Home | History | Annotate | Line # | Download | only in rmixl
machdep.c revision 1.1.2.41
      1 /*	machdep.c,v 1.1.2.34 2011/04/29 08:26:18 matt Exp	*/
      2 
      3 /*
      4  * Copyright 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department, The Mach Operating System project at
     46  * Carnegie-Mellon University and Ralph Campbell.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that the following conditions
     50  * are met:
     51  * 1. Redistributions of source code must retain the above copyright
     52  *    notice, this list of conditions and the following disclaimer.
     53  * 2. Redistributions in binary form must reproduce the above copyright
     54  *    notice, this list of conditions and the following disclaimer in the
     55  *    documentation and/or other materials provided with the distribution.
     56  * 3. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)machdep.c   8.3 (Berkeley) 1/12/94
     73  *	from: Utah Hdr: machdep.c 1.63 91/04/24
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "machdep.c,v 1.1.2.34 2011/04/29 08:26:18 matt Exp");
     78 
     79 #define __INTR_PRIVATE
     80 #define __MUTEX_PRIVATE
     81 #define _MIPS_BUS_DMA_PRIVATE
     82 
     83 #include "opt_multiprocessor.h"
     84 #include "opt_ddb.h"
     85 #include "opt_com.h"
     86 #include "opt_execfmt.h"
     87 #include "opt_memsize.h"
     88 #include "rmixl_pcix.h"
     89 #include "rmixl_pcie.h"
     90 
     91 #include <sys/param.h>
     92 #include <sys/systm.h>
     93 #include <sys/kernel.h>
     94 #include <sys/buf.h>
     95 #include <sys/reboot.h>
     96 #include <sys/mount.h>
     97 #include <sys/kcore.h>
     98 #include <sys/boot_flag.h>
     99 #include <sys/termios.h>
    100 #include <sys/ksyms.h>
    101 #include <sys/intr.h>
    102 #include <sys/bus.h>
    103 #include <sys/device.h>
    104 #include <sys/extent.h>
    105 #include <sys/malloc.h>
    106 
    107 #include <uvm/uvm_extern.h>
    108 
    109 #include <dev/cons.h>
    110 
    111 #include "ksyms.h"
    112 
    113 #if NKSYMS || defined(DDB) || defined(LKM)
    114 #include <mips/db_machdep.h>
    115 #include <ddb/db_extern.h>
    116 #endif
    117 
    118 #include <mips/cpu.h>
    119 #include <mips/psl.h>
    120 #include <mips/cache.h>
    121 #include <mips/mipsNN.h>
    122 #include <mips/mips_opcode.h>
    123 #include <mips/pte.h>
    124 
    125 #include "com.h"
    126 #if NCOM == 0
    127 #error no serial console
    128 #endif
    129 
    130 #include <dev/ic/comreg.h>
    131 #include <dev/ic/comvar.h>
    132 
    133 #include <dev/pci/pcireg.h>
    134 #include <dev/pci/pcivar.h>
    135 #include <dev/pci/pciconf.h>
    136 
    137 #include <mips/rmi/rmixlreg.h>
    138 #include <mips/rmi/rmixlvar.h>
    139 #include <mips/rmi/rmixl_intr.h>
    140 #include <mips/rmi/rmixl_firmware.h>
    141 #include <mips/rmi/rmixl_comvar.h>
    142 #include <mips/rmi/rmixl_pcievar.h>
    143 #include <mips/rmi/rmixl_pcixvar.h>
    144 
    145 //#define MACHDEP_DEBUG 1
    146 #ifdef MACHDEP_DEBUG
    147 int machdep_debug=MACHDEP_DEBUG;
    148 # define DPRINTF(x,...)	do { if (machdep_debug) printf(x, ## __VA_ARGS__); } while(0)
    149 #else
    150 # define DPRINTF(x,...)
    151 #endif
    152 
    153 #ifdef __HAVE_PCI_CONF_HOOK
    154 static int rmixl_pci_conf_hook(void *, int, int, int, pcireg_t);
    155 #endif
    156 
    157 #ifndef CONSFREQ
    158 # define CONSFREQ 66000000
    159 #endif
    160 #ifndef CONSPEED
    161 # define CONSPEED 38400
    162 #endif
    163 #ifndef CONMODE
    164 # define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8)
    165 #endif
    166 #ifndef CONSADDR
    167 # define CONSADDR 0
    168 #endif
    169 
    170 int		comcnfreq  = CONSFREQ;
    171 int		comcnspeed = CONSPEED;
    172 tcflag_t	comcnmode  = CONMODE;
    173 bus_addr_t	comcnaddr  = (bus_addr_t)CONSADDR;
    174 
    175 struct rmixl_config rmixl_configuration = {
    176 	.rc_io = {
    177 		.r_pbase = (bus_addr_t)-1,
    178 	},
    179 	.rc_flash[0] = {
    180 		.r_pbase = (bus_addr_t)-1,
    181 	},
    182 	.rc_flash[1] = {
    183 		.r_pbase = (bus_addr_t)-1,
    184 	},
    185 	.rc_flash[2] = {
    186 		.r_pbase = (bus_addr_t)-1,
    187 	},
    188 	.rc_flash[3] = {
    189 		.r_pbase = (bus_addr_t)-1,
    190 	},
    191 	.rc_pci_cfg = {
    192 		.r_pbase = (bus_addr_t)-1,
    193 	},
    194 	.rc_pci_ecfg = {
    195 		.r_pbase = (bus_addr_t)-1,
    196 	},
    197 	.rc_pci_mem = {
    198 		.r_pbase = (bus_addr_t)-1,
    199 	},
    200 	.rc_pci_io = {
    201 		.r_pbase = (bus_addr_t)-1,
    202 	},
    203 	.rc_pci_link_mem[0] = {
    204 		.r_pbase = (bus_addr_t)-1,
    205 	},
    206 	.rc_pci_link_mem[1] = {
    207 		.r_pbase = (bus_addr_t)-1,
    208 	},
    209 	.rc_pci_link_mem[2] = {
    210 		.r_pbase = (bus_addr_t)-1,
    211 	},
    212 	.rc_pci_link_mem[3] = {
    213 		.r_pbase = (bus_addr_t)-1,
    214 	},
    215 	.rc_pci_link_io[0] = {
    216 		.r_pbase = (bus_addr_t)-1,
    217 	},
    218 	.rc_pci_link_io[1] = {
    219 		.r_pbase = (bus_addr_t)-1,
    220 	},
    221 	.rc_pci_link_io[2] = {
    222 		.r_pbase = (bus_addr_t)-1,
    223 	},
    224 	.rc_pci_link_io[3] = {
    225 		.r_pbase = (bus_addr_t)-1,
    226 	},
    227 	.rc_srio_mem = {
    228 		.r_pbase = (bus_addr_t)-1,
    229 	},
    230 	/*
    231 	 * Staticly initialize the 64-bit dmatag.
    232 	 */
    233 	.rc_dmat64 = &rmixl_configuration.rc_dma_tag,
    234 	.rc_dma_tag = {
    235 		._cookie = &rmixl_configuration.rc_dma_tag,
    236 		._dmamap_ops = _BUS_DMAMAP_OPS_INITIALIZER,
    237 		._dmamem_ops = _BUS_DMAMEM_OPS_INITIALIZER,
    238 		._dmatag_ops = _BUS_DMATAG_OPS_INITIALIZER,
    239 	},
    240 #ifdef __HAVE_PCI_CONF_HOOK
    241 	.rc_pci_chipset = {
    242 		.pc_conf_hook = rmixl_pci_conf_hook,
    243 	}
    244 #endif
    245 };
    246 
    247 #ifdef ENABLE_MIPS_KSEGX
    248 pt_entry_t mips_ksegx_pte;
    249 paddr_t mips_ksegx_start;
    250 #endif
    251 
    252 /*
    253  * array of tested firmware versions
    254  * if you find new ones and they work
    255  * please add them
    256  */
    257 typedef struct rmiclfw_psb_id {
    258 	uint64_t		psb_version;
    259 	rmixlfw_psb_type_t	psb_type;
    260 } rmiclfw_psb_id_t;
    261 static rmiclfw_psb_id_t rmiclfw_psb_id[] = {
    262 	{	0x4958d4fb00000056ULL, PSB_TYPE_RMI  },
    263 	{	0x4aacdb6a00000056ULL, PSB_TYPE_RMI  },
    264 	{	0x4b67d03200000056ULL, PSB_TYPE_RMI  },
    265 	{	0x4c17058b00000056ULL, PSB_TYPE_RMI  },
    266 	{	0x49a5a8fa00000056ULL, PSB_TYPE_DELL },
    267 	{	0x4b8ead3100000056ULL, PSB_TYPE_DELL },
    268 };
    269 #define RMICLFW_PSB_VERSIONS_LEN \
    270 	(sizeof(rmiclfw_psb_id)/sizeof(rmiclfw_psb_id[0]))
    271 
    272 /*
    273  * storage for fixed extent used to allocate physical address regions
    274  * because extent(9) start and end values are u_long, they are only
    275  * 32 bits on a 32 bit kernel, which is insuffucuent since XLS physical
    276  * address is 40 bits wide.  So the "physaddr" map stores regions
    277  * in units of megabytes.
