Home | History | Annotate | Line # | Download | only in loongson
loongson_clock.c revision 1.3
      1  1.3       nia /*	$NetBSD: loongson_clock.c,v 1.3 2020/10/25 16:39:00 nia Exp $	*/
      2  1.1  macallan 
      3  1.1  macallan /*
      4  1.1  macallan  * Copyright (c) 2011, 2016 Michael Lorenz
      5  1.1  macallan  * All rights reserved.
      6  1.1  macallan  *
      7  1.1  macallan  * Redistribution and use in source and binary forms, with or without
      8  1.1  macallan  * modification, are permitted provided that the following conditions
      9  1.1  macallan  * are met:
     10  1.1  macallan  * 1. Redistributions of source code must retain the above copyright
     11  1.1  macallan  *    notice, this list of conditions and the following disclaimer.
     12  1.1  macallan  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  macallan  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  macallan  *    documentation and/or other materials provided with the distribution.
     15  1.1  macallan  *
     16  1.1  macallan  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  1.1  macallan  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  1.1  macallan  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  1.1  macallan  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  1.1  macallan  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  1.1  macallan  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  1.1  macallan  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  1.1  macallan  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  1.1  macallan  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  1.1  macallan  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  1.1  macallan  */
     27  1.1  macallan 
     28  1.1  macallan #include <sys/cdefs.h>
     29  1.3       nia __KERNEL_RCSID(0, "$NetBSD: loongson_clock.c,v 1.3 2020/10/25 16:39:00 nia Exp $");
     30  1.1  macallan 
     31  1.1  macallan #include <sys/param.h>
     32  1.1  macallan #include <sys/systm.h>
     33  1.1  macallan #include <sys/kernel.h>
     34  1.1  macallan #include <sys/device.h>
     35  1.1  macallan #include <sys/cpu.h>
     36  1.1  macallan #include <sys/timetc.h>
     37  1.1  macallan #include <sys/sysctl.h>
     38  1.1  macallan 
     39  1.1  macallan #include <mips/mips3_clock.h>
     40  1.1  macallan #include <mips/locore.h>
     41  1.1  macallan #include <mips/bonito/bonitoreg.h>
     42  1.1  macallan #include <mips/bonito/bonitovar.h>
     43  1.1  macallan 
     44  1.1  macallan #ifdef LOONGSON_CLOCK_DEBUG
     45  1.1  macallan #define DPRINTF aprint_error
     46  1.1  macallan #else
     47  1.1  macallan #define DPRINTF while (0) printf
     48  1.1  macallan #endif
     49  1.1  macallan 
     50  1.1  macallan static uint32_t sc_last;
     51  1.1  macallan static uint32_t sc_scale[8];
     52  1.1  macallan static uint32_t sc_count;	/* should probably be 64 bit */
     53  1.1  macallan static int sc_step = 7;
     54  1.1  macallan static int sc_step_wanted = 7;
     55  1.1  macallan static void *sc_shutdown_cookie;
     56  1.1  macallan 
     57  1.1  macallan /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
     58  1.1  macallan static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
     59  1.1  macallan static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
     60  1.1  macallan static int cycles[8];
     61  1.1  macallan 
     62  1.1  macallan #define scale(x, f) (x * scale_d[f] / scale_m[f])
     63  1.1  macallan #define rscale(x, f) (x * scale_m[f] / scale_d[f])
     64  1.1  macallan 
     65  1.1  macallan static void loongson_set_speed(int);
     66  1.1  macallan static int  loongson_cpuspeed_temp(SYSCTLFN_ARGS);
     67  1.1  macallan static int  loongson_cpuspeed_cur(SYSCTLFN_ARGS);
     68  1.1  macallan static int  loongson_cpuspeed_available(SYSCTLFN_ARGS);
     69  1.1  macallan 
     70  1.1  macallan static void loongson_clock_shutdown(void *);
     71  1.1  macallan static u_int get_loongson_timecount(struct timecounter *);
     72  1.1  macallan void	    loongson_delay(int);
     73  1.1  macallan void	    loongson_setstatclockrate(int);
     74  1.1  macallan void        loongson_initclocks(void);
     75  1.1  macallan 
     76  1.1  macallan static struct timecounter loongson_timecounter = {
     77  1.2       rin 	.tc_get_timecount = get_loongson_timecount,
     78  1.2       rin 	.tc_counter_mask = 0xffffffff,
