malta_intr.c revision 1.2 1 /* $NetBSD: malta_intr.c,v 1.2 2002/04/08 14:08:27 simonb Exp $ */
2
3 /*
4 * Copyright 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Platform-specific interrupt support for the MIPS Malta.
40 */
41
42
43 #include <sys/param.h>
44 #include <sys/device.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47
48 #include <mips/locore.h>
49
50 #include <evbmips/evbmips/clockvar.h>
51
52 #include <evbmips/malta/maltavar.h>
53 #include <evbmips/malta/pci/pcibvar.h>
54
55 #include <dev/ic/mc146818reg.h> /* for malta_cal_timer() */
56
57 #include <dev/isa/isavar.h>
58 #include <dev/pci/pciidereg.h>
59
60 /*
61 * This is a mask of bits to clear in the SR when we go to a
62 * given hardware interrupt priority level.
63 */
64 const u_int32_t ipl_sr_bits[_IPL_N] = {
65 0, /* IPL_NONE */
66
67 MIPS_SOFT_INT_MASK_0, /* IPL_SOFT */
68
69 MIPS_SOFT_INT_MASK_0, /* IPL_SOFTCLOCK */
70
71 MIPS_SOFT_INT_MASK_0|
72 MIPS_SOFT_INT_MASK_1, /* IPL_SOFTNET */
73
74 MIPS_SOFT_INT_MASK_0|
75 MIPS_SOFT_INT_MASK_1, /* IPL_SOFTSERIAL */
76
77 MIPS_SOFT_INT_MASK_0|
78 MIPS_SOFT_INT_MASK_1|
79 MIPS_INT_MASK_0, /* IPL_BIO */
80
81 MIPS_SOFT_INT_MASK_0|
82 MIPS_SOFT_INT_MASK_1|
83 MIPS_INT_MASK_0, /* IPL_NET */
84
85 MIPS_SOFT_INT_MASK_0|
86 MIPS_SOFT_INT_MASK_1|
87 MIPS_INT_MASK_0, /* IPL_{TTY,SERIAL} */
88
89 MIPS_SOFT_INT_MASK_0|
90 MIPS_SOFT_INT_MASK_1|
91 MIPS_INT_MASK_0|
92 MIPS_INT_MASK_1|
93 MIPS_INT_MASK_2|
94 MIPS_INT_MASK_3|
95 MIPS_INT_MASK_4|
96 MIPS_INT_MASK_5, /* IPL_{CLOCK,HIGH} */
97 };
98
99 struct malta_cpuintr {
100 LIST_HEAD(, evbmips_intrhand) cintr_list;
101 struct evcnt cintr_count;
102 };
103 #define NINTRS 5 /* MIPS INT0 - INT4 */
104
105 struct malta_cpuintr malta_cpuintrs[NINTRS];
106 const char *malta_cpuintrnames[NINTRS] = {
107 "int 0 (piix4)",
108 "int 1 (smi)",
109 "int 2 (uart)",
110 "int 3 (core hi/gt64120)",
111 "int 4 (core lo)",
112 };
113
114 static int malta_pci_intr_map(struct pci_attach_args *, pci_intr_handle_t *);
115 static const char
116 *malta_pci_intr_string(void *, pci_intr_handle_t);
117 static const struct evcnt
118 *malta_pci_intr_evcnt(void *, pci_intr_handle_t);
119 static void *malta_pci_intr_establish(void *, pci_intr_handle_t, int,
120 int (*)(void *), void *);
121 static void malta_pci_intr_disestablish(void *, void *);
122 static void malta_pci_conf_interrupt(void *, int, int, int, int, int *);
123 static void *malta_pciide_compat_intr_establish(void *, struct device *,
124 struct pci_attach_args *, int, int (*)(void *), void *);
125
126 void
127 evbmips_intr_init(void)
128 {
129 struct malta_config *mcp = &malta_configuration;
130 int i;
131
132 for (i = 0; i < NINTRS; i++) {
133 LIST_INIT(&malta_cpuintrs[i].cintr_list);
134 evcnt_attach_dynamic(&malta_cpuintrs[i].cintr_count,