    278  */
    279 static u_long rmixl_physaddr_storage[
    280 	EXTENT_FIXED_STORAGE_SIZE(32)/sizeof(u_long)
    281 ];
    282 
    283 /* For sysctl_hw. */
    284 extern char cpu_model[];
    285 
    286 /* Our exported CPU info; we can have only one. */
    287 struct cpu_info cpu_info_store;
    288 
    289 /* Maps for VM objects. */
    290 struct vm_map *mb_map = NULL;
    291 struct vm_map *phys_map = NULL;
    292 
    293 int	physmem;		/* Total physical memory */
    294 
    295 int	netboot;		/* Are we netbooting? */
    296 
    297 
    298 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];
    299 u_quad_t mem_cluster_maxaddr;
    300 u_int mem_cluster_cnt;
    301 
    302 
    303 void configure(void);
    304 void mach_init(int, int32_t *, void *, int64_t);
    305 static uint64_t rmixlfw_init(int64_t);
    306 static uint64_t mem_clusters_init(rmixlfw_mmap_t *, rmixlfw_mmap_t *);
    307 static void __attribute__((__noreturn__)) rmixl_reset(void);
    308 static uint64_t rmixl_physaddr_init(void);
    309 static u_int ram_seg_resv(phys_ram_seg_t *, u_int, u_quad_t, u_quad_t);
    310 void rmixlfw_mmap_print(const char *, rmixlfw_mmap_t *);
    311 
    312 
    313 #ifdef MULTIPROCESSOR
    314 static bool rmixl_fixup_cop0_oscratch(int32_t, uint32_t [2]);
    315 void rmixl_get_wakeup_info(struct rmixl_config *);
    316 #ifdef MACHDEP_DEBUG
    317 static void rmixl_wakeup_info_print(volatile rmixlfw_cpu_wakeup_info_t *);
    318 #endif	/* MACHDEP_DEBUG */
    319 #endif	/* MULTIPROCESSOR */
    320 static void rmixl_fixup_curcpu(void);
    321 
    322 #if NCOM > 0
    323 static volatile uint32_t *rmixl_com0addr;
    324 
    325 static int
    326 rmixl_cngetc(dev_t dv)
    327 {
    328 	volatile uint32_t * const com0addr = rmixl_com0addr;
    329 
    330         if ((be32toh(com0addr[com_lsr]) & LSR_RXRDY) == 0)
    331 		return -1;
    332 
    333 	return be32toh(com0addr[com_data]) & 0xff;
    334 }
    335 
    336 static void
    337 rmixl_cnputc(dev_t dv, int c)
    338 {
    339 	volatile uint32_t * const com0addr = rmixl_com0addr;
    340 	int timo = 150000;
    341 
    342 	while ((be32toh(com0addr[com_lsr]) & LSR_TXRDY) == 0 && --timo > 0)
    343 		;
    344 
    345 	com0addr[com_data] = htobe32(c);
    346 	__asm __volatile("sync");
    347 
    348 	while ((be32toh(com0addr[com_lsr]) & LSR_TSRE) == 0 && --timo > 0)
    349 		;
    350 }
    351 
    352 struct consdev rmixl_earlycons = {
    353 	.cn_putc = rmixl_cnputc,
    354 	.cn_getc = rmixl_cngetc,
    355 	.cn_pollc = nullcnpollc,
    356 };
    357 #endif
    358 
    359 /*
    360  * Do all the stuff that locore normally does before calling main().
    361  */
    362 void
    363 mach_init(int argc, int32_t *argv, void *envp, int64_t infop)
    364 {
    365 	struct rmixl_config *rcp = &rmixl_configuration;
    366 	void *kernend;
    367 	uint64_t memsize;
    368 	extern char edata[], end[];
    369 	size_t fl_count = 0;
    370 	struct mips_vmfreelist fl[1];
    371 	bool uboot_p = false;
    372 
    373 	const uint32_t cfg0 = mips3_cp0_config_read();
    374 #if (MIPS64_XLR + MIPS64_XLS) > 0 && (MIPS64_XLP) == 0
    375 	const bool is_xlp_p = false	/* make sure cfg0 is used */
    376 	    && MIPSNN_GET(CFG_AR, cfg0) == MIPSNN_CFG_AR_REV2;
    377 	KASSERT(MIPSNN_GET(CFG_AR, cfg0) == MIPSNN_CFG_AR_REV1);
    378 #elif (MIPS64_XLR + MIPS64_XLS) == 0 && (MIPS64_XLP) > 0
    379 	const bool is_xlp_p = true	/* make sure cfg0 is used */
    380 	    || MIPSNN_GET(CFG_AR, cfg0) == MIPSNN_CFG_AR_REV2;
    381 	KASSERT(MIPSNN_GET(CFG_AR, cfg0) == MIPSNN_CFG_AR_REV2);
    382 #else
    383 	const bool is_xlp_p = (MIPSNN_GET(CFG_AR, cfg0) == MIPSNN_CFG_AR_REV2);
    384 #endif
    385 
    386 	rmixl_pcr_init_core(is_xlp_p);
    387 
    388 #ifdef MULTIPROCESSOR
    389 	__asm __volatile("dmtc0 %0,$%1,2"
    390 	    ::	"r"(&pmap_tlb0_info.ti_hwlock->mtx_lock),
    391 		"n"(MIPS_COP_0_OSSCRATCH));
    392 #endif
    393 
    394 	/*
    395 	 * Clear the BSS segment.
    396 	 */
    397 	kernend = (void *)mips_round_page(end);
    398 	memset(edata, 0, (char *)kernend - edata);
    399 
    400 #if NCOM > 0
    401 	/*
    402 	 * If no comcnaddr has been set, pick an appropriate one.
    403 	 */
    404 	if (comcnaddr == 0) {
    405 		comcnaddr = is_xlp_p
    406 		    ? RMIXLP_UART1_PCITAG
    407 		    : RMIXL_IO_DEV_UART_1;
    408 	}
    409 	if (is_xlp_p) {
    410 #if (MIPS64_XLP) > 0
    411 		rmixl_com0addr =
    412 		    (void *)(vaddr_t)(RMIXLP_SBC_PCIE_ECFG_VBASE | comcnaddr | 0x100);
    413 #endif /* MIPS64_XLP */
    414 	} else {
    415 #if (MIPS64_XLR + MIPS64_XLS) > 0
    416 		rcp->rc_io.r_pbase = RMIXL_IO_DEV_PBASE;
    417 		rmixl_com0addr =
    418 		    (void *)(vaddr_t)(RMIXL_IO_DEV_VBASE | comcnaddr);
    419 #endif /* (MIPS64_XLR + MIPS64_XLS) > 0 */
    420 	}
    421 	cn_tab = &rmixl_earlycons;
    422 #endif
    423 
    424 	/*
    425 	 * Set up the exception vectors and CPU-specific function
    426 	 * vectors early on.  We need the wbflush() vector set up
    427 	 * before comcnattach() is called (or at least before the
    428 	 * first printf() after that is called).
    429 	 * Also clears the I+D caches.
    430 	 *
    431 	 * specify chip-specific EIRR/EIMR based spl functions
    432 	 */
    433 #ifdef MULTIPROCESSOR
    434 	mips_vector_init(&rmixl_splsw, true);
    435 #else
    436 	mips_vector_init(&rmixl_splsw, false);
    437 #endif
    438 
    439 	if (argc < 0) {
    440 		void *bd = (void *)(intptr_t)argc;
    441 		void *imgaddr = argv;
    442 		void *consdev = envp;
    443 		char *bootargs = (void *)(intptr_t)infop;
    444 		printf("%s: u-boot: boardinfo=%p, image-addr=%p, consdev=%p, bootargs=%p <%s>\n",
    445 		    __func__, bd, imgaddr, consdev, bootargs, bootargs);
    446 		uboot_p = true;
    447 		printf("%s: u-boot: console baudrate=%d\n", __func__,
    448 		    *(int *)bd);
    449 		if (*(int *)bd % 1200 == 0)
    450 			comcnspeed = *(int *)bd;
    451 	} else {
    452 		DPRINTF("%s: argc=%d, argv=%p, envp=%p, info=%#"PRIx64"\n",
    453 		    __func__, argc, argv, envp, infop);
    454 	}
    455 
    456 	/* mips_vector_init initialized mips_options */
    457 	strcpy(cpu_model, mips_options.mips_cpu->cpu_name);
    458 
    459 	if (is_xlp_p) {
    460 #if (MIPS64_XLP) > 0
    461 		uint32_t cfg6 = mipsNN_cp0_config6_read();
    462 		printf("%s: cfg6=%#x "
    463 		    "<ctlb=%u,vtlb=%u,elvt=%u,epw=%u,eft=%u,pwi=%u,fti=%u>\n",
    464 		    __func__, cfg6,
    465 		    MIPSNN_GET(RMIXLP_CFG6_CTLB_SIZE, cfg6),
    466 		    MIPSNN_GET(RMIXLP_CFG6_VTLB_SIZE, cfg6),
    467 		    __SHIFTOUT(cfg6, MIPSNN_RMIXLP_CFG6_ELVT),