     79  1.2       rin 	.tc_name = "loongson",
     80  1.2       rin 	.tc_quality = 100,
     81  1.1  macallan };
     82  1.1  macallan 
     83  1.1  macallan void
     84  1.1  macallan loongson_initclocks(void)
     85  1.1  macallan {
     86  1.1  macallan 	const struct sysctlnode *sysctl_node, *me, *freq;
     87  1.1  macallan 	int clk;
     88  1.1  macallan 
     89  1.1  macallan 	/*
     90  1.1  macallan 	 * Establish a hook so on shutdown we can set the CPU clock back to
     91  1.1  macallan 	 * full speed. This is necessary because PMON doesn't change the
     92  1.1  macallan 	 * clock scale register on a warm boot, the MIPS clock code gets
     93  1.1  macallan 	 * confused if we're too slow and the loongson-specific bits run
     94  1.1  macallan 	 * too late in the boot process
     95  1.1  macallan 	 */
     96  1.1  macallan 	sc_shutdown_cookie = shutdownhook_establish(loongson_clock_shutdown, NULL);
     97  1.1  macallan 
     98  1.1  macallan 	for (clk = 1; clk < 8; clk++) {
     99  1.1  macallan 		sc_scale[clk] = rscale(curcpu()->ci_cpu_freq / 1000000, clk);
    100  1.1  macallan 		cycles[clk] =
    101  1.1  macallan 		    (rscale(curcpu()->ci_cpu_freq, clk) + hz / 2) / (2 * hz);
    102  1.1  macallan 	}
    103  1.1  macallan #ifdef LOONGSON_CLOCK_DEBUG
    104  1.1  macallan 	for (clk = 1; clk < 8; clk++) {
    105  1.1  macallan 		aprint_normal("frequencies: %d/8: %d\n", clk + 1,
    106  1.1  macallan 		    sc_scale[clk]);
    107  1.1  macallan 	}
    108  1.1  macallan #endif
    109  1.1  macallan 
    110  1.1  macallan 	/* now setup sysctl */
    111  1.1  macallan 	if (sysctl_createv(NULL, 0, NULL,
    112  1.1  macallan 	    &me,
    113  1.3       nia 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "cpu", NULL, NULL,
    114  1.1  macallan 	    0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
    115  1.3       nia 		aprint_error("couldn't create 'cpu' node\n");
    116  1.1  macallan 
    117  1.1  macallan 	if (sysctl_createv(NULL, 0, NULL,
    118  1.1  macallan 	    &freq,
    119  1.1  macallan 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL, 0, NULL,
    120  1.1  macallan 	    0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
    121  1.1  macallan 		aprint_error("couldn't create 'frequency' node\n");
    122  1.1  macallan 
    123  1.1  macallan 	if (sysctl_createv(NULL, 0, NULL,
    124  1.1  macallan 	    &sysctl_node,
    125  1.1  macallan 	    CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
    126  1.1  macallan 	    CTLTYPE_INT, "target", "CPU speed", loongson_cpuspeed_temp,
    127  1.1  macallan 	    0, NULL, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    128  1.1  macallan 	    CTL_CREATE, CTL_EOL) == 0) {
    129  1.1  macallan 	} else
    130  1.1  macallan 		aprint_error("couldn't create 'target' node\n");
    131  1.1  macallan 
    132  1.1  macallan 	if (sysctl_createv(NULL, 0, NULL,
    133  1.1  macallan 	    &sysctl_node,
    134  1.1  macallan 	    CTLFLAG_READWRITE,
    135  1.1  macallan 	    CTLTYPE_INT, "current", NULL, loongson_cpuspeed_cur,
    136  1.1  macallan 	    1, NULL, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    137  1.1  macallan 	    CTL_CREATE, CTL_EOL) == 0) {
    138  1.1  macallan 	} else
    139  1.1  macallan 		aprint_error("couldn't create 'current' node\n");
    140  1.1  macallan 
    141  1.1  macallan 	if (sysctl_createv(NULL, 0, NULL,
    142  1.1  macallan 	    &sysctl_node,
    143  1.1  macallan 	    CTLFLAG_READWRITE,
    144  1.1  macallan 	    CTLTYPE_STRING, "available", NULL, loongson_cpuspeed_available,
    145  1.1  macallan 	    2, NULL, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
    146  1.1  macallan 	    CTL_CREATE, CTL_EOL) == 0) {
    147  1.1  macallan 	} else
    148  1.1  macallan 		aprint_error("couldn't create 'available' node\n");
    149  1.1  macallan 
    150  1.1  macallan 	sc_count = 0;
    151  1.1  macallan 	loongson_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
    152  1.1  macallan 	curcpu()->ci_cctr_freq = loongson_timecounter.tc_frequency;
    153  1.1  macallan 
    154  1.1  macallan 	sc_last = mips3_cp0_count_read();
    155  1.1  macallan 	mips3_cp0_compare_write(sc_last + curcpu()->ci_cycles_per_hz);
    156  1.1  macallan 
    157  1.1  macallan 	tc_init(&loongson_timecounter);
    158  1.1  macallan 
    159  1.1  macallan 	/*
    160  1.1  macallan 	 * Now we can enable all interrupts including hardclock(9)
    161  1.1  macallan 	 * by CPU INT5.