135 EVCNT_TYPE_INTR, NULL, "mips", malta_cpuintrnames[i]);
136 }
137
138 evcnt_attach_static(&mips_int5_evcnt);
139
140 mcp->mc_pc.pc_intr_v = NULL;
141 mcp->mc_pc.pc_intr_map = malta_pci_intr_map;
142 mcp->mc_pc.pc_intr_string = malta_pci_intr_string;
143 mcp->mc_pc.pc_intr_evcnt = malta_pci_intr_evcnt;
144 mcp->mc_pc.pc_intr_establish = malta_pci_intr_establish;
145 mcp->mc_pc.pc_intr_disestablish = malta_pci_intr_disestablish;
146 mcp->mc_pc.pc_conf_interrupt = malta_pci_conf_interrupt;
147 mcp->mc_pc.pc_pciide_compat_intr_establish =
148 malta_pciide_compat_intr_establish;
149 }
150
151 void
152 malta_cal_timer(bus_space_tag_t st, bus_space_handle_t sh)
153 {
154 u_long ctrdiff[4], startctr, endctr;
155 u_int8_t regc;
156 int i;
157
158 /* Disable interrupts first. */
159 bus_space_write_1(st, sh, 0, MC_REGB);
160 bus_space_write_1(st, sh, 1, MC_REGB_SQWE | MC_REGB_BINARY |
161 MC_REGB_24HR);
162
163 /* Initialize for 16Hz. */
164 bus_space_write_1(st, sh, 0, MC_REGA);
165 bus_space_write_1(st, sh, 1, MC_BASE_32_KHz | MC_RATE_16_Hz);
166
167 /* Run the loop an extra time to prime the cache. */
168 for (i = 0; i < 4; i++) {
169 // led_display('h', 'z', '0' + i, ' ');
170
171 /* Enable the interrupt. */
172 bus_space_write_1(st, sh, 0, MC_REGB);
173 bus_space_write_1(st, sh, 1, MC_REGB_PIE | MC_REGB_SQWE |
174 MC_REGB_BINARY | MC_REGB_24HR);
175
176 /* Go to REGC. */
177 bus_space_write_1(st, sh, 0, MC_REGC);
178
179 /* Wait for it to happen. */
180 startctr = mips3_cp0_count_read();
181 do {
182 regc = bus_space_read_1(st, sh, 1);
183 endctr = mips3_cp0_count_read();
184 } while ((regc & MC_REGC_IRQF) == 0);
185
186 /* Already ACK'd. */
187
188 /* Disable. */
189 bus_space_write_1(st, sh, 0, MC_REGB);
190 bus_space_write_1(st, sh, 1, MC_REGB_SQWE | MC_REGB_BINARY |
191 MC_REGB_24HR);
192
193 ctrdiff[i] = endctr - startctr;
194 }
195
196 /* Compute the number of cycles per second. */
197 curcpu()->ci_cpu_freq = ((ctrdiff[2] + ctrdiff[3]) / 2) * 16/*Hz*/;
198
199 /* Compute the number of ticks for hz. */
200 curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
201
202 /* Compute the delay divisor. */
203 curcpu()->ci_divisor_delay =
204 ((curcpu()->ci_cpu_freq + 500000) / 1000000);
205
206 /*
207 * To implement a more accurate microtime using the CP0 COUNT
208 * register we need to divide that register by the number of
209 * cycles per MHz. But...
210 *
211 * DIV and DIVU are expensive on MIPS (eg 75 clocks on the
212 * R4000). MULT and MULTU are only 12 clocks on the same CPU.
213 * On the SB1 these appear to be 40-72 clocks for DIV/DIVU and 3
214 * clocks for MUL/MULTU.
215 *
216 * The strategy we use to to calculate the reciprical of cycles
217 * per MHz, scaled by 1<<32. Then we can simply issue a MULTU
218 * and pluck of the HI register and have the results of the
219 * division.