    468 		    __SHIFTOUT(cfg6, MIPSNN_RMIXLP_CFG6_EPW),
    469 		    __SHIFTOUT(cfg6, MIPSNN_RMIXLP_CFG6_EFT),
    470 		    __SHIFTOUT(cfg6, MIPSNN_RMIXLP_CFG6_PWI),
    471 		    __SHIFTOUT(cfg6, MIPSNN_RMIXLP_CFG6_FTI));
    472 		rcp->rc_pci_ecfg.r_pbase = RMIXLP_SBC_PCIE_ECFG_PBASE;
    473 		rcp->rc_pci_ecfg.r_size = RMIXLP_SBC_PCIE_ECFG_SIZE(
    474 		    RMIXLP_SBC_PCIE_ECFG_PBASE,
    475 		    RMIXLP_SBC_PCIE_ECFG_TO_PA(
    476 			rmixlp_read_4(RMIXLP_SBC_PCITAG,
    477 			    RMIXLP_SBC_PCIE_ECFG_LIMIT)));
    478 
    479 		DPRINTF("%s: ecfg pbase=%#"PRIxBUSADDR" size=%#"PRIxBUSSIZE"\n",
    480 		    __func__, rcp->rc_pci_ecfg.r_pbase,
    481 		    rcp->rc_pci_ecfg.r_size);
    482 
    483 		rmixl_pci_ecfg_eb_bus_mem_init(&rcp->rc_pci_ecfg_eb_memt, rcp);
    484 		rmixl_pci_ecfg_el_bus_mem_init(&rcp->rc_pci_ecfg_el_memt, rcp);
    485 		rcp->rc_pci_ecfg_eb_memh = MIPS_PHYS_TO_KSEG1(rcp->rc_pci_ecfg.r_pbase);
    486 		rcp->rc_pci_ecfg_el_memh = rcp->rc_pci_ecfg_eb_memh;
    487 		DPRINTF("%s: pci ecfg bus space done!\n", __func__);
    488 		rmixlp_pcie_pc_init();
    489 		DPRINTF("%s: pci chipset init done!\n", __func__);
    490 #if NCOM > 0
    491 		comcnfreq = 133333333;
    492 		com_pci_cnattach(comcnaddr, comcnspeed,
    493 		    comcnfreq, COM_TYPE_NORMAL, comcnmode);
    494 		DPRINTF("%s: com@pci console attached!\n", __func__);
    495 #endif
    496 #endif /* MIPS64_XLP */
    497 	}
    498 
    499 	/* determine DRAM first */
    500 	memsize = rmixl_physaddr_init();
    501 	DPRINTF("%s: physaddr init done (memsize=%"PRIu64"MB)!\n",
    502 	    __func__, memsize >> 20);
    503 
    504 	if (!uboot_p) {
    505 		/* get system info from firmware */
    506 		memsize = rmixlfw_init(infop);
    507 		DPRINTF("%s: firmware init done (memsize=%"PRIu64"MB)!\n",
    508 		    __func__, memsize >> 20);
    509 	} else {
    510 		rcp->rc_psb_info.userapp_cpu_map = 1;
    511 	}
    512 
    513 	/* set the VM page size */
    514 	uvm_setpagesize();
    515 
    516 	physmem = btoc(memsize);
    517 
    518 	if (!is_xlp_p) {
    519 #if (MIPS64_XLR + MIPS64_XLS) > 0
    520 		rmixl_obio_eb_bus_mem_init(&rcp->rc_obio_eb_memt, rcp);
    521 #if NCOM > 0
    522 		rmixl_com_cnattach(comcnaddr, comcnspeed, comcnfreq,
    523 		    COM_TYPE_NORMAL, comcnmode);
    524 #endif
    525 #endif /* (MIPS64_XLR + MIPS64_XLS) > 0 */
    526 	}
    527 
    528 	printf("\nNetBSD/rmixl\n");
    529 	printf("memsize = %#"PRIx64"\n", memsize);
    530 #ifdef MEMLIMIT
    531 	printf("memlimit = %#"PRIx64"\n", (uint64_t)MEMLIMIT);
    532 #endif
    533 
    534 #if defined(MULTIPROCESSOR) && defined(MACHDEP_DEBUG)
    535 	if (!uboot_p) {
    536 		rmixl_wakeup_info_print(rcp->rc_cpu_wakeup_info);
    537 		rmixl_wakeup_info_print(rcp->rc_cpu_wakeup_info + 1);
    538 		printf("cpu_wakeup_info %p, cpu_wakeup_end %p\n",
    539 			rcp->rc_cpu_wakeup_info,
    540 			rcp->rc_cpu_wakeup_end);
    541 		printf("userapp_cpu_map: %#"PRIx64"\n",
    542 			rcp->rc_psb_info.userapp_cpu_map);
    543 		printf("wakeup: %#"PRIx64"\n", rcp->rc_psb_info.wakeup);
    544 	}
    545 {
    546 	register_t sp;
    547 	asm volatile ("move	%0, $sp\n" : "=r"(sp));
    548 	printf("sp: %#"PRIx64"\n", sp);
    549 }
    550 #endif
    551 
    552 	/*
    553 	 * Obtain the cpu frequency
    554 	 * Compute the number of ticks for hz.
    555 	 * Compute the delay divisor.
    556 	 * Double the Hz if this CPU runs at twice the
    557          *  external/cp0-count frequency
    558 	 */
    559 	if (uboot_p) {
    560 		/*
    561 		 * Since u-boot doesn't tell us, we have to figure it out
    562 		 */
    563 		if (is_xlp_p) {
    564 #if (MIPS64_XLP) > 0
    565 			uint32_t por_cfg = rmixlp_read_4(RMIXLP_SM_PCITAG,
    566 			    RMIXLP_SM_POWER_ON_RESET_CFG);
    567 			u_int cdv = __SHIFTOUT(por_cfg, RMIXLP_SM_POWER_ON_RESET_CFG_CDV) + 1;
    568 			u_int cdf = __SHIFTOUT(por_cfg, RMIXLP_SM_POWER_ON_RESET_CFG_CDF) + 1;
    569 			u_int cdr = __SHIFTOUT(por_cfg, RMIXLP_SM_POWER_ON_RESET_CFG_CDR) + 1;
    570 			u_int cpll_dfs = __SHIFTOUT(por_cfg, RMIXLP_SM_POWER_ON_RESET_CFG_CPLL_DFS) + 1;
    571 
    572 			uint64_t freq_in = 133333333;
    573 			uint64_t freq_out = (freq_in / cdr) * cdf / (cdv * cpll_dfs);
    574 			if (freq_out % 1000 > 900) {
    575 				freq_out = (freq_out + 99) / 100;
    576 				freq_out *= 100;
    577 			}
    578 			rcp->rc_psb_info.cpu_frequency = freq_out;
    579 #endif /* MIPS64_XLP > 0 */
    580 		} else {
    581 #if (MIPS64_XLR + MIPS64_XLS) > 0
    582 			const uint32_t por_cfg = RMIXL_IOREG_READ(
    583 			    RMIXL_IO_DEV_GPIO + RMIXL_GPIO_RESET_CFG);
    584 
    585 			const u_int divq = __SHIFTOUT(por_cfg,
    586 			    RMIXL_GPIO_RESET_CFG_PLL1_OUT_DIV);
    587 			const u_int divf = __SHIFTOUT(por_cfg,
    588 			    RMIXL_GPIO_RESET_CFG_PLL1_FB_DIV) + 1;
    589 
    590 			uint64_t freq_in = 66666666;
    591 			uint64_t freq_out = (freq_in / 4) * divf / divq;
    592 
    593 			if (freq_out % 1000 > 900) {
    594 				freq_out = (freq_out + 99) / 100;
    595 				freq_out *= 100;
    596 			}
    597 			rcp->rc_psb_info.cpu_frequency = freq_out;
    598 #endif /* (MIPS64_XLR + MIPS64_XLS) > 0 */
    599 		}
    600 	}
    601 	DPRINTF("%s: cpu_freq=%"PRIu64"\n", __func__,
    602 	    rcp->rc_psb_info.cpu_frequency);
    603 	curcpu()->ci_cpu_freq = rcp->rc_psb_info.cpu_frequency;
    604 	curcpu()->ci_cctr_freq = curcpu()->ci_cpu_freq;
    605 	curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
    606 	curcpu()->ci_divisor_delay =
    607 		((curcpu()->ci_cpu_freq + 500000) / 1000000);
    608         if (mips_options.mips_cpu_flags & CPU_MIPS_DOUBLE_COUNT)
    609 		curcpu()->ci_cpu_freq *= 2;
    610 
    611 	/*
    612 	 * Look at arguments passed to us and compute boothowto.
    613 	 * - rmixl firmware gives us a 32 bit argv[i], so adapt
    614 	 *   by forcing sign extension in cast to (char *)
    615 	 */
    616 	boothowto = RB_AUTOBOOT;
    617 	// boothowto |= AB_VERBOSE;
    618 	if (!uboot_p) {
    619 		for (int i = 1; i < argc; i++) {
    620 			for (char *cp = (char *)(intptr_t)argv[i]; *cp; cp++) {
    621 				int howto;
    622 				/* Ignore superfluous '-', if there is one */
    623 				if (*cp == '-')
    624 					continue;
    625 
    626 				howto = 0;
    627 				BOOT_FLAG(*cp, howto);
    628 				if (howto != 0)
    629 					boothowto |= howto;
    630 #ifdef DIAGNOSTIC
    631 				else
    632 					printf("bootflag '%c' not recognised\n",
    633 					     *cp);
    634 #endif
    635 			}
    636 		}
    637 	}
    638 #ifdef DIAGNOSTIC
    639 	printf("boothowto %#x\n", boothowto);
    640 #endif
    641 
    642 	/*
    643 	 * Reserve pages from the VM system.
