Home | History | Annotate | Line # | Download | only in malta
malta_intr.c revision 1.20
      1 /*	$NetBSD: malta_intr.c,v 1.20 2011/02/20 07:48:34 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Platform-specific interrupt support for the MIPS Malta.
     40  */
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: malta_intr.c,v 1.20 2011/02/20 07:48:34 matt Exp $");
     44 
     45 #define	__INTR_PRIVATE
     46 
     47 #include <sys/param.h>
     48 #include <sys/device.h>
     49 #include <sys/kernel.h>
     50 #include <sys/malloc.h>
     51 #include <sys/systm.h>
     52 #include <sys/cpu.h>
     53 
     54 #include <mips/locore.h>
     55 
     56 #include <evbmips/malta/maltavar.h>
     57 #include <evbmips/malta/pci/pcibvar.h>
     58 
     59 #include <dev/ic/mc146818reg.h>		/* for malta_cal_timer() */
     60 
     61 #include <dev/isa/isavar.h>
     62 #include <dev/pci/pciidereg.h>
     63 
     64 /*
     65  * This is a mask of bits to clear in the SR when we go to a
     66  * given hardware interrupt priority level.
     67  */
     68 static const struct ipl_sr_map malta_ipl_sr_map = {
     69     .sr_bits = {
     70 	[IPL_NONE] =		0,
     71 	[IPL_SOFTCLOCK] =	MIPS_SOFT_INT_MASK_0,
     72 	[IPL_SOFTNET] =		MIPS_SOFT_INT_MASK,
     73 	[IPL_VM] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
     74 	[IPL_SCHED] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     75 				    | MIPS_INT_MASK_5,
     76 	[IPL_DDB] =		MIPS_INT_MASK,
     77 	[IPL_HIGH] =		MIPS_INT_MASK,
     78     },
     79 };
     80 
     81 struct malta_cpuintr {
     82 	LIST_HEAD(, evbmips_intrhand) cintr_list;
     83 	struct evcnt cintr_count;
     84 };
     85 #define	NINTRS		5	/* MIPS INT0 - INT4 */
     86 
     87 struct malta_cpuintr malta_cpuintrs[NINTRS];
     88 const char * const malta_cpuintrnames[NINTRS] = {
     89 	"int 0 (piix4)",
     90 	"int 1 (smi)",
     91 	"int 2 (uart)",
     92 	"int 3 (core hi/gt64120)",
     93 	"int 4 (core lo)",
     94 };
     95 
     96 static int	malta_pci_intr_map(struct pci_attach_args *, pci_intr_handle_t *);
     97 static const char
     98 		*malta_pci_intr_string(void *, pci_intr_handle_t);
     99 static const struct evcnt
    100 		*malta_pci_intr_evcnt(void *, pci_intr_handle_t);
    101 static void	*malta_pci_intr_establish(void *, pci_intr_handle_t, int,
    102 		    int (*)(void *), void *);
    103 static void	malta_pci_intr_disestablish(void *, void *);
    104 static void	malta_pci_conf_interrupt(void *, int, int, int, int, int *);
    105 static void	*malta_pciide_compat_intr_establish(void *, struct device *,
    106 		    struct pci_attach_args *, int, int (*)(void *), void *);
    107 
    108 void
    109 evbmips_intr_init(void)
    110 {
    111 	struct malta_config * const mcp = &malta_configuration;
    112 
    113 	ipl_sr_map = malta_ipl_sr_map;
    114 
    115 	for (size_t i = 0; i < NINTRS; i++) {
    116 		LIST_INIT(&malta_cpuintrs[i].cintr_list);
    117 		evcnt_attach_dynamic(&malta_cpuintrs[i].cintr_count,
    118 		    EVCNT_TYPE_INTR, NULL, "mips", malta_cpuintrnames[i]);
    119 	}
    120 
    121 	mcp->mc_pc.pc_intr_v = NULL;
    122 	mcp->mc_pc.pc_intr_map = malta_pci_intr_map;
    123 	mcp->mc_pc.pc_intr_string = malta_pci_intr_string;
