1 1.2 jmcneill /* $NetBSD: exi.c,v 1.2 2024/02/10 11:00:15 jmcneill Exp $ */ 2 1.1 jmcneill 3 1.1 jmcneill /*- 4 1.1 jmcneill * Copyright (c) 2024 Jared McNeill <jmcneill (at) invisible.ca> 5 1.1 jmcneill * All rights reserved. 6 1.1 jmcneill * 7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without 8 1.1 jmcneill * modification, are permitted provided that the following conditions 9 1.1 jmcneill * are met: 10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright 11 1.1 jmcneill * notice, this list of conditions and the following disclaimer. 12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the 14 1.1 jmcneill * documentation and/or other materials provided with the distribution. 15 1.1 jmcneill * 16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 1.1 jmcneill * SUCH DAMAGE. 27 1.1 jmcneill */ 28 1.1 jmcneill 29 1.1 jmcneill #include <sys/cdefs.h> 30 1.2 jmcneill __KERNEL_RCSID(0, "$NetBSD: exi.c,v 1.2 2024/02/10 11:00:15 jmcneill Exp $"); 31 1.1 jmcneill 32 1.1 jmcneill #include <sys/param.h> 33 1.1 jmcneill #include <sys/bus.h> 34 1.1 jmcneill #include <sys/device.h> 35 1.1 jmcneill #include <sys/systm.h> 36 1.1 jmcneill #include <sys/bitops.h> 37 1.1 jmcneill #include <sys/mutex.h> 38 1.1 jmcneill #include <uvm/uvm_extern.h> 39 1.1 jmcneill 40 1.1 jmcneill #include <machine/wii.h> 41 1.1 jmcneill #include <machine/pio.h> 42 1.1 jmcneill 43 1.1 jmcneill #include "locators.h" 44 1.1 jmcneill #include "mainbus.h" 45 1.1 jmcneill #include "exi.h" 46 1.1 jmcneill 47 1.1 jmcneill #define EXI_NUM_CHAN 3 48 1.1 jmcneill #define EXI_NUM_DEV 3 49 1.1 jmcneill 50 1.1 jmcneill /* This is an arbitrary limit. The real limit is probably much higher. */ 51 1.1 jmcneill #define EXI_MAX_DMA 4096 52 1.1 jmcneill 53 1.1 jmcneill #define EXI_CSR(n) (0x00 + (n) * 0x14) 54 1.1 jmcneill #define EXI_CSR_CS __BITS(9,7) 55 1.2 jmcneill #define EXI_CSR_CLK __BITS(6,4) 56 1.1 jmcneill #define EXI_MAR(n) (0x04 + (n) * 0x14) 57 1.1 jmcneill #define EXI_LENGTH(n) (0x08 + (n) * 0x14) 58 1.1 jmcneill #define EXI_CR(n) (0x0c + (n) * 0x14) 59 1.1 jmcneill #define EXI_CR_TLEN __BITS(5,4) 60 1.1 jmcneill #define EXI_CR_RW __BITS(3,2) 61 1.1 jmcneill #define EXI_CR_RW_READ __SHIFTIN(0, EXI_CR_RW) 62 1.1 jmcneill #define EXI_CR_RW_WRITE __SHIFTIN(1, EXI_CR_RW) 63 1.1 jmcneill #define EXI_CR_DMA __BIT(1) 64 1.1 jmcneill #define EXI_CR_TSTART __BIT(0) 65 1.1 jmcneill #define EXI_DATA(n) (0x10 + (n) * 0x14) 66 1.1 jmcneill 67 1.1 jmcneill #define ASSERT_CHAN_VALID(chan) KASSERT((chan) >= 0 && (chan) < EXI_NUM_CHAN) 68 1.1 jmcneill #define ASSERT_DEV_VALID(dev) KASSERT((dev) >= 0 && (dev) < EXI_NUM_DEV) 69 1.1 jmcneill #define ASSERT_LEN_VALID(len) KASSERT((len) == 1 || (len) == 2 || (len) == 4) 70 1.1 jmcneill 71 1.1 jmcneill struct exi_channel { 72 1.1 jmcneill kmutex_t ch_lock; 73 1.1 jmcneill 74 1.1 jmcneill bus_dmamap_t ch_dmamap; 75 1.1 jmcneill 76 1.1 jmcneill device_t ch_child[EXI_NUM_DEV]; 77 1.1 jmcneill }; 78 1.1 jmcneill 79 1.1 jmcneill struct exi_softc { 80 1.1 jmcneill device_t sc_dev; 81 1.1 jmcneill bus_space_tag_t sc_bst; 82 1.1 jmcneill bus_space_handle_t sc_bsh; 83 1.1 jmcneill bus_dma_tag_t sc_dmat; 84 1.1 jmcneill 85 1.1 jmcneill struct exi_channel sc_chan[EXI_NUM_CHAN]; 86 1.1 jmcneill }; 87 1.1 jmcneill 88 1.1 jmcneill static struct exi_softc *exi_softc; 89 1.1 jmcneill 90 1.1 jmcneill #define RD4(sc, reg) \ 91 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) 92 1.1 jmcneill #define WR4(sc, reg, val) \ 93 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 94 1.1 jmcneill 95 1.1 jmcneill static int exi_match(device_t, cfdata_t, void *); 96 1.1 jmcneill static void exi_attach(device_t, device_t, void *); 97 1.1 jmcneill 98 1.1 jmcneill static int exi_rescan(device_t, const char *, const int *); 99 1.1 jmcneill static int exi_print(void *, const char *); 100 1.1 jmcneill 101 1.1 jmcneill CFATTACH_DECL_NEW(exi, sizeof(struct exi_softc), 102 1.1 jmcneill exi_match, exi_attach, NULL, NULL); 103 1.1 jmcneill 104 1.1 jmcneill static int 105 1.1 jmcneill exi_match(device_t parent, cfdata_t cf, void *aux) 106 1.1 jmcneill { 107 1.1 jmcneill struct mainbus_attach_args *maa = aux; 108 1.1 jmcneill 109 1.1 jmcneill return strcmp(maa->maa_name, "exi") == 0; 110 1.1 jmcneill } 111 1.1 jmcneill 112 1.1 jmcneill static void 113 1.1 jmcneill exi_attach(device_t parent, device_t self, void *aux) 114 1.1 jmcneill { 115 1.1 jmcneill struct mainbus_attach_args * const maa = aux; 116 1.1 jmcneill struct exi_softc * const sc = device_private(self); 117 1.1 jmcneill uint8_t chan; 118 1.1 jmcneill int error; 119 1.1 jmcneill 120 1.1 jmcneill KASSERT(device_unit(self) == 0); 121 1.1 jmcneill 122 1.1 jmcneill aprint_naive("\n"); 123 1.1 jmcneill aprint_normal(": External Interface\n"); 124 1.1 jmcneill 125 1.1 jmcneill exi_softc = sc; 126 1.1 jmcneill sc->sc_dev = self; 127 1.1 jmcneill sc->sc_bst = maa->maa_bst; 128 1.1 jmcneill if (bus_space_map(sc->sc_bst, maa->maa_addr, EXI_SIZE, 0, 129 1.1 jmcneill &sc->sc_bsh) != 0) { 130 1.1 jmcneill aprint_error_dev(self, "couldn't map registers\n"); 131 1.1 jmcneill return; 132 1.1 jmcneill } 133 1.1 jmcneill sc->sc_dmat = maa->maa_dmat; 134 1.1 jmcneill for (chan = 0; chan < EXI_NUM_CHAN; chan++) { 135 1.1 jmcneill mutex_init(&sc->sc_chan[chan].ch_lock, MUTEX_DEFAULT, IPL_VM); 