    644 	 */
    645 
    646 	/* reserve 0..start..kernend pages */
    647 	mem_cluster_cnt = ram_seg_resv(mem_clusters, mem_cluster_cnt,
    648 		0, round_page(MIPS_KSEG0_TO_PHYS(kernend)));
    649 
    650 	/* reserve reset exception vector page */
    651 	/* should never be in our clusters anyway... */
    652 	mem_cluster_cnt = ram_seg_resv(mem_clusters, mem_cluster_cnt,
    653 		0x1FC00000, 0x1FC00000+NBPG);
    654 
    655 	/* Stop this abomination */
    656 	mem_cluster_cnt = ram_seg_resv(mem_clusters, mem_cluster_cnt,
    657 		0x18000000, 0x20000000);
    658 
    659 #ifdef MULTIPROCESSOR
    660 	/* reserve the cpu_wakeup_info area */
    661 	mem_cluster_cnt = ram_seg_resv(mem_clusters, mem_cluster_cnt,
    662 		(u_quad_t)trunc_page((vaddr_t)rcp->rc_cpu_wakeup_info),
    663 		(u_quad_t)round_page((vaddr_t)rcp->rc_cpu_wakeup_end));
    664 #endif
    665 
    666 #ifdef MEMLIMIT
    667 	/* reserve everything >= MEMLIMIT */
    668 	mem_cluster_cnt = ram_seg_resv(mem_clusters, mem_cluster_cnt,
    669 		(u_quad_t)MEMLIMIT, (u_quad_t)~0);
    670 #endif
    671 
    672 #ifdef ENABLE_MIPS_KSEGX
    673 	/*
    674 	 * Now we need to reserve an aligned block of memory for pre-init
    675 	 * allocations so we don't deplete KSEG0.
    676 	 */
    677 	for (u_int i=0; i < mem_cluster_cnt; i++) {
    678 		u_quad_t finish = round_page(
    679 			mem_clusters[i].start + mem_clusters[i].size);
    680 		u_quad_t start = roundup2(mem_clusters[i].start, VM_KSEGX_SIZE);
    681 		if (start > MIPS_PHYS_MASK && start + VM_KSEGX_SIZE <= finish) {
    682 			mips_ksegx_start = start;
    683 			mips_ksegx_pte.pt_entry = mips_paddr_to_tlbpfn(start)
    684 			    | MIPS3_PG_D | MIPS3_PG_CACHED
    685 			    | MIPS3_PG_V | MIPS3_PG_G;
    686 			fl[0].fl_start = start;
    687 			fl[0].fl_end = start + VM_KSEGX_SIZE;
    688 			fl[0].fl_freelist = VM_FREELIST_FIRST512M;
    689 			fl_count++;
    690 			DPRINTF("mips_ksegx_start %#"PRIxPADDR"\n",
    691 			    fl[0].fl_start);
    692 			break;
    693 		}
    694 	}
    695 #endif
    696 
    697 	/* get maximum RAM address from the VM clusters */
    698 	mem_cluster_maxaddr = 0;
    699 	for (u_int i=0; i < mem_cluster_cnt; i++) {
    700 		u_quad_t tmp = round_page(
    701 			mem_clusters[i].start + mem_clusters[i].size);
    702 		if (tmp > mem_cluster_maxaddr)
    703 			mem_cluster_maxaddr = tmp;
    704 	}
    705 	DPRINTF("mem_cluster_maxaddr %#"PRIx64"\n", mem_cluster_maxaddr);
    706 
    707 	/*
    708 	 * Load mem_clusters[] into the VM system.
    709 	 */
    710 	mips_page_physload(MIPS_KSEG0_START, (vaddr_t) kernend,
    711 	    mem_clusters, mem_cluster_cnt, fl, fl_count);
    712 
    713 	/*
    714 	 * Initialize error message buffer (at end of core).
    715 	 */
    716 	mips_init_msgbuf();
    717 
    718 	pmap_bootstrap();
    719 
    720 	/*
    721 	 * Allocate uarea page for lwp0 and set it.
    722 	 */
    723 	mips_init_lwp0_uarea();
    724 
    725 	/*
    726 	 * Initialize debuggers, and break into them, if appropriate.
    727 	 */
    728 #if NKSYMS || defined(DDB) || defined(LKM)
    729 	ksyms_init(0, 0, 0);
    730 #endif
    731 
    732 #if defined(DDB)
    733 	if (boothowto & RB_KDB)
    734 		Debugger();
    735 #endif
    736 	/*
    737 	 * store (cpu#0) curcpu in COP0 OSSCRATCH0
    738 	 * used in exception vector
    739 	 */
    740 	__asm __volatile("dmtc0 %0,$%1"
    741 		:: "r"(&cpu_info_store), "n"(MIPS_COP_0_OSSCRATCH));
    742 #ifdef MULTIPROCESSOR
    743 	mips_fixup_exceptions(rmixl_fixup_cop0_oscratch);
    744 #endif
    745 	rmixl_fixup_curcpu();
    746 }
    747 
    748 /*
    749  * set up Processor Control Regs for this core
    750  */
    751 void
    752 rmixl_pcr_init_core(bool is_xlp_p)
    753 {
    754 	uint32_t r;
    755 
    756 
    757 	if (is_xlp_p) {
    758 #if (MIPS64_XLP) > 0
    759 #ifndef MULTIPROCESSOR
    760 		rmixl_mtcr(RMIXLP_PCR_IFU_THREAD_EN, 1);
    761 			/* disable all threads except #0 */
    762 #endif
    763 		rmixl_mtcr(RMIXLP_PCR_MMU_SETUP, 1);
    764 			/* enable MMU clock gating */
    765 			/* TLB is global */
    766 #ifdef MIPS_DISABLE_L1_CACHE
    767 		r = rmixl_mfcr(RMIXLP_PCR_L1D_CONFIG0);
    768 		r &= ~__BIT(0);				/* disable L1D cache */
    769 		rmixl_mtcr(RMIXLP_PCR_L1D_CONFIG0, r);
    770 #endif
    771 		r = rmixl_mfcr(RMIXLP_PCR_LSU_DEFEATURE);
    772 		r &= ~RMIXLP_PCR_LSE_DEFEATURE_EUL;
    773 		rmixl_mtcr(RMIXLP_PCR_LSU_DEFEATURE, r);
    774 
    775 		/*
    776 		 * Enable Large Variable TLB.
    777 	 	 */
    778 		uint32_t cfg6 = mipsNN_cp0_config6_read();
    779 		cfg6 |= MIPSNN_RMIXLP_CFG6_ELVT;
    780 		mipsNN_cp0_config6_write(cfg6);
    781 		/*
    782 		 * Force TLB Random to be rewritten.
    783 		 */
    784 		mips3_cp0_wired_write(0);
    785 #endif /* MIPS64_XLP */
    786 	} else {
    787 #if (MIPS64_XLR + MIPS64_XLS) > 0
    788 #ifdef MULTIPROCESSOR
    789 		rmixl_mtcr(RMIXL_PCR_MMU_SETUP, __BITS(2,0));
    790 			/* enable MMU clock gating */
    791 			/* 4 threads active -- why needed if Global? */
    792 			/* enable global TLB mode */
    793 #else
    794 		rmixl_mtcr(RMIXL_PCR_THREADEN, 1);
    795 			/* disable all threads except #0 */
    796 		rmixl_mtcr(RMIXL_PCR_MMU_SETUP, 0);
    797 			/* enable MMU clock gating */
    798 			/* set single MMU Thread Mode */
    799 			/* TLB is partitioned (1 partition) */
    800 #endif
    801 		r = rmixl_mfcr(RMIXL_PCR_L1D_CONFIG0);
    802 		r &= ~__BIT(14);		/* disable Unaligned Access */
    803 		rmixl_mtcr(RMIXL_PCR_L1D_CONFIG0, r);
    804 #endif /* (MIPS64_XLR + MIPS64_XLS) > 0 */
    805 	}
    806 
    807 #if defined(DDB) && defined(MIPS_DDB_WATCH)
    808 	/*
    809 	 * clear IEU_DEFEATURE[DBE]
    810 	 * this enables COP0 watchpoint to trigger T_WATCH exception
    811 	 * instead of signaling JTAG.
    812 	 */
    813 	r = rmixl_mfcr(RMIXL_PCR_IEU_DEFEATURE);
    814 	r &= ~__BIT(7);
    815 	rmixl_mtcr(RMIXL_PCR_IEU_DEFEATURE, r);
    816 #endif
    817 }
    818 
    819 #ifdef MULTIPROCESSOR
    820 static bool
    821 rmixl_fixup_cop0_oscratch(int32_t load_addr, uint32_t new_insns[2])
    822 {
    823 	size_t offset = load_addr - (intptr_t)&cpu_info_store;
    824 
    825 	KASSERT(MIPS_KSEG0_P(load_addr));
    826 	KASSERT(offset < sizeof(struct cpu_info));
    827 
    828 	/*
    829 	 * Fixup this direct load cpu_info_store to actually get the current
    830 	 * CPU's cpu_info from COP0 OSSCRATCH0 and then fix the load to be
    831 	 * relative from the start of struct cpu_info.
    832 	 */
    833 
    834 	/* [0] = [d]mfc0 rX, $22 (OSScratch) */
    835 	new_insns[0] = (020 << 26)
    836 #ifdef _LP64
    837 	    | (1 << 21)		/* double move */
    838 #endif
    839 	    | (new_insns[0] & 0x001f0000)
    840 	    | (MIPS_COP_0_OSSCRATCH << 11) | (0 << 0);
    841 
    842 	/* [1] = [ls][dw] rX, offset(rX) */
    843 	new_insns[1] = (new_insns[1] & 0xffff0000) | offset;
    844 
    845 	return true;
    846 }
    847 #endif /* MULTIPROCESSOR */
    848 
    849 /*
    850  * The following changes all	lX	rN, L_CPU(MIPS_CURLWP) [curlwp->l_cpu]
    851  * to			     	[d]mfc0	rN, $22 [MIPS_COP_0_OSSCRATCH]
    852  *
    853  * the mfc0 is 3 cycles shorter than the load.
