1 1.4 thorpej /* $NetBSD: ap_ms104_sh4_intr.c,v 1.4 2020/11/21 16:21:24 thorpej Exp $ */ 2 1.1 nonaka 3 1.1 nonaka /*- 4 1.2 nonaka * Copyright (C) 2009 NONAKA Kimihiro <nonaka (at) netbsd.org> 5 1.1 nonaka * All rights reserved. 6 1.1 nonaka * 7 1.1 nonaka * Redistribution and use in source and binary forms, with or without 8 1.1 nonaka * modification, are permitted provided that the following conditions 9 1.1 nonaka * are met: 10 1.1 nonaka * 1. Redistributions of source code must retain the above copyright 11 1.1 nonaka * notice, this list of conditions and the following disclaimer. 12 1.1 nonaka * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 nonaka * notice, this list of conditions and the following disclaimer in the 14 1.1 nonaka * documentation and/or other materials provided with the distribution. 15 1.1 nonaka * 16 1.2 nonaka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 1.2 nonaka * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 1.2 nonaka * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 1.2 nonaka * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 1.2 nonaka * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 1.2 nonaka * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 1.2 nonaka * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 1.2 nonaka * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 1.2 nonaka * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 1.2 nonaka * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 1.1 nonaka */ 27 1.1 nonaka 28 1.1 nonaka #include <sys/cdefs.h> 29 1.4 thorpej __KERNEL_RCSID(0, "$NetBSD: ap_ms104_sh4_intr.c,v 1.4 2020/11/21 16:21:24 thorpej Exp $"); 30 1.1 nonaka 31 1.1 nonaka #include <sys/param.h> 32 1.1 nonaka #include <sys/systm.h> 33 1.1 nonaka #include <sys/kernel.h> 34 1.4 thorpej #include <sys/kmem.h> 35 1.1 nonaka #include <sys/device.h> 36 1.1 nonaka 37 1.1 nonaka #include <sh3/devreg.h> 38 1.1 nonaka #include <sh3/exception.h> 39 1.1 nonaka 40 1.1 nonaka #include <machine/intr.h> 41 1.1 nonaka 42 1.1 nonaka #include <evbsh3/ap_ms104_sh4/ap_ms104_sh4reg.h> 43 1.1 nonaka #include <evbsh3/ap_ms104_sh4/ap_ms104_sh4var.h> 44 1.1 nonaka 45 1.1 nonaka #define _N_EXTINTR 16 46 1.1 nonaka 47 1.1 nonaka struct intrhand { 48 1.1 nonaka int (*ih_fun)(void *); 49 1.1 nonaka void *ih_arg; 50 1.1 nonaka struct intrhand *ih_next; 51 1.1 nonaka int ih_enable; 52 1.1 nonaka int ih_level; 53 1.1 nonaka int ih_irq; 54 1.1 nonaka struct evcnt ih_evcnt; 55 1.1 nonaka }; 56 1.1 nonaka 57 1.1 nonaka struct extintr_handler { 58 1.1 nonaka void *eih_func; 59 1.1 nonaka struct intrhand *eih_ih; 60 1.1 nonaka int eih_nih; 61 1.1 nonaka }; 62 1.1 nonaka static struct extintr_handler extintr_handler[_N_EXTINTR]; 63 1.1 nonaka 64 1.1 nonaka static const char *extintr_names[_N_EXTINTR] = { 65 1.1 nonaka "irq0", "irq1", "irq2", "irq3", 66 1.1 nonaka "irq4", "irq5", "irq6", "irq7", 67 1.1 nonaka "irq8", "irq9", "irq10", "irq11", 68 1.1 nonaka "irq12", "irq13", "irq14", "irq15" 69 1.1 nonaka }; 70 1.1 nonaka 71 1.1 nonaka static int fakeintr(void *arg); 72 1.1 nonaka static int extintr_intr_handler(void *arg); 73 1.1 nonaka 74 1.1 nonaka void 75 1.1 nonaka extintr_init(void) 76 1.1 nonaka { 77 1.1 nonaka 78 1.1 nonaka _reg_write_1(EXTINTR_MASK1, 0); 79 1.1 nonaka _reg_write_1(EXTINTR_MASK2, 0); 80 1.1 nonaka _reg_write_1(EXTINTR_MASK3, 0); 81 1.1 nonaka _reg_write_1(EXTINTR_MASK4, 0); 82 1.1 