    124 	mcp->mc_pc.pc_intr_evcnt = malta_pci_intr_evcnt;
    125 	mcp->mc_pc.pc_intr_establish = malta_pci_intr_establish;
    126 	mcp->mc_pc.pc_intr_disestablish = malta_pci_intr_disestablish;
    127 	mcp->mc_pc.pc_conf_interrupt = malta_pci_conf_interrupt;
    128 	mcp->mc_pc.pc_pciide_compat_intr_establish =
    129 	    malta_pciide_compat_intr_establish;
    130 }
    131 
    132 void
    133 malta_cal_timer(bus_space_tag_t st, bus_space_handle_t sh)
    134 {
    135 	struct cpu_info * const ci = curcpu();
    136 	uint32_t ctrdiff[4], startctr, endctr;
    137 	uint8_t regc;
    138 	int i;
    139 
    140 	/* Disable interrupts first. */
    141 	bus_space_write_1(st, sh, 0, MC_REGB);
    142 	bus_space_write_1(st, sh, 1, MC_REGB_SQWE | MC_REGB_BINARY |
    143 	    MC_REGB_24HR);
    144 
    145 	/* Initialize for 16Hz. */
    146 	bus_space_write_1(st, sh, 0, MC_REGA);
    147 	bus_space_write_1(st, sh, 1, MC_BASE_32_KHz | MC_RATE_16_Hz);
    148 
    149 	/* Run the loop an extra time to prime the cache. */
    150 	for (i = 0; i < 4; i++) {
    151 		// led_display('h', 'z', '0' + i, ' ');
    152 
    153 		/* Enable the interrupt. */
    154 		bus_space_write_1(st, sh, 0, MC_REGB);
    155 		bus_space_write_1(st, sh, 1, MC_REGB_PIE | MC_REGB_SQWE |
    156 		    MC_REGB_BINARY | MC_REGB_24HR);
    157 
    158 		/* Go to REGC. */
    159 		bus_space_write_1(st, sh, 0, MC_REGC);
    160 
    161 		/* Wait for it to happen. */
    162 		startctr = mips3_cp0_count_read();
    163 		do {
    164 			regc = bus_space_read_1(st, sh, 1);
    165 			endctr = mips3_cp0_count_read();
    166 		} while ((regc & MC_REGC_IRQF) == 0);
    167 
    168 		/* Already ACK'd. */
    169 
    170 		/* Disable. */
    171 		bus_space_write_1(st, sh, 0, MC_REGB);
    172 		bus_space_write_1(st, sh, 1, MC_REGB_SQWE | MC_REGB_BINARY |
    173 		    MC_REGB_24HR);
    174 
    175 		ctrdiff[i] = endctr - startctr;
    176 	}
    177 
    178 	/* Compute the number of cycles per second. */
    179 	ci->ci_cpu_freq = ((ctrdiff[2] + ctrdiff[3]) / 2) * 16/*Hz*/;
    180 
    181 	/* Compute the number of ticks for hz. */
    182 	ci->ci_cycles_per_hz = (ci->ci_cpu_freq + hz / 2) / hz;
    183 
    184 	/* Compute the delay divisor. */
    185 	ci->ci_divisor_delay = ((ci->ci_cpu_freq + 500000) / 1000000);
    186 
    187 	/*
    188 	 * Get correct cpu frequency if the CPU runs at twice the
    189 	 * external/cp0-count frequency.
    190 	 */
    191 	ci->ci_cctr_freq = ci->ci_cpu_freq;
    192 	if (mips_options.mips_cpu_flags & CPU_MIPS_DOUBLE_COUNT)
    193 		ci->ci_cpu_freq *= 2;
    194 
    195 #ifdef DEBUG
    196 	printf("Timer calibration: %lu cycles/sec [(%u, %u) * 16]\n",
    197 	    ci->ci_cpu_freq, ctrdiff[2], ctrdiff[3]);
    198 #endif
    199 }
    200 
    201 void *
    202 evbmips_intr_establish(int irq, int (*func)(void *), void *arg)
    203 {
    204 	struct evbmips_intrhand *ih;
    205 	int s;
    206 
    207 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
    208 	if (ih == NULL)
    209 		return (NULL);
    210 
    211 	ih->ih_func = func;
    212 	ih->ih_arg = arg;
    213 
    214 	s = splhigh();
    215 
    216 	/*
    217 	 * Link it into the tables.