    854  */
    855 #define	LOAD_CURCPU_0	((MIPS_CURLWP_REG << 21) | offsetof(lwp_t, l_cpu))
    856 #define	MFC0_CURCPU_0	((OP_COP0 << 26) | (MIPS_COP_0_OSSCRATCH << 11))
    857 #ifdef _LP64
    858 #define	LOAD_CURCPU	((uint32_t)(OP_LD << 26) | LOAD_CURCPU_0)
    859 #define	MFC0_CURCPU	((uint32_t)(OP_DMF << 21) | MFC0_CURCPU_0)
    860 #else
    861 #define	LOAD_CURCPU	((uint32_t)(OP_LW << 26) | LOAD_CURCPU_0)
    862 #define	MFC0_CURCPU	((uint32_t)(OP_MF << 21) | MFC0_CURCPU_0)
    863 #endif
    864 #define	LOAD_CURCPU_MASK	0xffe0ffff
    865 
    866 static void
    867 rmixl_fixup_curcpu(void)
    868 {
    869 	extern uint32_t _ftext[];
    870 	extern uint32_t _etext[];
    871 
    872 	for (uint32_t *insnp = _ftext; insnp < _etext; insnp++) {
    873 		const uint32_t insn = *insnp;
    874 		if (__predict_false((insn & LOAD_CURCPU_MASK) == LOAD_CURCPU)) {
    875 			/*
    876 			 * Since the register to loaded is located in bits
    877 			 * 16-20 for the mfc0 and the load instruction we can
    878 			 * just change the instruction bits around it.
    879 			 */
    880 			*insnp = insn ^ LOAD_CURCPU ^ MFC0_CURCPU;
    881 			mips_icache_sync_range((vaddr_t)insnp, 4);
    882 		}
    883 	}
    884 }
    885 
    886 /*
    887  * ram_seg_resv - cut reserved regions out of segs, fragmenting as needed
    888  *
    889  * we simply build a new table of segs, then copy it back over the given one
    890  * this is inefficient but simple and called only a few times
    891  *
    892  * note: 'last' here means 1st addr past the end of the segment (start+size)
    893  */
    894 static u_int
    895 ram_seg_resv(phys_ram_seg_t *segs, u_int nsegs,
    896 	u_quad_t resv_first, u_quad_t resv_last)
    897 {
    898         u_quad_t first, last;
    899 	int new_nsegs=0;
    900 	int resv_flag;
    901 	phys_ram_seg_t new_segs[VM_PHYSSEG_MAX];
    902 
    903 	for (u_int i=0; i < nsegs; i++) {
    904 		resv_flag = 0;
    905 		first = trunc_page(segs[i].start);
    906 		last = round_page(segs[i].start + segs[i].size);
    907 
    908 		KASSERT(new_nsegs < VM_PHYSSEG_MAX);
    909 		if ((resv_first <= first) && (resv_last >= last)) {
    910 			/* whole segment is resverved */
    911 			continue;
    912 		}
    913 		if ((resv_first > first) && (resv_first < last)) {
    914 			u_quad_t new_last;
    915 
    916 			/*
    917 			 * reserved start in segment
    918 			 * salvage the leading fragment
    919 			 */
    920 			resv_flag = 1;
    921 			new_last = last - (last - resv_first);
    922 			KASSERT (new_last > first);
    923 			new_segs[new_nsegs].start = first;
    924 			new_segs[new_nsegs].size = new_last - first;
    925 			new_nsegs++;
    926 		}
    927 		if ((resv_last > first) && (resv_last < last)) {
    928 			u_quad_t new_first;
    929 
    930 			/*
    931 			 * reserved end in segment
    932 			 * salvage the trailing fragment
    933 			 */
    934 			resv_flag = 1;
    935 			new_first = first + (resv_last - first);
    936 			KASSERT (last > (new_first + NBPG));
    937 			new_segs[new_nsegs].start = new_first;
    938 			new_segs[new_nsegs].size = last - new_first;
    939 			new_nsegs++;
    940 		}
    941 		if (resv_flag == 0) {
    942 			/*
    943 			 * nothing reserved here, take it all
    944 			 */
    945 			new_segs[new_nsegs].start = first;
    946 			new_segs[new_nsegs].size = last - first;
    947 			new_nsegs++;
    948 		}
    949 
    950 	}
    951 
    952 	memcpy(segs, new_segs, sizeof(new_segs));
    953 
    954 	return new_nsegs;
    955 }
    956 
    957 #if (MIPS64_XLP) > 0
    958 static void
    959 rmixlp_physaddr_pcie_cfg_init(struct extent *ext)
    960 {
    961 	struct rmixl_config * const rcp = &rmixl_configuration;
    962 
    963 	uint64_t xbase = RMIXLP_SBC_PCIE_CFG_TO_PA(
    964 	    rmixlp_read_4(RMIXLP_SBC_PCITAG, RMIXLP_SBC_PCIE_CFG_BASE));
    965 	uint64_t xlimit = RMIXLP_SBC_PCIE_CFG_TO_PA(
    966 	    rmixlp_read_4(RMIXLP_SBC_PCITAG, RMIXLP_SBC_PCIE_CFG_LIMIT));
    967 
    968 	if (xlimit < xbase || xbase == 0)
    969 		return;	/* not enabled */
    970 
    971 	uint64_t xsize = RMIXLP_SBC_PCIE_CFG_SIZE(xbase, xlimit);
    972 
    973 	DPRINTF("%s: %s: %#"PRIx64":%"PRIu64" MB\n", __func__,
    974 	    "pci-cfg", xbase, xsize >> 20);
    975 
    976 	rmixl_physaddr_add(ext, "pcicfg", &rcp->rc_pci_cfg, xbase, xsize);
    977 }
    978 
    979 static void
    980 rmixlp_physaddr_pcie_ecfg_init(struct extent *ext)
    981 {
    982 	struct rmixl_config * const rcp = &rmixl_configuration;
    983 
    984 	uint64_t xbase = RMIXLP_SBC_PCIE_ECFG_TO_PA(
    985 	    rmixlp_read_4(RMIXLP_SBC_PCITAG, RMIXLP_SBC_PCIE_ECFG_BASE));
    986 	uint64_t xlimit = RMIXLP_SBC_PCIE_ECFG_TO_PA(
    987 	    rmixlp_read_4(RMIXLP_SBC_PCITAG, RMIXLP_SBC_PCIE_ECFG_LIMIT));
    988 
    989 	if (xlimit < xbase || xbase == 0)
    990 		return;	/* not enabled */
    991 
    992 	uint64_t xsize = RMIXLP_SBC_PCIE_ECFG_SIZE(xbase, xlimit);
    993 
    994 	KASSERT(rcp->rc_pci_ecfg.r_pbase == xbase);
    995 
    996 	DPRINTF("%s: %s: %#"PRIx64":%"PRIu64" MB\n", __func__,
    997 	    "pci-ecfg", xbase, xsize >> 20);
    998 
    999 	rmixl_physaddr_add(ext, "pciecfg", &rcp->rc_pci_ecfg, xbase, xsize);
   1000 }
   1001 
   1002 static void
   1003 rmixlp_physaddr_pcie_mem_init(struct extent *ext)
   1004 {
   1005 	struct rmixl_config * const rcp = &rmixl_configuration;
   1006 	for (size_t i = 0; i < RMIXLP_SBC_NPCIE_MEM; i++) {
   1007 		uint64_t xbase = RMIXLP_SBC_PCIE_MEM_TO_PA(
   1008 		    rmixlp_read_4(RMIXLP_SBC_PCITAG,
   1009 			RMIXLP_SBC_PCIE_MEM_BASEn(i)));
   1010 		uint64_t xlimit = RMIXLP_SBC_PCIE_MEM_TO_PA(
   1011 		    rmixlp_read_4(RMIXLP_SBC_PCITAG,
   1012 			RMIXLP_SBC_PCIE_MEM_LIMITn(i)));
   1013 
   1014 		if (xlimit < xbase || xbase == 0)
   1015 			continue;	/* not enabled */
   1016 
   1017 		uint64_t xsize = RMIXLP_SBC_PCIE_MEM_SIZE(xbase, xlimit);
   1018 
   1019 		DPRINTF("%s: %s %zu: %#"PRIx64":%"PRIu64" MB\n", __func__,
   1020 		    "pci-mem", i, xbase, xsize >> 20);
   1021 
   1022 		rmixl_physaddr_add(ext, "pcimem", &rcp->rc_pci_link_mem[i],
   1023 		    xbase, xsize);
   1024 	}
   1025 }
   1026 
   1027 static void
   1028 rmixlp_physaddr_pcie_io_init(struct extent *ext)
   1029 {
   1030 	struct rmixl_config * const rcp = &rmixl_configuration;
   1031 	for (size_t i = 0; i < RMIXLP_SBC_NPCIE_IO; i++) {
   1032 		uint64_t xbase = RMIXLP_SBC_PCIE_IO_TO_PA(
   1033 		    rmixlp_read_4(RMIXLP_SBC_PCITAG,
   1034 			RMIXLP_SBC_PCIE_IO_BASEn(i)));
   1035 		uint64_t xlimit = RMIXLP_SBC_PCIE_IO_TO_PA(
   1036 		    rmixlp_read_4(RMIXLP_SBC_PCITAG,
   1037 			RMIXLP_SBC_PCIE_IO_LIMITn(i)));
   1038 
   1039 		if (xlimit < xbase || xbase == 0)
   1040 			continue;	/* not enabled */
   1041 
   1042 		uint64_t xsize = RMIXLP_SBC_PCIE_IO_SIZE(xbase, xlimit);
   1043 