    162  1.1  macallan 	 */
    163  1.1  macallan 	spl0();
    164  1.1  macallan 	printf("boom\n");
    165  1.1  macallan }
    166  1.1  macallan 
    167  1.1  macallan static void
    168  1.1  macallan loongson_clock_shutdown(void *cookie)
    169  1.1  macallan {
    170  1.1  macallan 
    171  1.1  macallan 	/* just in case the interrupt handler runs again after this */
    172  1.1  macallan 	sc_step_wanted = 7;
    173  1.1  macallan 	/* set the clock to full speed */
    174  1.1  macallan 	REGVAL(LS2F_CHIPCFG0) =
    175  1.1  macallan 	    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | 7;
    176  1.1  macallan }
    177  1.1  macallan 
    178  1.1  macallan void
    179  1.1  macallan loongson_set_speed(int speed)
    180  1.1  macallan {
    181  1.1  macallan 
    182  1.1  macallan 	if ((speed < 1) || (speed > 7))
    183  1.1  macallan 		return;
    184  1.1  macallan 	sc_step_wanted = speed;
    185  1.1  macallan 	DPRINTF("%s: %d\n", __func__, speed);
    186  1.1  macallan }
    187  1.1  macallan 
    188  1.1  macallan /*
    189  1.1  macallan  * the clock interrupt handler
    190  1.1  macallan  * we don't have a CPU clock independent, high resolution counter so we're
    191  1.1  macallan  * stuck with a PWM that can't count and a CP0 counter that slows down or
    192  1.1  macallan  * speeds up with the actual CPU speed. In order to still get halfway
    193  1.1  macallan  * accurate time we do the following:
    194  1.1  macallan  * - only change CPU speed in the timer interrupt
    195  1.1  macallan  * - each timer interrupt we measure how many CP0 cycles passed since last
    196  1.1  macallan  *   time, adjust for CPU speed since we can be sure it didn't change, use
    197  1.1  macallan  *   that to update a separate counter
    198  1.1  macallan  * - when reading the time counter we take the number of CP0 ticks since
    199  1.1  macallan  *   the last timer interrupt, scale it to CPU clock, return that plus the
    200  1.1  macallan  *   interrupt updated counter mentioned above to get something close to
    201  1.1  macallan  *   CP0 running at full speed
    202  1.1  macallan  * - when changing CPU speed do it as close to taking the time from CP0 as
    203  1.1  macallan  *   possible to keep the period of time we spend with CP0 running at the
    204  1.1  macallan  *   wrong frequency as short as possible - hopefully short enough to stay
    205  1.1  macallan  *   insignificant compared to other noise since switching speeds isn't
    206  1.1  macallan  *   going to happen all that often
    207  1.1  macallan  */
    208  1.1  macallan 
    209  1.1  macallan void
    210  1.1  macallan mips3_clockintr(struct clockframe *cf)
    211  1.1  macallan {
    212  1.1  macallan 	uint32_t now, diff, next, new_cnt;
    213  1.1  macallan 
    214  1.1  macallan 	/*
    215  1.1  macallan 	 * this looks kinda funny but what we want here is this:
    216  1.1  macallan 	 * - reading the counter and changing the CPU clock should be as
    217  1.1  macallan 	 *   close together as possible in order to remain halfway accurate
    218  1.1  macallan 	 * - we need to use the previous sc_step in order to scale the
    219  1.1  macallan 	 *   interval passed since the last clock interrupt correctly, so
    220  1.1  macallan 	 *   we only change sc_step after doing that
    221  1.1  macallan 	 */
    222  1.1  macallan 	if (sc_step_wanted != sc_step) {
    223  1.1  macallan 
    224  1.1  macallan 		REGVAL(LS2F_CHIPCFG0) =
    225  1.1  macallan 		    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
    226  1.1  macallan 		     sc_step_wanted;
    227  1.1  macallan 	}
    228  1.1  macallan 
    229  1.1  macallan 	now = mips3_cp0_count_read();
    230  1.1  macallan 	diff = now - sc_last;