nonaka } 83 1.1 nonaka 84 1.1 nonaka /*ARGSUSED*/ 85 1.1 nonaka static int 86 1.1 nonaka fakeintr(void *arg) 87 1.1 nonaka { 88 1.1 nonaka 89 1.1 nonaka return 0; 90 1.1 nonaka } 91 1.1 nonaka 92 1.1 nonaka void * 93 1.1 nonaka extintr_establish(int irq, int trigger, int level, 94 1.1 nonaka int (*ih_fun)(void *), void *ih_arg) 95 1.1 nonaka { 96 1.1 nonaka static struct intrhand fakehand = {fakeintr}; 97 1.1 nonaka struct extintr_handler *eih; 98 1.1 nonaka struct intrhand **p, *q, *ih; 99 1.1 nonaka const char *name; 100 1.1 nonaka int evtcode; 101 1.1 nonaka int s; 102 1.1 nonaka 103 1.1 nonaka KDASSERT(irq >= 1 && irq <= 14); 104 1.1 nonaka 105 1.4 thorpej ih = kmem_alloc(sizeof(*ih), KM_SLEEP); 106 1.1 nonaka 107 1.1 nonaka s = _cpu_intr_suspend(); 108 1.1 nonaka 109 1.1 nonaka switch (level) { 110 1.1 nonaka default: 111 1.1 nonaka #if defined(DEBUG) 112 1.1 nonaka panic("extintr_establish: unknown level %d", level); 113 1.1 nonaka /*NOTREACHED*/ 114 1.1 nonaka #endif 115 1.1 nonaka case IPL_VM: 116 1.1 nonaka break; 117 1.1 nonaka } 118 1.1 nonaka 119 1.1 nonaka eih = &extintr_handler[irq]; 120 1.1 nonaka if (eih->eih_func == NULL) { 121 1.1 nonaka evtcode = 0x200 + (irq << 5); 122 1.1 nonaka eih->eih_func = intc_intr_establish(evtcode, trigger, level, 123 1.1 nonaka extintr_intr_handler, eih); 124 1.1 nonaka } 125 1.1 nonaka 126 1.1 nonaka /* 127 1.1 nonaka * Figure out where to put the handler. 128 1.1 nonaka * This is O(N^2), but we want to preserve the order, and N is 129 1.1 nonaka * generally small. 130 1.1 nonaka */ 131 1.1 nonaka for (p = &eih->eih_ih; (q = *p) != NULL; p = &q->ih_next) 132 1.1 nonaka continue; 133 1.1 nonaka 134 1.1 nonaka /* 135 1.1 nonaka * Actually install a fake handler momentarily, since we might be doing 136 1.1 nonaka * this with interrupts enabled and don't want the real routine called 137 1.1 nonaka * until masking is set up. 138 1.1 nonaka */ 139 1.1 nonaka fakehand.ih_level = level; 140 1.1 nonaka *p = &fakehand; 141 1.1 nonaka 142 1.1 nonaka /* 143 1.1 nonaka * Poke the real handler in now. 144 1.1 nonaka */ 145 1.1 nonaka memset(ih, 0, sizeof(*ih)); 146 1.1 nonaka ih->ih_fun = ih_fun; 147 1.1 nonaka ih->ih_arg = ih_arg; 148 1.1 nonaka ih->ih_next = NULL; 149 1.1 nonaka ih->ih_enable = 1; 150 1.1 nonaka ih->ih_level = level; 151 1.1 nonaka ih->ih_irq = irq; 152 1.1 nonaka name = extintr_names[irq]; 153 1.1 nonaka evcnt_attach_dynamic(&ih->ih_evcnt, EVCNT_TYPE_INTR, NULL, "ext", name); 154 1.1 nonaka *p = ih; 155 1.1 nonaka 156 1.1 nonaka if (++eih->eih_nih == 1) { 157 1.1 nonaka uint8_t reg; 158 1.1 nonaka 159 1.1 nonaka /* Unmask interrupt */ 160 1.1 nonaka switch (irq) { 161 1.1 nonaka case 1: case 2: 162 1.1 nonaka reg = _reg_read_1(EXTINTR_MASK4); 163 1.1 nonaka reg |= 1 << (2 - irq); 164 1.1 nonaka _reg_write_1(EXTINTR_MASK4, reg); 165 1.1 nonaka break; 166 1.1 nonaka 167 1.1 nonaka case 3: case 4: case 5: case 6: 168 1.1 nonaka reg = _reg_read_1(EXTINTR_MASK3); 169 1.1 nonaka reg |= 1 << (6 - irq); 170 1.1 nonaka _reg_write_1(EXTINTR_MASK3, reg); 171 1.1 nonaka break; 172 1.1 nonaka 173 1.1 nonaka case 7: case 8: case 9: case 10: 174 1.1 nonaka reg = _reg_read_1(EXTINTR_MASK2); 175 1.1 nonaka reg |= 1 << (10 - irq); 176 1.1 nonaka _reg_write_1(EXTINTR_MASK2, reg); 177 1.1 nonaka break; 178 1.1 nonaka 179 1.1 nonaka case 11: case 12: case 13: case 14: 180 1.1 nonaka reg = _reg_read_1(EXTINTR_MASK1); 181 1.1 