   1044 		DPRINTF("%s: %s %zu: %#"PRIx64":%"PRIu64" MB\n", __func__,
   1045 		    "pci-io", i, xbase, xsize >> 20);
   1046 
   1047 		rmixl_physaddr_add(ext, "pci-io", &rcp->rc_pci_link_io[i],
   1048 		    xbase, xsize);
   1049 	}
   1050 }
   1051 
   1052 static void
   1053 rmixlp_physaddr_srio_mem_init(struct extent *ext)
   1054 {
   1055 	struct rmixl_config * const rcp = &rmixl_configuration;
   1056 	uint64_t xbase = RMIXLP_SBC_SRIO_MEM_TO_PA(
   1057 	    rmixlp_read_4(RMIXLP_SBC_PCITAG, RMIXLP_SBC_SRIO_MEM_BASE));
   1058 	uint64_t xlimit = RMIXLP_SBC_SRIO_MEM_TO_PA(
   1059 	    rmixlp_read_4(RMIXLP_SBC_PCITAG, RMIXLP_SBC_SRIO_MEM_LIMIT));
   1060 
   1061 	if (xlimit < xbase || xbase == 0)
   1062 	    return;	/* not enabled */
   1063 
   1064 	uint64_t xsize = RMIXLP_SBC_SRIO_MEM_SIZE(xbase, xlimit);
   1065 
   1066 	DPRINTF("%s: %s: %#"PRIx64":%"PRIu64" MB\n", __func__,
   1067 	    "srio-mem", xbase, xsize >> 20);
   1068 
   1069 	rmixl_physaddr_add(ext, "sriomem", &rcp->rc_srio_mem, xbase, xsize);
   1070 }
   1071 
   1072 static void
   1073 rmixlp_physaddr_nor_init(struct extent *ext)
   1074 {
   1075 	struct rmixl_config * const rcp = &rmixl_configuration;
   1076 	for (size_t i = 0; i < RMIXLP_NOR_NCS; i++) {
   1077 		uint64_t xbase = RMIXLP_NOR_CS_ADDRESS_TO_PA(
   1078 		    rmixlp_read_4(RMIXLP_NOR_PCITAG,
   1079 			RMIXLP_NOR_CS_BASEADDRESSn(i)));
   1080 		uint64_t xlimit = RMIXLP_NOR_CS_ADDRESS_TO_PA(
   1081 		    rmixlp_read_4(RMIXLP_NOR_PCITAG,
   1082 			RMIXLP_NOR_CS_BASELIMITn(i)));
   1083 
   1084 		if (xlimit < xbase || xbase == 0)
   1085 			continue;	/* not enabled */
   1086 
   1087 		uint64_t xsize = RMIXLP_NOR_CS_SIZE(xbase, xlimit);
   1088 
   1089 		DPRINTF("%s: %s %zu: %#"PRIx64":%"PRIu64" MB\n", __func__,
   1090 		    "nor", i, xbase, xsize >> 20);
   1091 
   1092 		rmixl_physaddr_add(ext, "nor", &rcp->rc_norflash[i],
   1093 		    xbase, xsize);
   1094 	}
   1095 }
   1096 
   1097 static uint64_t
   1098 rmixlp_physaddr_dram_init(struct extent *ext)
   1099 {
   1100 	uint64_t memsize = 0;
   1101 	/*
   1102 	 * grab regions per DRAM BARs
   1103 	 */
   1104 	phys_ram_seg_t *mp = mem_clusters;
   1105 	for (u_int i = 0; i < RMIXLP_SBC_NDRAM; i++) {
   1106 		uint64_t xbase =
   1107 		    RMIXLP_SBC_DRAM_TO_PA(
   1108 			rmixlp_read_4(RMIXLP_SBC_PCITAG,
   1109 			    RMIXLP_SBC_DRAM_BASEn(i)));
   1110 		uint64_t xlimit =
   1111 		    RMIXLP_SBC_DRAM_TO_PA(
   1112 			rmixlp_read_4(RMIXLP_SBC_PCITAG,
   1113 			    RMIXLP_SBC_DRAM_LIMITn(i)));
   1114 
   1115 		if (xlimit < xbase)
   1116 			continue;	/* not enabled */
   1117 
   1118 		mp->start = xbase;
   1119 		mp->size = RMIXLP_SBC_DRAM_SIZE(xbase, xlimit);
   1120 
   1121 		memsize += mp->size;
   1122 
   1123 		u_long base = mp->start >> 20;
   1124 		u_long size = mp->size >> 20;
   1125 
   1126 		mp++;
   1127 
   1128 		DPRINTF("%s: dram %u: 0x%05lx00000:%lu MB\n",
   1129 			__func__, i, base, size);
   1130 		if (extent_alloc_region(ext, base, size, EX_NOWAIT) != 0)
   1131 			panic("%s: extent_alloc_region(%p, %#lx, %#lx, %#x) "
   1132 				"failed", __func__, ext, base, size, EX_NOWAIT);
   1133 	}
   1134 
   1135 	mem_cluster_cnt = mp - mem_clusters;
   1136 	return memsize;
   1137 }
   1138 #endif /* MIPS64_XLP */
   1139 
   1140 #if (MIPS64_XLR + MIPS64_XLS) > 0
   1141 static uint64_t
   1142 rmixl_physaddr_dram_init(struct extent *ext)
   1143 {
   1144 	uint64_t memsize = 0;
   1145 	/*
   1146 	 * grab regions per DRAM BARs
   1147 	 */
   1148 	phys_ram_seg_t *mp = mem_clusters;
   1149 	for (u_int i=0; i < RMIXL_SBC_DRAM_NBARS; i++) {
   1150 		uint32_t r = RMIXL_IOREG_READ(RMIXL_SBC_DRAM_BAR(i));
   1151 		if ((r & RMIXL_DRAM_BAR_STATUS) == 0)
   1152 			continue;	/* not enabled */
   1153 
   1154 		mp->start = DRAM_BAR_TO_BASE((uint64_t)r);
   1155 		mp->size  = DRAM_BAR_TO_SIZE((uint64_t)r);
   1156 
   1157 		u_long base = mp->start >> 20;
   1158 		u_long size = mp->size >> 20;
   1159 
   1160 		memsize += mp->size;
   1161 
   1162 		mp++;
   1163 
   1164 		DPRINTF("%s: dram %u: 0x%08x -- 0x%010lx:%lu MB\n",
   1165 			__func__, i, r, base * (1024 * 1024), size);
   1166 		if (extent_alloc_region(ext, base, size, EX_NOWAIT) != 0)
   1167 			panic("%s: extent_alloc_region(%p, %#lx, %#lx, %#x) "
   1168 				"failed", __func__, ext, base, size, EX_NOWAIT);
   1169 	}
   1170 
   1171 	mem_cluster_cnt = mp - mem_clusters;
   1172 
   1173 	return memsize;
   1174 }
   1175 #endif /* (MIPS64_XLR + MIPS64_XLS) > 0 */
   1176 
   1177 /*
   1178  * create an extent for physical address space
   1179  * these are in units of MB for sake of compression (for sake of 32 bit kernels)
   1180  * allocate the regions where we have known functions (DRAM, IO, etc)
   1181  * what remains can be allocated as needed for other stuff
   1182  * e.g. to configure BARs that are not already initialized and enabled.
   1183  */
   1184 static uint64_t
   1185 rmixl_physaddr_init(void)
   1186 {
   1187 	struct extent *ext;
   1188 	unsigned long start = 0UL;
   1189 	unsigned long end = (__BIT(40) / (1024 * 1024)) - 1;
   1190 	const bool is_xlp_p = cpu_rmixlp(mips_options.mips_cpu);
   1191 	uint64_t memsize;
   1192 
   1193 	ext = extent_create("physaddr", start, end, M_DEVBUF,
   1194 		(void *)rmixl_physaddr_storage, sizeof(rmixl_physaddr_storage),
   1195 		EX_NOWAIT | EX_NOCOALESCE);
   1196 
   1197 	if (ext == NULL)
   1198 		panic("%s: extent_create failed", __func__);
   1199 
   1200 	if (is_xlp_p) {
   1201 #if (MIPS64_XLP) > 0
   1202 		memsize = rmixlp_physaddr_dram_init(ext);
   1203 		rmixlp_physaddr_pcie_cfg_init(ext);
   1204 		rmixlp_physaddr_pcie_ecfg_init(ext);
   1205 		rmixlp_physaddr_pcie_mem_init(ext);
   1206 		rmixlp_physaddr_pcie_io_init(ext);
   1207 		rmixlp_physaddr_srio_mem_init(ext);
   1208 		rmixlp_physaddr_nor_init(ext);
   1209 #else
   1210 		memsize = 0;
   1211 #endif /* MIPS64_XLP */
   1212 	} else {
   1213 #if (MIPS64_XLR + MIPS64_XLS) > 0
   1214 		memsize = rmixl_physaddr_dram_init(ext);
   1215 
   1216 		/*
   1217 		 * get chip-dependent physaddr regions
   1218 		 */
   1219 		switch(cpu_rmixl_chip_type(mips_options.mips_cpu)) {
   1220 		case CIDFL_RMI_TYPE_XLR:
   1221 #if NRMIXL_PCIX
   1222 			rmixl_physaddr_init_pcix(ext);
   1223 #endif
   1224 			break;
   1225 		case CIDFL_RMI_TYPE_XLS:
   1226 #if NRMIXL_PCIE
   1227 			rmixl_physaddr_init_pcie(ext);
   1228 #endif
   1229 			break;
   1230 		default:
   1231 			panic("%s: unknown chip type %d", __func__,
   1232 			    cpu_rmixl_chip_type(mips_options.mips_cpu));
   1233 		}
   1234 #else
   1235 		memsize = 0;
   1236 #endif /* (MIPS64_XLR + MIPS64_XLS) > 0 */
   1237 	}
   1238 
   1239 	/*
   1240 	 *  at this point all regions left in "physaddr" extent
   1241 	 *  are unused holes in the physical adress space
   1242 	 *  available for use as needed.