    218 	 */
    219 	LIST_INSERT_HEAD(&malta_cpuintrs[0].cintr_list, ih, ih_q);
    220 
    221 	/* XXX - should check that MIPS_INT_MASK_0 is set... */
    222 
    223 	splx(s);
    224 
    225 	return (ih);
    226 }
    227 
    228 void
    229 evbmips_intr_disestablish(void *arg)
    230 {
    231 	struct evbmips_intrhand *ih = arg;
    232 	int s;
    233 
    234 	s = splhigh();
    235 
    236 	/*
    237 	 * First, remove it from the table.
    238 	 */
    239 	LIST_REMOVE(ih, ih_q);
    240 
    241 	/* XXX - disable MIPS_INT_MASK_0 if list is empty? */
    242 
    243 	splx(s);
    244 
    245 	free(ih, M_DEVBUF);
    246 }
    247 
    248 void
    249 evbmips_iointr(int ipl, vaddr_t pc, uint32_t ipending)
    250 {
    251 
    252 	/* Check for error interrupts (SMI, GT64120) */
    253 	if (ipending & (MIPS_INT_MASK_1 | MIPS_INT_MASK_3)) {
    254 		if (ipending & MIPS_INT_MASK_1)
    255 			panic("piix4 SMI interrupt");
    256 		if (ipending & MIPS_INT_MASK_3)
    257 			panic("gt64120 error interrupt");
    258 	}
    259 
    260 	/*
    261 	 * Read the interrupt pending registers, mask them with the
    262 	 * ones we have enabled, and service them in order of decreasing
    263 	 * priority.
    264 	 */
    265 	if (ipending & MIPS_INT_MASK_0) {
    266 		struct evbmips_intrhand *ih;
    267 		/* All interrupts are gated through MIPS HW interrupt 0 */
    268 		malta_cpuintrs[0].cintr_count.ev_count++;
    269 		LIST_FOREACH(ih, &malta_cpuintrs[0].cintr_list, ih_q)
    270 			(*ih->ih_func)(ih->ih_arg);
    271 	}
    272 }
    273 
    274 /*
    275  * YAMON configures pa_intrline correctly (so far), so we trust it to DTRT
    276  * in the future...
    277  */
    278 #undef YAMON_IRQ_MAP_BAD
    279 
    280 /*
    281  * PCI interrupt support
    282  */
    283 static int
    284 malta_pci_intr_map(struct pci_attach_args *pa, pci_intr_handle_t *ihp)
    285 {
    286 #ifdef YAMON_IRQ_MAP_BAD
    287 	static const int pciirqmap[12/*device*/][4/*pin*/] = {
    288 		{ -1, -1, -1, 11 },	/* 10: USB */
    289 		{ 10, -1, -1, -1 },	/* 11: Ethernet */
    290 		{ 11, -1, -1, -1 },	/* 12: Audio */
    291 		{ -1, -1, -1, -1 },	/* 13: not used */
    292 		{ -1, -1, -1, -1 },	/* 14: not used */
    293 		{ -1, -1, -1, -1 },	/* 15: not used */
    294 		{ -1, -1, -1, -1 },	/* 16: not used */
    295 		{ -1, -1, -1, -1 },	/* 17: Core card(?) */
    296 		{ 10, 10, 11, 11 },	/* 18: PCI Slot 1 */
    297 		{ 10, 11, 11, 10 },	/* 19: PCI Slot 2 */
    298 		{ 11, 11, 10, 10 },	/* 20: PCI Slot 3 */
    299 		{ 11, 10, 10, 11 },	/* 21: PCI Slot 4 */
    300 	};
    301 	int buspin, device, irq;
    302 #else	/* !YAMON_IRQ_MAP_BAD */
    303 	int buspin;
    304 #endif	/* !YAMON_IRQ_MAP_BAD */
    305 
    306 	buspin = pa->pa_intrpin;
    307 
    308 	if (buspin == 0) {