nonaka reg |= 1 << (14 - irq); 182 1.1 nonaka _reg_write_1(EXTINTR_MASK1, reg); 183 1.1 nonaka break; 184 1.1 nonaka 185 1.1 nonaka default: 186 1.1 nonaka panic("unknown irq%d\n", irq); 187 1.1 nonaka /*NOTREACHED*/ 188 1.1 nonaka break; 189 1.1 nonaka } 190 1.1 nonaka } 191 1.1 nonaka 192 1.1 nonaka splx(s); 193 1.1 nonaka 194 1.1 nonaka return (ih); 195 1.1 nonaka } 196 1.1 nonaka 197 1.1 nonaka void 198 1.1 nonaka extintr_disestablish(void *cookie) 199 1.1 nonaka { 200 1.1 nonaka struct intrhand *ih = (struct intrhand *)cookie; 201 1.1 nonaka struct intrhand **p, *q; 202 1.1 nonaka struct extintr_handler *eih; 203 1.1 nonaka int irq; 204 1.1 nonaka int s; 205 1.1 nonaka 206 1.1 nonaka KDASSERT(ih != NULL); 207 1.1 nonaka 208 1.1 nonaka s = _cpu_intr_suspend(); 209 1.1 nonaka 210 1.1 nonaka irq = ih->ih_irq; 211 1.1 nonaka eih = &extintr_handler[irq]; 212 1.1 nonaka 213 1.1 nonaka /* 214 1.1 nonaka * Remove the handler from the chain. 215 1.1 nonaka * This is O(n^2), too. 216 1.1 nonaka */ 217 1.1 nonaka for (p = &eih->eih_ih; (q = *p) != NULL && q != ih; p = &q->ih_next) 218 1.1 nonaka continue; 219 1.1 nonaka if (q == NULL) 220 1.1 nonaka panic("extintr_disestablish: handler not registered"); 221 1.1 nonaka 222 1.1 nonaka *p = q->ih_next; 223 1.1 nonaka 224 1.1 nonaka evcnt_detach(&ih->ih_evcnt); 225 1.1 nonaka 226 1.4 thorpej kmem_free((void *)ih, sizeof(*ih)); 227 1.1 nonaka 228 1.1 nonaka if (--eih->eih_nih == 0) { 229 1.1 nonaka uint8_t reg; 230 1.1 nonaka 231 1.1 nonaka intc_intr_disestablish(eih->eih_func); 232 1.1 nonaka eih->eih_func = NULL; 233 1.1 nonaka 234 1.1 nonaka /* Mask interrupt */ 235 1.1 nonaka switch (irq) { 236 1.1 nonaka case 1: case 2: 237 1.1 nonaka reg = _reg_read_1(EXTINTR_MASK4); 238 1.1 nonaka reg &= ~(1 << (2 - irq)); 239 1.1 nonaka _reg_write_1(EXTINTR_MASK4, reg); 240 1.1 nonaka break; 241 1.1 nonaka 242 1.1 nonaka case 3: case 4: case 5: case 6: 243 1.1 nonaka reg = _reg_read_1(EXTINTR_MASK3); 244 1.1 nonaka reg &= ~(1 << (6 - irq)); 245 1.1 nonaka _reg_write_1(EXTINTR_MASK3, reg); 246 1.1 nonaka break; 247 1.1 nonaka 248 1.1 nonaka case 7: case 8: case 9: case 10: 249 1.1 nonaka reg = _reg_read_1(EXTINTR_MASK2); 250 1.1 nonaka reg &= ~(1 << (10 - irq)); 251 1.1 nonaka _reg_write_1(EXTINTR_MASK2, reg); 252 1.1 nonaka break; 253 1.1 nonaka 254 1.1 nonaka case 11: case 12: case 13: case 14: 255 1.1 nonaka reg = _reg_read_1(EXTINTR_MASK1); 256 1.1 nonaka reg &= ~(1 << (14 - irq)); 257 1.1 nonaka _reg_write_1(EXTINTR_MASK1, reg); 258 1.1 nonaka break; 259 1.1 nonaka 260 1.1 nonaka default: 261 1.1 nonaka panic("unknown irq%d\n", irq); 262 1.1 nonaka /*NOTREACHED*/ 263 1.1 nonaka break; 264 1.1 nonaka } 265 1.1 nonaka } 266 1.1 nonaka 267 1.1 nonaka splx(s); 268 1.1 nonaka } 269 1.1 nonaka 270 1.1 nonaka static int 271 1.1 nonaka extintr_intr_handler(void *arg) 272 1.1 nonaka { 273 1.1 nonaka struct extintr_handler *eih = arg; 274 1.1 nonaka struct intrhand *ih; 275 1.1 nonaka int r; 276 1.1 nonaka 277 1.1 nonaka if (__predict_true(eih != NULL)) { 278 1.1 nonaka for (ih = eih->eih_ih; ih != NULL; ih = ih->ih_next) { 279 1.1 nonaka if (__predict_true(ih->ih_enable)) { 280 1.1 nonaka r = (*ih->ih_fun)(ih->ih_arg); 281 1.1 nonaka if (__predict_true(r != 0)) { 282 1.1 nonaka ih->ih_evcnt.ev_count++; 283 1.1 nonaka } 284 1.1 nonaka } 285 1.1 nonaka } 286 1.1 nonaka return 1; 287 1.1 nonaka } 288 1.1 nonaka return 0; 289 1.1 nonaka } 290