_sc;
446 int ctrl;
447
448 /*
449 * Set up wakeup sources: currently only the internal keyboard.
450 */
451 loongson_set_isa_imr(1 << 1);
452
453 /* USB */
454 DPRINTF(("USB\n"));
455 ykbec_write(sc, REG_USB0, USB_FLAG_OFF);
456 ykbec_write(sc, REG_USB1, USB_FLAG_OFF);
457 ykbec_write(sc, REG_USB2, USB_FLAG_OFF);
458
459 /* EC */
460 DPRINTF(("REG_PMUCFG\n"));
461 ctrl = PMUCFG_SCI_WAKEUP | PMUCFG_WDT_WAKEUP | PMUCFG_GPWU_WAKEUP |
462 PMUCFG_LPC_WAKEUP | PMUCFG_STOP_MODE | PMUCFG_RESET_8051;
463 ykbec_write(sc, REG_PMUCFG, ctrl);
464
465 /* FAN */
466 DPRINTF(("FAN\n"));
467 ykbec_write(sc, REG_FAN_CONTROL, REG_FAN_OFF);
468
469 /* CPU */
470 DPRINTF(("CPU\n"));
471 ykbec_chip_config = REGVAL(LOONGSON_CHIP_CONFIG0);
472 enableintr();
473 REGVAL(LOONGSON_CHIP_CONFIG0) = ykbec_chip_config & ~0x7;
474 (void)REGVAL(LOONGSON_CHIP_CONFIG0);
475
476 /*
477 * When a resume interrupt fires, we will enter the interrupt
478 * dispatcher, which will do nothing because we are at splhigh,
479 * and execution flow will return here and continue.
480 */
481 (void)disableintr();
482
483 return 0;
484 }
485
486 int
487 ykbec_resume()
488 {
489 struct ykbec_softc *sc = ykbec_sc;
490
491 /* CPU */
492 DPRINTF(("CPU\n"));
493 REGVAL(LOONGSON_CHIP_CONFIG0) = ykbec_chip_config;
494 (void)REGVAL(LOONGSON_CHIP_CONFIG0);
495
496 /* FAN */
497 DPRINTF(("FAN\n"));
498 ykbec_write(sc, REG_FAN_CONTROL, REG_FAN_ON);
499
500 /* USB */
501 DPRINTF(("USB\n"));
502 ykbec_write(sc, REG_USB0, USB_FLAG_ON);
503 ykbec_write(sc, REG_USB1, USB_FLAG_ON);
504 ykbec_write(sc, REG_USB2, USB_FLAG_ON);
505
506 ykbec_refresh(sc);
507
508 return 0;
509 }
510 #endif
511
512 #if NPCKBD > 0 || NHIDKBD > 0
513 void
514 ykbec_bell(void *arg, u_int pitch, u_int period, u_int volume, int poll)
515 {
516 struct ykbec_softc *sc = (struct ykbec_softc *)arg;
517 int bctrl;
518 int s;
519
520 s = spltty();
521 bctrl = ykbec_read(sc, REG_BEEP_CONTROL);
522 if (volume == 0 || timeout_pending(&sc->sc_bell_tmo)) {
523 timeout_del(&sc->sc_bell_tmo);
524 /* inline ykbec_bell_stop(arg); */
525 ykbec_write(sc, REG_BEEP_CONTROL, bctrl & ~BEEP_ENABLE);
526 }
527
528 if (volume != 0) {
529 ykbec_write(sc, REG_BEEP_CONTROL, bctrl | BEEP_ENABLE);
530 if (poll) {
531 delay(period * 1000);
532 ykbec_write(sc, REG_BEEP_CONTROL, bctrl & ~BEEP_ENABLE);
533 } else {
534 timeout_add_msec(&sc->sc_bell_tmo, period);
535 }
536 }
537 splx(s);
538 }
539
540 void
541 ykbec_bell_stop(void *arg)
542 {
543 struct ykbec_softc *sc = (struct ykbec_softc *)arg;
544 int s;
545
546 s = spltty();
547 ykbec_write(sc, REG_BEEP_CONTROL,
548 ykbec_read(sc, REG_BEEP_CONTROL) & ~BEEP_ENABLE);
549 splx(s);
550 }
551 #endif
552