mt.c revision 1.10 1 /* $NetBSD: mt.c,v 1.10 1998/01/12 18:31:03 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1992, The University of Utah and
41 * the Computer Systems Laboratory at the University of Utah (CSL).
42 * All rights reserved.
43 *
44 * Permission to use, copy, modify and distribute this software is hereby
45 * granted provided that (1) source code retains these copyright, permission,
46 * and disclaimer notices, and (2) redistributions including binaries
47 * reproduce the notices in supporting documentation, and (3) all advertising
48 * materials mentioning features or use of this software display the following
49 * acknowledgement: ``This product includes software developed by the
50 * Computer Systems Laboratory at the University of Utah.''
51 *
52 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS
53 * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF
54 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * CSL requests users of this software to return to csl-dist (at) cs.utah.edu any
57 * improvements that they make and grant CSL redistribution rights.
58 *
59 * Utah $Hdr: mt.c 1.8 95/09/12$
60 */
61 /* @(#)mt.c 3.9 90/07/10 mt Xinu
62 *
63 * Magnetic tape driver (7974a, 7978a/b, 7979a, 7980a, 7980xc)
64 * Original version contributed by Mt. Xinu.
65 * Modified for 4.4BSD by Mark Davies and Andrew Vignaux, Department of
66 * Computer Science, Victoria University of Wellington
67 */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/buf.h>
72 #include <sys/ioctl.h>
73 #include <sys/mtio.h>
74 #include <sys/file.h>
75 #include <sys/proc.h>
76 #include <sys/errno.h>
77 #include <sys/syslog.h>
78 #include <sys/tty.h>
79 #include <sys/kernel.h>
80 #include <sys/tprintf.h>
81 #include <sys/device.h>
82 #include <sys/conf.h>
83
84 #include <hp300/dev/hpibvar.h>
85
86 #include <hp300/dev/mtreg.h>
87
88 struct mtinfo {
89 u_short hwid;
90 char *desc;
91 } mtinfo[] = {
92 { MT7978ID, "7978" },
93 { MT7979AID, "7979A" },
94 { MT7980ID, "7980" },
95 { MT7974AID, "7974A" },
96 };
97 int nmtinfo = sizeof(mtinfo) / sizeof(mtinfo[0]);
98
99 struct mt_softc {
100 struct device sc_dev;
101 int sc_hpibno; /* logical HPIB this slave it attached to */
102 int sc_slave; /* HPIB slave address (0-6) */
103 short sc_flags; /* see below */
104 u_char sc_lastdsj; /* place for DSJ in mtreaddsj() */
105 u_char sc_lastecmd; /* place for End Command in mtreaddsj() */
106 short sc_recvtimeo; /* count of hpibsend timeouts to prevent hang */
107 short sc_statindex; /* index for next sc_stat when MTF_STATTIMEO */
108 struct mt_stat sc_stat;/* status bytes last read from device */
109 short sc_density; /* current density of tape (mtio.h format) */
110 short sc_type; /* tape drive model (hardware IDs) */
111 struct hpibqueue sc_hq; /* HPIB device queue member */
112 tpr_t sc_ttyp;
113 struct buf sc_tab; /* buf queue */
114 struct buf sc_bufstore; /* XXX buffer storage */
115 };
116
117 #ifdef DEBUG
118 int mtdebug = 0;
119 #define dlog if (mtdebug) log
120 #else
121 #define dlog if (0) log
122 #endif
123
124 #define UNIT(x) (minor(x) & 3)
125
126 #define B_CMD B_XXX /* command buf instead of data */
127 #define b_cmd b_blkno /* blkno holds cmd when B_CMD */