136 1.1 jmcneill error = bus_dmamap_create(exi_softc->sc_dmat, EXI_MAX_DMA, 1, 137 1.1 jmcneill EXI_MAX_DMA, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, 138 1.1 jmcneill &sc->sc_chan[chan].ch_dmamap); 139 1.1 jmcneill if (error != 0) { 140 1.1 jmcneill aprint_error_dev(self, "couldn't create dmamap: %d\n", 141 1.1 jmcneill error); 142 1.1 jmcneill return; 143 1.1 jmcneill } 144 1.1 jmcneill } 145 1.1 jmcneill 146 1.1 jmcneill exi_rescan(self, NULL, NULL); 147 1.1 jmcneill } 148 1.1 jmcneill 149 1.1 jmcneill static int 150 1.1 jmcneill exi_rescan(device_t self, const char *ifattr, const int *locs) 151 1.1 jmcneill { 152 1.1 jmcneill struct exi_softc * const sc = device_private(self); 153 1.1 jmcneill uint8_t chan, dev; 154 1.1 jmcneill 155 1.1 jmcneill for (chan = 0; chan < EXI_NUM_CHAN; chan++) { 156 1.1 jmcneill struct exi_channel *ch = &sc->sc_chan[chan]; 157 1.1 jmcneill for (dev = 0; dev < EXI_NUM_DEV; dev++) { 158 1.1 jmcneill struct exi_attach_args eaa = {}; 159 1.1 jmcneill uint16_t command = 0x0000; /* ID command */ 160 1.1 jmcneill uint32_t id = 0; 161 1.1 jmcneill 162 1.1 jmcneill if (ch->ch_child[dev] != NULL) { 163 1.1 jmcneill continue; 164 1.1 jmcneill } 165 1.1 jmcneill 166 1.2 jmcneill exi_select(chan, dev, EXI_FREQ_8MHZ); 167 1.1 jmcneill exi_send_imm(chan, dev, &command, sizeof(command)); 168 1.1 jmcneill exi_recv_imm(chan, dev, &id, sizeof(id)); 169 1.1 jmcneill exi_unselect(chan); 170 1.1 jmcneill 171 1.1 jmcneill if (id == 0 || id == 0xffffffff) { 172 1.1 jmcneill continue; 173 1.1 jmcneill } 174 1.1 jmcneill 175 1.1 jmcneill eaa.eaa_id = id; 176 1.1 jmcneill eaa.eaa_chan = chan; 177 1.1 jmcneill eaa.eaa_device = dev; 178 1.1 jmcneill 179 1.1 jmcneill ch->ch_child[dev] = config_found(self, &eaa, exi_print, 180 1.1 jmcneill CFARGS(.submatch = config_stdsubmatch, 181 1.1 jmcneill .locators = locs)); 182 1.1 jmcneill } 183 1.1 jmcneill } 184 1.1 jmcneill 185 1.1 jmcneill return 0; 186 1.1 jmcneill } 187 1.1 jmcneill 188 1.1 jmcneill static int 189 1.1 jmcneill exi_print(void *aux, const char *pnp) 190 1.1 jmcneill { 191 1.1 jmcneill struct exi_attach_args *eaa = aux; 192 1.1 jmcneill 193 1.1 jmcneill if (pnp != NULL) { 194 1.1 jmcneill aprint_normal("EXI device 0x%08x at %s", eaa->eaa_id, pnp); 195 1.1 jmcneill } 196 1.1 jmcneill 197 1.1 jmcneill aprint_normal(" addr %u-%u", eaa->eaa_chan, eaa->eaa_device); 198 1.1 jmcneill 199 1.1 jmcneill return UNCONF; 200 1.1 jmcneill } 201 1.1 jmcneill 202 1.1 jmcneill void 203 1.2 jmcneill exi_select(uint8_t chan, uint8_t dev, exi_freq_t freq) 204 1.1 jmcneill { 205 1.1 jmcneill struct exi_channel *ch; 206 1.1 jmcneill