    231  1.1  macallan 	sc_count += scale(diff, sc_step);
    232  1.1  macallan 	sc_last = now;
    233  1.1  macallan 	if (sc_step_wanted != sc_step) {
    234  1.1  macallan 		sc_step = sc_step_wanted;
    235  1.1  macallan 		curcpu()->ci_cycles_per_hz = cycles[sc_step];
    236  1.1  macallan 	}
    237  1.1  macallan 	next = now + curcpu()->ci_cycles_per_hz;
    238  1.1  macallan 	curcpu()->ci_ev_count_compare.ev_count++;
    239  1.1  macallan 
    240  1.1  macallan 	mips3_cp0_compare_write(next);
    241  1.1  macallan 
    242  1.1  macallan 	/* Check for lost clock interrupts */
    243  1.1  macallan 	new_cnt = mips3_cp0_count_read();
    244  1.1  macallan 
    245  1.1  macallan 	/*
    246  1.1  macallan 	 * Missed one or more clock interrupts, so let's start
    247  1.1  macallan 	 * counting again from the current value.
    248  1.1  macallan 	 */
    249  1.1  macallan 	if ((next - new_cnt) & 0x80000000) {
    250  1.1  macallan 
    251  1.1  macallan 		next = new_cnt + curcpu()->ci_cycles_per_hz;
    252  1.1  macallan 		mips3_cp0_compare_write(next);
    253  1.1  macallan 		curcpu()->ci_ev_count_compare_missed.ev_count++;
    254  1.1  macallan 	}
    255  1.1  macallan 
    256  1.1  macallan 	hardclock(cf);
    257  1.1  macallan }
    258  1.1  macallan 
    259  1.1  macallan static u_int
    260  1.1  macallan get_loongson_timecount(struct timecounter *tc)
    261  1.1  macallan {
    262  1.1  macallan 	uint32_t now, diff;
    263  1.1  macallan 
    264  1.1  macallan 	now = mips3_cp0_count_read();
    265  1.1  macallan 	diff = now - sc_last;
    266  1.1  macallan 	return sc_count + scale(diff, sc_step);
    267  1.1  macallan }
    268  1.1  macallan 
    269  1.1  macallan static int
    270  1.1  macallan loongson_cpuspeed_temp(SYSCTLFN_ARGS)
    271  1.1  macallan {
    272  1.1  macallan 	struct sysctlnode node = *rnode;
    273  1.1  macallan 	int mhz, i;
    274  1.1  macallan 
    275  1.1  macallan 	mhz = sc_scale[sc_step_wanted];
    276  1.1  macallan 
    277  1.1  macallan 	node.sysctl_data = &mhz;
    278  1.1  macallan 	if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
    279  1.1  macallan 		int new_reg;
    280  1.1  macallan 
    281  1.1  macallan 		new_reg = *(int *)node.sysctl_data;
    282  1.1  macallan 		i = 1;
    283  1.1  macallan 		while ((i < 8) && (sc_scale[i] != new_reg))
    284  1.1  macallan 			i++;
    285  1.1  macallan 		if (i > 7)
    286  1.1  macallan 			return EINVAL;
    287  1.1  macallan 		loongson_set_speed(i);
    288  1.1  macallan 		return 0;
    289  1.1  macallan 	}
    290  1.1  macallan 	return EINVAL;
    291  1.1  macallan }
    292  1.1  macallan 
    293  1.1  macallan static int
    294  1.1  macallan loongson_cpuspeed_cur(SYSCTLFN_ARGS)
    295  1.1  macallan {
    296  1.1  macallan 	struct sysctlnode node = *rnode;
    297  1.1  macallan 	int mhz;
    298  1.1  macallan 
    299  1.1  macallan 	mhz = sc_scale[sc_step];
    300  1.1  macallan 	node.sysctl_data = &mhz;
    301  1.1  macallan 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    302  1.1  macallan }
    303  1.1  macallan 
    304  1.1  macallan static int
    305  1.1  macallan loongson_cpuspeed_available(SYSCTLFN_ARGS)
    306  1.1  macallan {
    307  1.1  macallan 	struct sysctlnode node = *rnode;
    308  1.1  macallan 	char buf[128];
    309  1.1  macallan 
    310  1.1  macallan 	snprintf(buf, 128, "%d %d %d %d %d %d %d", sc_scale[1],
    311  1.1  macallan 	    sc_scale[2], sc_scale[3], sc_scale[4],
    312  1.1  macallan 	    sc_scale[5], sc_scale[6], sc_scale[7]);
    313  1.1  macallan 	node.sysctl_data = buf;
    314  1.1  macallan 	return(sysctl_lookup(SYSCTLFN_CALL(&node)));
    315  1.1  macallan }
    316  1.1  macallan 
    317  1.1  macallan /*
    318  1.1  macallan  * Wait for at least "n" microseconds.