   1243 	 */
   1244 	rmixl_configuration.rc_phys_ex = ext;
   1245 #ifdef MACHDEP_DEBUG
   1246 	extent_print(ext);
   1247 #endif
   1248 	return memsize;
   1249 }
   1250 
   1251 static uint64_t
   1252 rmixlfw_init(int64_t infop)
   1253 {
   1254 	struct rmixl_config * const rcp = &rmixl_configuration;
   1255 	const bool is_xlp_p = cpu_rmixlp(mips_options.mips_cpu);
   1256 
   1257 #ifdef MULTIPROCESSOR
   1258 	rmixl_get_wakeup_info(rcp);
   1259 #endif
   1260 
   1261 	infop |= MIPS_KSEG0_START;
   1262 	rcp->rc_psb_info = *(rmixlfw_info_t *)(intptr_t)infop;
   1263 
   1264 	rcp->rc_psb_type = PSB_TYPE_UNKNOWN;
   1265 	for (int i=0; i < RMICLFW_PSB_VERSIONS_LEN; i++) {
   1266 		if (rmiclfw_psb_id[i].psb_version ==
   1267 		    rcp->rc_psb_info.psb_version) {
   1268 			rcp->rc_psb_type = rmiclfw_psb_id[i].psb_type;
   1269 			goto found;
   1270 		}
   1271 	}
   1272 
   1273 	if (is_xlp_p) {
   1274 #if (MIPS64_XLP) > 0
   1275 		rcp->rc_pci_ecfg.r_pbase = RMIXLP_SBC_PCIE_ECFG_PBASE;
   1276 #endif /* MIPS64_XLP */
   1277 	} else {
   1278 #if (MIPS64_XLR + MIPS64_XLS) > 0
   1279 		rcp->rc_io.r_pbase = RMIXL_IO_DEV_PBASE;
   1280 #endif /* (MIPS64_XLR + MIPS64_XLS) > 0 */
   1281 	}
   1282 
   1283 #ifdef DIAGNOSTIC
   1284 	printf("\nWARNING: untested psb_version: %#"PRIx64"\n",
   1285 	    rcp->rc_psb_info.psb_version);
   1286 #endif
   1287 
   1288 #ifdef MEMSIZE
   1289 	/* XXX trust and use MEMSIZE */
   1290 	mem_clusters[0].start = 0;
   1291 	mem_clusters[0].size = MEMSIZE;
   1292 	mem_cluster_cnt = 1;
   1293 	return MEMSIZE;
   1294 #else
   1295 	uint64_t memsize = 0;
   1296 	for (size_t i = 0; i < mem_cluster_cnt; i++) {
   1297 		memsize += mem_clusters[i].size;
   1298 	}
   1299 	if (memsize)
   1300 		return memsize;
   1301 
   1302 	printf("\nERROR: configure MEMSIZE\n");
   1303 	cpu_reboot(RB_HALT, NULL);
   1304 	/* NOTREACHED */
   1305 #endif
   1306 
   1307  found:
   1308 	rcp->rc_io.r_pbase = MIPS_KSEG1_TO_PHYS(rcp->rc_psb_info.io_base);
   1309 	DPRINTF("\ninfop: %#"PRIx64"\n", infop);
   1310 #ifdef DIAGNOSTIC
   1311 	printf("\nrecognized psb_version=%#"PRIx64", psb_type=%s\n",
   1312 	    rcp->rc_psb_info.psb_version,
   1313 	    rmixlfw_psb_type_name(rcp->rc_psb_type));
   1314 #endif
   1315 
   1316 	return mem_clusters_init(
   1317 		(rmixlfw_mmap_t *)(intptr_t)rcp->rc_psb_info.psb_physaddr_map,
   1318 		(rmixlfw_mmap_t *)(intptr_t)rcp->rc_psb_info.avail_mem_map);
   1319 }
   1320 
   1321 void
   1322 rmixlfw_mmap_print(const char *mapname, rmixlfw_mmap_t *map)
   1323 {
   1324 #ifdef MACHDEP_DEBUG
   1325 	for (size_t i=0; i < map->nmmaps; i++) {
   1326 		printf("%s[%zu]: %#"PRIx64", %#"PRIx64", %#x\n",
   1327 		    mapname, i, map->entry[i].start, map->entry[i].size,
   1328 		    map->entry[i].type);
   1329 	}
   1330 #endif
   1331 }
   1332 
   1333 /*
   1334  * mem_clusters_init
   1335  *
   1336  * initialize mem_clusters[] table based on memory address mapping
   1337  * provided by boot firmware.
   1338  *
   1339  * prefer avail_mem_map if we can, otherwise use psb_physaddr_map.
   1340  * these will be limited by MEMSIZE if it is configured.
   1341  * if neither are available, just use MEMSIZE.
   1342  */
   1343 static uint64_t
   1344 mem_clusters_init(
   1345 	rmixlfw_mmap_t *psb_physaddr_map,
   1346 	rmixlfw_mmap_t *avail_mem_map)
   1347 {
   1348 	rmixlfw_mmap_t *map = NULL;
   1349 	const char *mapname;
   1350 	uint64_t sz;
   1351 	uint64_t sum;
   1352 	u_int cnt;
   1353 #ifdef MEMSIZE
   1354 	uint64_t memsize = MEMSIZE;
   1355 #endif
   1356 
   1357 #ifdef MACHDEP_DEBUG
   1358 	printf("psb_physaddr_map: %p\n", psb_physaddr_map);
   1359 #endif
   1360 	if (psb_physaddr_map != NULL) {
   1361 		map = psb_physaddr_map;
   1362 		mapname = "psb_physaddr_map";
   1363 		rmixlfw_mmap_print(mapname, map);
   1364 	}
   1365 #ifdef DIAGNOSTIC
   1366 	else {
   1367 		printf("WARNING: no psb_physaddr_map\n");
   1368 	}
   1369 #endif
   1370 
   1371 #ifdef MACHDEP_DEBUG
   1372 	printf("avail_mem_map: %p\n", avail_mem_map);
   1373 #endif
   1374 	if (avail_mem_map != NULL) {
   1375 		map = avail_mem_map;
   1376 		mapname = "avail_mem_map";
   1377 		rmixlfw_mmap_print(mapname, map);
   1378 	}
   1379 #ifdef DIAGNOSTIC
   1380 	else {
   1381 		printf("WARNING: no avail_mem_map\n");
   1382 	}
   1383 #endif
   1384 
   1385 	if (map == NULL) {
   1386 #ifndef MEMSIZE
   1387 		printf("panic: no firmware memory map, "
   1388 			"must configure MEMSIZE\r\n");
   1389 		for(;;);	/* XXX */
   1390 #else
   1391 #ifdef DIAGNOSTIC
   1392 		printf("WARNING: no avail_mem_map, using MEMSIZE\n");
   1393 #endif
   1394 
   1395 		mem_clusters[0].start = 0;
   1396 		mem_clusters[0].size = MEMSIZE;
   1397 		mem_cluster_cnt = 1;
   1398 		return MEMSIZE;
   1399 #endif	/* MEMSIZE */
   1400 	}
   1401 
   1402 #ifdef DIAGNOSTIC
   1403 	printf("using %s\n", mapname);
   1404 #endif
   1405 #ifdef MACHDEP_DEBUG
   1406 	printf("memory clusters:\n");
   1407 #endif
   1408 	sum = 0;
   1409 	cnt = 0;
   1410 	for (uint32_t i=0; i < map->nmmaps; i++) {
   1411 		if (map->entry[i].type != RMIXLFW_MMAP_TYPE_RAM)
   1412 			continue;
   1413 		mem_clusters[cnt].start = map->entry[i].start;
   1414 		sz = map->entry[i].size;
   1415 		sum += sz;
   1416 		mem_clusters[cnt].size = sz;
   1417 #ifdef MACHDEP_DEBUG
   1418 		printf("[%u]: %#"PRIx64", %#"PRIx64", %#"PRIx64"\n",
   1419 		    i, mem_clusters[cnt].start, sz, sum);
   1420 #endif
   1421 #ifdef MEMSIZE
   1422 		/*
   1423 		 * configurably limit memsize
   1424 		 */
   1425 		if (sum == memsize)
   1426 			break;
   1427 		if (sum > memsize) {
   1428 			uint64_t tmp;
   1429 
   1430 			tmp = sum - memsize;
   1431 			sz -= tmp;
   1432 			sum -= tmp;
   1433 			mem_clusters[cnt].size = sz;
   1434 			cnt++;
   1435 			break;
   1436 		}
   1437 #endif
   1438 		cnt++;
   1439 	}
   1440 	mem_cluster_cnt = cnt;
   1441 	return sum;
   1442 }
   1443 
   1444 #ifdef MULTIPROCESSOR
   1445 /*
   1446  * RMI firmware passes wakeup info structure in CP0 OS Scratch reg #7
   1447  * they do not explicitly give us the size of the wakeup area.