uint32_t val; 207 1.1 jmcneill 208 1.1 jmcneill ASSERT_CHAN_VALID(chan); 209 1.1 jmcneill ASSERT_DEV_VALID(dev); 210 1.1 jmcneill 211 1.1 jmcneill ch = &exi_softc->sc_chan[chan]; 212 1.1 jmcneill mutex_enter(&ch->ch_lock); 213 1.1 jmcneill 214 1.1 jmcneill val = RD4(exi_softc, EXI_CSR(chan)); 215 1.1 jmcneill val &= ~EXI_CSR_CS; 216 1.1 jmcneill val |= __SHIFTIN(__BIT(dev), EXI_CSR_CS); 217 1.2 jmcneill val &= ~EXI_CSR_CLK; 218 1.2 jmcneill val |= __SHIFTIN(freq, EXI_CSR_CLK); 219 1.1 jmcneill WR4(exi_softc, EXI_CSR(chan), val); 220 1.1 jmcneill } 221 1.1 jmcneill 222 1.1 jmcneill void 223 1.1 jmcneill exi_unselect(uint8_t chan) 224 1.1 jmcneill { 225 1.1 jmcneill struct exi_channel *ch; 226 1.1 jmcneill uint32_t val; 227 1.1 jmcneill 228 1.1 jmcneill ASSERT_CHAN_VALID(chan); 229 1.1 jmcneill 230 1.1 jmcneill ch = &exi_softc->sc_chan[chan]; 231 1.1 jmcneill 232 1.1 jmcneill val = RD4(exi_softc, EXI_CSR(chan)); 233 1.1 jmcneill val &= ~EXI_CSR_CS; 234 1.1 jmcneill WR4(exi_softc, EXI_CSR(chan), val); 235 1.1 jmcneill 236 1.1 jmcneill mutex_exit(&ch->ch_lock); 237 1.1 jmcneill } 238 1.1 jmcneill 239 1.1 jmcneill static void 240 1.1 jmcneill exi_wait(uint8_t chan) 241 1.1 jmcneill { 242 1.1 jmcneill uint32_t val; 243 1.1 jmcneill 244 1.1 jmcneill ASSERT_CHAN_VALID(chan); 245 1.1 jmcneill 246 1.1 jmcneill do { 247 1.1 jmcneill val = RD4(exi_softc, EXI_CR(chan)); 248 1.1 jmcneill } while ((val & EXI_CR_TSTART) != 0); 249 1.1 jmcneill } 250 1.1 jmcneill 251 1.1 jmcneill void 252 1.1 jmcneill exi_send_imm(uint8_t chan, uint8_t dev, const void *data, size_t datalen) 253 1.1 jmcneill { 254 1.1 jmcneill struct exi_channel *ch; 255 1.1 jmcneill uint32_t val = 0; 256 1.1 jmcneill 257 1.1 jmcneill ASSERT_CHAN_VALID(chan); 258 1.1 jmcneill ASSERT_DEV_VALID(dev); 259 1.1 jmcneill ASSERT_LEN_VALID(datalen); 260 1.1 jmcneill 261 1.1 jmcneill ch = &exi_softc->sc_chan[chan]; 262 1.1 jmcneill KASSERT(mutex_owned(&ch->ch_lock)); 263 1.1 jmcneill 264 1.1 jmcneill switch (datalen) { 265 1.1 jmcneill case 1: 266 1.1 jmcneill val = *(const uint8_t *)data << 24; 267 1.1 jmcneill break; 268 1.1 jmcneill case 2: 269 1.1 jmcneill val = *(const uint16_t *)data << 16; 270 1.1 jmcneill break; 271 1.1 jmcneill case 4: 272 1.1 jmcneill val = *(const uint32_t *)data; 273 1.1 jmcneill break; 274 1.1 jmcneill } 275 1.1 jmcneill 276 1.1 jmcneill WR4(exi_softc, EXI_DATA(chan), val); 277 1.1 jmcneill WR4(exi_softc, EXI_CR(chan), 278 1.1 jmcneill EXI_CR_TSTART | EXI_CR_RW_WRITE | 279 1.1 jmcneill __SHIFTIN(datalen - 1, EXI_CR_TLEN)); 280 1.1 jmcneill exi_wait(chan); 281 1.1 jmcneill } 282 1.1 jmcneill 283 1.1 jmcneill void 284 1.1 jmcneill