    309 		/* No IRQ used. */
    310 		return (1);
    311 	}
    312 
    313 	if (buspin > 4) {
    314 		printf("malta_pci_intr_map: bad interrupt pin %d\n", buspin);
    315 		return (1);
    316 	}
    317 
    318 #ifdef YAMON_IRQ_MAP_BAD
    319 	pci_decompose_tag(pa->pa_pc, pa->pa_intrtag, NULL, &device, NULL);
    320 
    321 	if (device < 10 || device > 21) {
    322 		printf("malta_pci_intr_map: bad device %d\n", device);
    323 		return (1);
    324 	}
    325 
    326 	irq = pciirqmap[device - 10][buspin - 1];
    327 	if (irq == -1) {
    328 		printf("malta_pci_intr_map: no mapping for device %d pin %d\n",
    329 		    device, buspin);
    330 		return (1);
    331 	}
    332 
    333 	*ihp = irq;
    334 #else	/* !YAMON_IRQ_MAP_BAD */
    335 	*ihp = pa->pa_intrline;
    336 #endif	/* !YAMON_IRQ_MAP_BAD */
    337 	return (0);
    338 }
    339 
    340 static const char *
    341 malta_pci_intr_string(void *v, pci_intr_handle_t irq)
    342 {
    343 
    344 	return (isa_intr_string(pcib_ic, irq));
    345 }
    346 
    347 static const struct evcnt *
    348 malta_pci_intr_evcnt(void *v, pci_intr_handle_t irq)
    349 {
    350 
    351 	return (isa_intr_evcnt(pcib_ic, irq));
    352 }
    353 
    354 static void *
    355 malta_pci_intr_establish(void *v, pci_intr_handle_t irq, int level,
    356     int (*func)(void *), void *arg)
    357 {
    358 
    359 	return (isa_intr_establish(pcib_ic, irq, IST_LEVEL, level, func, arg));
    360 }
    361 
    362 static void
    363 malta_pci_intr_disestablish(void *v, void *arg)
    364 {
    365 
    366 	return (isa_intr_disestablish(pcib_ic, arg));
    367 }
    368 
    369 static void
    370 malta_pci_conf_interrupt(void *v, int bus, int dev, int func, int swiz,
    371     int *iline)
    372 {
    373 
    374 	/*
    375 	 * We actually don't need to do anything; everything is handled
    376 	 * in pci_intr_map().
    377 	 */
    378 	*iline = 0;
    379 }
    380 
    381 void *
    382 malta_pciide_compat_intr_establish(void *v, struct device *dev,
    383     struct pci_attach_args *pa, int chan, int (*func)(void *), void *arg)
    384 {
    385 	pci_chipset_tag_t pc = pa->pa_pc;
    386 	void *cookie;
    387 	int bus, irq;
    388 
    389 	pci_decompose_tag(pc, pa->pa_tag, &bus, NULL, NULL);
    390 
    391 	/*
    392 	 * If this isn't PCI bus #0, all bets are off.
    393 	 */
    394 	if (bus != 0)
    395 		return (NULL);
    396 
    397 	irq = PCIIDE_COMPAT_IRQ(chan);
    398 	cookie = isa_intr_establish(pcib_ic, irq, IST_EDGE, IPL_BIO, func, arg);
    399 	if (cookie == NULL)
    400 		return (NULL);
    401 	printf("%s: %s channel interrupting at %s\n", dev->dv_xname,
    402 	    PCIIDE_CHANNEL_NAME(chan), malta_pci_intr_string(v, irq));
    403 	return (cookie);
    404 }
    405