   1448  * we "know" that firmware loader sets wip->gp thusly:
   1449  *   gp = stack_start[vcpu] = round_page(wakeup_end) + (vcpu * (PAGE_SIZE * 2))
   1450  * so
   1451  *   round_page(wakeup_end) == gp - (vcpu * (PAGE_SIZE * 2))
   1452  * Only the "master" cpu runs this function, so
   1453  *   vcpu = wip->master_cpu
   1454  */
   1455 void
   1456 rmixl_get_wakeup_info(struct rmixl_config *rcp)
   1457 {
   1458 	volatile rmixlfw_cpu_wakeup_info_t *wip;
   1459 	int32_t scratch_7;
   1460 	intptr_t end;
   1461 
   1462 	__asm__ volatile(
   1463 		".set push"				"\n"
   1464 		".set noreorder"			"\n"
   1465 		".set mips64"				"\n"
   1466 		"dmfc0	%0, $22, 7"			"\n"
   1467 		".set pop"				"\n"
   1468 			: "=r"(scratch_7));
   1469 
   1470 	wip = (volatile rmixlfw_cpu_wakeup_info_t *)
   1471 			(intptr_t)scratch_7;
   1472 	end = wip->entry.gp - (wip->master_cpu & (PAGE_SIZE * 2));;
   1473 
   1474 	if (wip->valid == 1) {
   1475 		rcp->rc_cpu_wakeup_end = (const void *)end;
   1476 		rcp->rc_cpu_wakeup_info = wip;
   1477 	}
   1478 };
   1479 
   1480 #ifdef MACHDEP_DEBUG
   1481 static void
   1482 rmixl_wakeup_info_print(volatile rmixlfw_cpu_wakeup_info_t *wip)
   1483 {
   1484 	int i;
   1485 
   1486 	printf("%s: wip %p, size %lu\n", __func__, wip, sizeof(*wip));
   1487 
   1488 	printf("cpu_status %#x\n",  wip->cpu_status);
   1489 	printf("valid: %d\n", wip->valid);
   1490 	printf("entry: addr %#x, args %#x, sp %#"PRIx64", gp %#"PRIx64"\n",
   1491 		wip->entry.addr,
   1492 		wip->entry.args,
   1493 		wip->entry.sp,
   1494 		wip->entry.gp);
   1495 	printf("master_cpu %d\n", wip->master_cpu);
   1496 	printf("master_cpu_mask %#x\n", wip->master_cpu_mask);
   1497 	printf("buddy_cpu_mask %#x\n", wip->buddy_cpu_mask);
   1498 	printf("psb_os_cpu_map %#x\n", wip->psb_os_cpu_map);
   1499 	printf("argc %d\n", wip->argc);
   1500 	printf("argv:");
   1501 	for (i=0; i < wip->argc; i++)
   1502 		printf(" %#x", wip->argv[i]);
   1503 	printf("\n");
   1504 	printf("valid_tlb_entries %d\n", wip->valid_tlb_entries);
   1505 	printf("tlb_map:\n");
   1506 	for (i=0; i < wip->valid_tlb_entries; i++) {
   1507 		volatile const struct lib_cpu_tlb_mapping *m =
   1508 			&wip->tlb_map[i];
   1509 		printf(" %d", m->page_size);
   1510 		printf(", %d", m->asid);
   1511 		printf(", %d", m->coherency);
   1512 		printf(", %d", m->coherency);
   1513 		printf(", %d", m->attr);
   1514 		printf(", %#x", m->virt);
   1515 		printf(", %#"PRIx64"\n", m->phys);
   1516 	}
   1517 	printf("elf segs:\n");
   1518 	for (i=0; i < MAX_ELF_SEGMENTS; i++) {
   1519 		volatile const struct core_segment_info *e =
   1520 			&wip->seg_info[i];
   1521 		printf(" %#"PRIx64"", e->vaddr);
   1522 		printf(", %#"PRIx64"", e->memsz);
   1523 		printf(", %#x\n", e->flags);
   1524 	}
   1525 	printf("envc %d\n", wip->envc);
   1526 	for (i=0; i < wip->envc; i++)
   1527 		printf(" %#x \"%s\"", wip->envs[i],
   1528 			(char *)(intptr_t)(int32_t)(wip->envs[i]));
   1529 	printf("\n");
   1530 	printf("app_mode %d\n", wip->app_mode);
   1531 	printf("printk_lock %#x\n", wip->printk_lock);
   1532 	printf("kseg_master %d\n", wip->kseg_master);
   1533 	printf("kuseg_reentry_function %#x\n", wip->kuseg_reentry_function);
   1534 	printf("kuseg_reentry_args %#x\n", wip->kuseg_reentry_args);
   1535 	printf("app_shared_mem_addr %#"PRIx64"\n", wip->app_shared_mem_addr);
   1536 	printf("app_shared_mem_size %#"PRIx64"\n", wip->app_shared_mem_size);
   1537 	printf("app_shared_mem_orig %#"PRIx64"\n", wip->app_shared_mem_orig);
   1538 	printf("loader_lock %#x\n", wip->loader_lock);
   1539 	printf("global_wakeup_mask %#x\n", wip->global_wakeup_mask);
   1540 	printf("unused_0 %#x\n", wip->unused_0);
   1541 }
   1542 #endif	/* MACHDEP_DEBUG */
   1543 #endif 	/* MULTIPROCESSOR */
   1544 
   1545 void
   1546 consinit(void)
   1547 {
   1548 
   1549 	/*
   1550 	 * Everything related to console initialization is done
   1551 	 * in mach_init().
   1552 	 */
   1553 }
   1554 
   1555 /*
   1556  * Allocate memory for variable-sized tables,
   1557  */
   1558 void
   1559 cpu_startup()
   1560 {
   1561 	vaddr_t minaddr, maxaddr;
   1562 	char pbuf[9];
   1563 
   1564 	/*
   1565 	 * Good {morning,afternoon,evening,night}.
   1566 	 */
   1567 	printf("%s%s", copyright, version);
   1568 	format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem));
   1569 	printf("total memory = %s\n", pbuf);
   1570 
   1571 	/*
   1572 	 * Virtual memory is bootstrapped -- notify the bus spaces
   1573 	 * that memory allocation is now safe.
   1574 	 */
   1575 	rmixl_configuration.rc_mallocsafe = 1;
   1576 
   1577 	minaddr = 0;
   1578 	/*
   1579 	 * Allocate a submap for physio.
   1580 	 */
   1581 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1582 				    VM_PHYS_SIZE, 0, FALSE, NULL);
   1583 
   1584 	/*
   1585 	 * (No need to allocate an mbuf cluster submap.  Mbuf clusters
   1586 	 * are allocated via the pool allocator, and we use XKSEG to
   1587 	 * map those pages.)
   1588 	 */
   1589 
   1590 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
   1591 	printf("avail memory = %s\n", pbuf);
   1592 }
   1593 
   1594 int	waittime = -1;
   1595 
   1596 void
   1597 cpu_reboot(int howto, char *bootstr)
   1598 {
   1599 
   1600 	/* Take a snapshot before clobbering any registers. */
   1601 	savectx(lwp_getpcb(curlwp));
   1602 
   1603 	if (cold) {
   1604 		howto |= RB_HALT;
   1605 		goto haltsys;
   1606 	}
   1607 
   1608 	/* If "always halt" was specified as a boot flag, obey. */
   1609 	if (boothowto & RB_HALT)
   1610 		howto |= RB_HALT;
   1611 
   1612 	boothowto = howto;
   1613 	if ((howto & RB_NOSYNC) == 0 && (waittime < 0)) {
   1614 		waittime = 0;
   1615 		vfs_shutdown();
   1616 
   1617 		/*
   1618 		 * If we've been adjusting the clock, the todr
   1619 		 * will be out of synch; adjust it now.
   1620 		 */
   1621 		resettodr();
   1622 	}
   1623 
   1624 	splhigh();
   1625 
   1626 	if (howto & RB_DUMP)
   1627 		dumpsys();
   1628 
   1629 haltsys:
   1630 	doshutdownhooks();
   1631 
   1632 	if (howto & RB_HALT) {
   1633 		printf("\n");
   1634 		printf("The operating system has halted.\n");
   1635 		printf("Please press any key to reboot.\n\n");
   1636 		cnpollc(1);	/* For proper keyboard command handling */
   1637 		cngetc();
   1638 		cnpollc(0);
   1639 	}
   1640 
   1641 	printf("rebooting...\n\n");
   1642 
   1643 	rmixl_reset();
   1644 }
   1645 
   1646 /*
   1647  * goodbye world
   1648  */
   1649 void __attribute__((__noreturn__))
   1650 rmixl_reset(void)
   1651 {
   1652 	uint32_t r;
   1653 
   1654 	if (MIPSNN_GET(CFG_AR, mips3_cp0_config_read()) == MIPSNN_CFG_AR_REV2) {
   1655 		rmixlp_write_4(RMIXLP_SM_PCITAG, RMIXLP_SM_CHIP_RESET, 1);
   1656 		DELAY(1000000);
   1657 		printf("%s: resorting to plan b!", __func__);
   1658 		*(volatile uint32_t *)MIPS_PHYS_TO_KSEG1(0x18035100) = 1;
   1659 		__asm __volatile("sync");
   1660 	} else {
   1661 		r = RMIXL_IOREG_READ(RMIXL_IO_DEV_GPIO + RMIXL_GPIO_RESET);
   1662 		r |= RMIXL_GPIO_RESET_RESET;
   1663 		RMIXL_IOREG_WRITE(RMIXL_IO_DEV_GPIO + RMIXL_GPIO_RESET, r);
   1664 	}
   1665 
   1666 	printf("soft reset failed, spinning...\n");
   1667 	for (;;);
   1668 }
   1669 
   1670 #ifdef __HAVE_PCI_CONF_HOOK
   1671 int
   1672 rmixl_pci_conf_hook(void *v, int bus, int device, int function, pcireg_t id)
   1673 {
   1674 	return PCI_CONF_MAP_MEM | PCI_CONF_ENABLE_MEM | PCI_CONF_ENABLE_BM;
   1675 }
   1676 #endif
   1677