exi_recv_imm(uint8_t chan, uint8_t dev, void *data, size_t datalen) 285 1.1 jmcneill { 286 1.1 jmcneill struct exi_channel *ch; 287 1.1 jmcneill uint32_t val; 288 1.1 jmcneill 289 1.1 jmcneill ASSERT_CHAN_VALID(chan); 290 1.1 jmcneill ASSERT_DEV_VALID(dev); 291 1.1 jmcneill ASSERT_LEN_VALID(datalen); 292 1.1 jmcneill 293 1.1 jmcneill ch = &exi_softc->sc_chan[chan]; 294 1.1 jmcneill KASSERT(mutex_owned(&ch->ch_lock)); 295 1.1 jmcneill 296 1.1 jmcneill WR4(exi_softc, EXI_CR(chan), 297 1.1 jmcneill EXI_CR_TSTART | EXI_CR_RW_READ | 298 1.1 jmcneill __SHIFTIN(datalen - 1, EXI_CR_TLEN)); 299 1.1 jmcneill exi_wait(chan); 300 1.1 jmcneill val = RD4(exi_softc, EXI_DATA(chan)); 301 1.1 jmcneill 302 1.1 jmcneill switch (datalen) { 303 1.1 jmcneill case 1: 304 1.1 jmcneill *(uint8_t *)data = val >> 24; 305 1.1 jmcneill break; 306 1.1 jmcneill case 2: 307 1.1 jmcneill *(uint16_t *)data = val >> 16; 308 1.1 jmcneill break; 309 1.1 jmcneill case 4: 310 1.1 jmcneill *(uint32_t *)data = val; 311 1.1 jmcneill break; 312 1.1 jmcneill } 313 1.1 jmcneill } 314 1.1 jmcneill 315 1.1 jmcneill void 316 1.1 jmcneill exi_recv_dma(uint8_t chan, uint8_t dev, void *data, size_t datalen) 317 1.1 jmcneill { 318 1.1 jmcneill struct exi_channel *ch; 319 1.1 jmcneill int error; 320 1.1 jmcneill 321 1.1 jmcneill ASSERT_CHAN_VALID(chan); 322 1.1 jmcneill ASSERT_DEV_VALID(dev); 323 1.1 jmcneill KASSERT((datalen & 0x1f) == 0); 324 1.1 jmcneill 325 1.1 jmcneill ch = &exi_softc->sc_chan[chan]; 326 1.1 jmcneill KASSERT(mutex_owned(&ch->ch_lock)); 327 1.1 jmcneill 328 1.1 jmcneill error = bus_dmamap_load(exi_softc->sc_dmat, ch->ch_dmamap, 329 1.1 jmcneill data, datalen, NULL, BUS_DMA_WAITOK); 330 1.1 jmcneill if (error != 0) { 331 1.1 jmcneill device_printf(exi_softc->sc_dev, "can't load DMA handle: %d\n", 332 1.1 jmcneill error); 333 1.1 jmcneill return; 334 1.1 jmcneill } 335 1.1 jmcneill 336 1.1 jmcneill KASSERT((ch->ch_dmamap->dm_segs[0].ds_addr & 0x1f) == 0); 337 1.1 jmcneill 338 1.1 jmcneill bus_dmamap_sync(exi_softc->sc_dmat, ch->ch_dmamap, 0, datalen, 339 1.1 jmcneill BUS_DMASYNC_PREREAD); 340 1.1 jmcneill 341 1.1 jmcneill WR4(exi_softc, EXI_MAR(chan), ch->ch_dmamap->dm_segs[0].ds_addr); 342 1.1 jmcneill WR4(exi_softc, EXI_LENGTH(chan), datalen); 343 1.1 jmcneill WR4(exi_softc, EXI_CR(chan), 344 1.1 jmcneill EXI_CR_TSTART | EXI_CR_RW_READ | EXI_CR_DMA); 345 1.1 jmcneill exi_wait(chan); 346 1.1 jmcneill 347 1.1 jmcneill bus_dmamap_sync(exi_softc->sc_dmat, ch->ch_dmamap, 0, datalen, 348 1.1 jmcneill BUS_DMASYNC_POSTREAD); 349 1.1 jmcneill 350 1.1 jmcneill bus_dmamap_unload(exi_softc->sc_dmat, ch->ch_dmamap); 351 1.1 jmcneill } 352