    319  1.1  macallan  */
    320  1.1  macallan void
    321  1.1  macallan loongson_delay(int n)
    322  1.1  macallan {
    323  1.1  macallan 	u_long divisor_delay;
    324  1.1  macallan 	uint32_t cur, last, delta, usecs;
    325  1.1  macallan 
    326  1.1  macallan 	last = mips3_cp0_count_read();
    327  1.1  macallan 	delta = usecs = 0;
    328  1.1  macallan 
    329  1.1  macallan 	divisor_delay = rscale(curcpu()->ci_divisor_delay, sc_step);
    330  1.1  macallan 	if (divisor_delay == 0) {
    331  1.1  macallan 		/*
    332  1.1  macallan 		 * Frequency values in curcpu() are not initialized.
    333  1.1  macallan 		 * Assume faster frequency since longer delays are harmless.
    334  1.1  macallan 		 * Note CPU_MIPS_DOUBLE_COUNT is ignored here.
    335  1.1  macallan 		 */
    336  1.1  macallan #define FAST_FREQ	(300 * 1000 * 1000)	/* fast enough? */
    337  1.1  macallan 		divisor_delay = FAST_FREQ / (1000 * 1000);
    338  1.1  macallan 	}
    339  1.1  macallan 
    340  1.1  macallan 	while (n > usecs) {
    341  1.1  macallan 		cur = mips3_cp0_count_read();
    342  1.1  macallan 
    343  1.1  macallan 		/*
    344  1.1  macallan 		 * The MIPS3 CP0 counter always counts upto UINT32_MAX,
    345  1.1  macallan 		 * so no need to check wrapped around case.
    346  1.1  macallan 		 */
    347  1.1  macallan 		delta += (cur - last);
    348  1.1  macallan 
    349  1.1  macallan 		last = cur;
    350  1.1  macallan 
    351  1.1  macallan 		while (delta >= divisor_delay) {
    352  1.1  macallan 			/*
    353  1.1  macallan 			 * delta is not so larger than divisor_delay here,
    354  1.1  macallan 			 * and using DIV/DIVU ops could be much slower.
    355  1.1  macallan 			 * (though longer delay may be harmless)
    356  1.1  macallan 			 */
    357  1.1  macallan 			usecs++;
    358  1.1  macallan 			delta -= divisor_delay;
    359  1.1  macallan 		}
    360  1.1  macallan 	}
    361  1.1  macallan }
    362  1.1  macallan 
    363  1.1  macallan SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
    364  1.1  macallan {
    365  1.1  macallan 
    366  1.1  macallan 	sysctl_createv(NULL, 0, NULL, NULL,
    367  1.1  macallan 		       CTLFLAG_PERMANENT,
    368  1.1  macallan 		       CTLTYPE_NODE, "machdep", NULL,
    369  1.1  macallan 		       NULL, 0, NULL, 0,
    370  1.1  macallan 		       CTL_MACHDEP, CTL_EOL);
    371  1.1  macallan }
    372  1.1  macallan 
    373  1.1  macallan /*
    374  1.1  macallan  * We assume newhz is either stathz or profhz, and that neither will
    375  1.1  macallan  * change after being set up above.  Could recalculate intervals here
    376  1.1  macallan  * but that would be a drag.
    377  1.1  macallan  */
    378  1.1  macallan void
    379  1.1  macallan loongson_setstatclockrate(int newhz)
    380  1.1  macallan {
    381  1.1  macallan 
    382  1.1  macallan 	/* nothing we can do */
    383  1.1  macallan }
    384  1.1  macallan 
    385  1.1  macallan __weak_alias(setstatclockrate, loongson_setstatclockrate);
    386  1.1  macallan __weak_alias(cpu_initclocks, loongson_initclocks);
    387  1.2       rin __weak_alias(delay, loongson_delay);
    388