220 */
221 curcpu()->ci_divisor_recip =
222 0x100000000ULL / curcpu()->ci_divisor_delay;
223
224 /*
225 * Get correct cpu frequency if the CPU runs at twice the
226 * external/cp0-count frequency.
227 */
228 if (mips_cpu_flags & CPU_MIPS_DOUBLE_COUNT)
229 curcpu()->ci_cpu_freq *= 2;
230
231 #ifdef DEBUG
232 printf("Timer calibration: %lu cycles/sec [(%lu, %lu) * 16]\n",
233 curcpu()->ci_cpu_freq, ctrdiff[2], ctrdiff[3]);
234 #endif
235 }
236
237 void *
238 evbmips_intr_establish(int irq, int (*func)(void *), void *arg)
239 {
240 struct evbmips_intrhand *ih;
241 int s;
242
243 ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
244 if (ih == NULL)
245 return (NULL);
246
247 ih->ih_func = func;
248 ih->ih_arg = arg;
249
250 s = splhigh();
251
252 /*
253 * Link it into the tables.
254 */
255 LIST_INSERT_HEAD(&malta_cpuintrs[0].cintr_list, ih, ih_q);
256
257 /* XXX - should check that MIPS_INT_MASK_0 is set... */
258
259 splx(s);
260
261 return (ih);
262 }
263
264 void
265 evbmips_intr_disestablish(void *arg)
266 {
267 struct evbmips_intrhand *ih = arg;
268 int s;
269
270 s = splhigh();
271
272 /*
273 * First, remove it from the table.
274 */
275 LIST_REMOVE(ih, ih_q);
276
277 /* XXX - disable MIPS_INT_MASK_0 if list is empty? */
278
279 splx(s);
280
281 free(ih, M_DEVBUF);
282 }
283
284 void
285 evbmips_iointr(uint32_t status, uint32_t cause, uint32_t pc, uint32_t ipending)
286 {
287 struct evbmips_intrhand *ih;
288
289 /* Check for error interrupts (SMI, GT62140) */
290 if (ipending & (MIPS_INT_MASK_1 | MIPS_INT_MASK_3)) {
291 if (ipending & MIPS_INT_MASK_1)
292 panic("piix4 SMI interrupt");
293 if (ipending & MIPS_INT_MASK_3)
294 panic("gt62140 error interrupt");
295 }
296
297 /*
298 * Read the interrupt pending registers, mask them with the
299 * ones we have enabled, and service them in order of decreasing
300 * priority.
301 */
302 if (ipending & MIPS_INT_MASK_0) {
303 /* All interrupts are gated through MIPS HW interrupt 0 */
304 malta_cpuintrs[0].cintr_count.ev_count++;
305 LIST_FOREACH(ih, &malta_cpuintrs[0].cintr_list, ih_q)
306 (*ih->ih_func)(ih->ih_arg);
307 cause &= ~MIPS_INT_MASK_0;
308 }
309
310 /* Re-enable anything that we have processed. */
311 _splset(MIPS_SR_INT_IE | ((status & ~cause) & MIPS_HARD_INT_MASK));
312 }
313
314 /*
315 * YAMON configures pa_intrline correctly (so far), so we trust it to DTRT
316 * in the future...
317 */
318 #undef YAMON_IRQ_MAP_BAD
319
320 /*
321 * PCI interrupt support
322 */
323 static int
324 malta_pci_intr_map(struct pci_attach_args *pa, pci_intr_handle_t *ihp)
325 {
326 #ifdef YAMON_IRQ_MAP_BAD
327 static const int pciirqmap[13/*device*/][4/*pin*/] = {
328 { -1, -1, -1, 11 }, /* 10: USB */
329 { 10, -1, -1, -1 }, /* 11: Ethernet */
330 { 11, -1, -1, -1 }, /* 12: Audio */
331 { -1, -1, -1, -1 }, /* 13: not used */
332 { -1, -1, -1, -1 }, /* 14: not used */
333 { -1, -1, -1, -1 }, /* 15: not used */
334 { -1, -1, -1, -1 }, /* 16: not used */
335 { -1, -1, -1, -1 }, /* 17: Core card(?) */
336 { 10, 10, 11, 11 }, /* 18: PCI Slot 1 */
337 { 10, 11, 11, 10 }, /* 19: PCI Slot 2 */
338 { 11, 11, 10, 10 }, /* 20: PCI Slot 3 */
339 { 11, 10, 10, 11 }, /* 21: PCI Slot 4 */
340 };
341 int buspin, device, irq;
342 #else /* !YAMON_IRQ_MAP_BAD */
343 int buspin;
344 #endif /* !YAMON_IRQ_MAP_BAD */
345
346 buspin = pa->pa_intrpin;
347
348 if (buspin == 0) {
349 /* No IRQ used. */
350 return (1);
351 }
352
353 if (buspin > 4) {
354 printf("malta_pci_intr_map: bad interrupt pin %d\n", buspin);
355 return (1);
356 }
357
358 #ifdef YAMON_IRQ_MAP_BAD
359 pci_decompose_tag(pa->pa_pc, pa->pa_intrtag, NULL, &device, NULL);
360
361 if (device < 10 || device > 21) {
362 printf("malta_pci_intr_map: bad device %d\n", device);
363 return (1);
364 }
365
366 irq = pciirqmap[device - 10][buspin - 1];
367 if (irq == -1) {
368 printf("malta_pci_intr_map: no mapping for device %d pin %d\n",
369 device, buspin);
370 return (1);
371 }
372
373 *ihp = irq;
374 #else /* !YAMON_IRQ_MAP_BAD */
375 *ihp = pa->pa_intrline;
376 #endif /* !YAMON_IRQ_MAP_BAD */
377 return (0);
378 }
379
380 static const char *
381 malta_pci_intr_string(void *v, pci_intr_handle_t irq)
382 {
383
384 return (isa_intr_string(pcib_ic, irq));
385 }
386
387 static const struct evcnt *
388 malta_pci_intr_evcnt(void *v, pci_intr_handle_t irq)
389 {
390
391 return (isa_intr_evcnt(pcib_ic, irq));
392 }
393
394 static void *
395 malta_pci_intr_establish(void *v, pci_intr_handle_t irq, int level,
396 int (*func)(void *), void *arg)
397 {
398
399 return (isa_intr_establish(pcib_ic, irq, IST_LEVEL, level, func, arg));
400 }
401
402 static void
403 malta_pci_intr_disestablish(void *v, void *arg)
404 {
405
406 return (isa_intr_disestablish(pcib_ic, arg));
407 }
408
409 static void
410 malta_pci_conf_interrupt(void *v, int bus, int dev, int func, int swiz,
411 int *iline)
412 {
413
414 /*
415 * We actually don't need to do anything; everything is handled
416 * in pci_intr_map().
417 */
418 *iline = 0;
419 }
420
421 void *
422 malta_pciide_compat_intr_establish(void *v, struct device *dev,
423 struct pci_attach_args *pa, int chan, int (*func)(void *), void *arg)
424 {
425 pci_chipset_tag_t pc = pa->pa_pc;
426 void *cookie;
427 int bus, irq;
428
429 pci_decompose_tag(pc, pa->pa_tag, &bus, NULL, NULL);
430
431 /*
432 * If this isn't PCI bus #0, all bets are off.
433 */
434 if (bus != 0)
435 return (NULL);
436
437 irq = PCIIDE_COMPAT_IRQ(chan);
438 cookie = isa_intr_establish(pcib_ic, irq, IST_EDGE, IPL_BIO, func, arg);
439 if (cookie == NULL)
440 return (NULL);
441 printf("%s: %s channel interrupting at %s\n", dev->dv_xname,
442 PCIIDE_CHANNEL_NAME(chan), malta_pci_intr_string(v, irq));
443 return (cookie);
444 }
445