128
129 int mtmatch __P((struct device *, struct cfdata *, void *));
130 void mtattach __P((struct device *, struct device *, void *));
131
132 struct cfattach mt_ca = {
133 sizeof(struct mt_softc), mtmatch, mtattach
134 };
135
136 extern struct cfdriver mt_cd;
137
138 int mtident __P((struct mt_softc *, struct hpibbus_attach_args *));
139 void mtustart __P((struct mt_softc *));
140 int mtreaddsj __P((struct mt_softc *, int));
141 int mtcommand __P((dev_t, int, int));
142 void spl_mtintr __P((void *));
143 void spl_mtstart __P((void *));
144
145 void mtstart __P((void *));
146 void mtgo __P((void *));
147 void mtintr __P((void *));
148
149 bdev_decl(mt);
150 cdev_decl(mt);
151
152 int
153 mtmatch(parent, match, aux)
154 struct device *parent;
155 struct cfdata *match;
156 void *aux;
157 {
158 struct hpibbus_attach_args *ha = aux;
159
160 return (mtident(NULL, ha));
161 }
162
163 void
164 mtattach(parent, self, aux)
165 struct device *parent, *self;
166 void *aux;
167 {
168 struct mt_softc *sc = (struct mt_softc *)self;
169 struct hpibbus_attach_args *ha = aux;
170 int unit, hpibno, slave;
171
172 if (mtident(sc, ha) == 0) {
173 printf("\n%s: impossible!\n", sc->sc_dev.dv_xname);
174 return;
175 }
176
177 unit = self->dv_unit;
178 hpibno = parent->dv_unit;
179 slave = ha->ha_slave;
180
181 sc->sc_tab.b_actb = &sc->sc_tab.b_actf;
182
183 sc->sc_hpibno = hpibno;
184 sc->sc_slave = slave;
185 sc->sc_flags = MTF_EXISTS;
186
187 /* Initialize hpib job queue entry. */
188 sc->sc_hq.hq_softc = sc;
189 sc->sc_hq.hq_slave = sc->sc_slave;
190 sc->sc_hq.hq_start = mtstart;
191 sc->sc_hq.hq_go = mtgo;
192 sc->sc_hq.hq_intr = mtintr;
193 }
194
195 int
196 mtident(sc, ha)
197 struct mt_softc *sc;
198 struct hpibbus_attach_args *ha;
199 {
200 int i;
201
202 for (i = 0; i < nmtinfo; i++) {
203 if (ha->ha_id == mtinfo[i].hwid) {
204 if (sc != NULL) {
205 sc->sc_type = mtinfo[i].hwid;
206 printf(": %s tape\n", mtinfo[i].desc);
207 }
208 return (1);
209 }
210 }
211 return (0);
212 }
213
214 /*
215 * Perform a read of "Device Status Jump" register and update the
216 * status if necessary. If status is read, the given "ecmd" is also
217 * performed, unless "ecmd" is zero. Returns DSJ value, -1 on failure
218 * and -2 on "temporary" failure.
219 */
220 int
221 mtreaddsj(sc, ecmd)
222 struct mt_softc *sc;
223 int ecmd;
224 {
225 int retval;
226
227 if (sc->sc_flags & MTF_STATTIMEO)
228 goto getstats;
229 retval = hpibrecv(sc->sc_hpibno,
230 (sc->sc_flags & MTF_DSJTIMEO) ? -1 : sc->sc_slave,
231 MTT_DSJ, &(sc->sc_lastdsj), 1);
232 sc->sc_flags &= ~MTF_DSJTIMEO;
233 if (retval != 1) {
234 dlog(LOG_DEBUG, "%s can't hpibrecv DSJ",
235 sc->sc_dev.dv_xname);
236 if (sc->sc_recvtimeo == 0)
237 sc->sc_recvtimeo = hz;
238 if (--sc->sc_recvtimeo == 0)
239 return (-1);
240 if (retval == 0)
241 sc->sc_flags |= MTF_DSJTIMEO;
242 return (-2);
243 }
244 sc->sc_recvtimeo = 0;
245 sc->sc_statindex = 0;
246 dlog(LOG_DEBUG, "%s readdsj: 0x%x", sc->sc_dev.dv_xname,
247 sc->sc_lastdsj);
248 sc->sc_lastecmd = ecmd;
249 switch (sc->sc_lastdsj) {
250 case 0:
251 if (ecmd & MTE_DSJ_FORCE)
252 break;
253 return (0);
254
255 case 2:
256 sc->sc_lastecmd = MTE_COMPLETE;
257 case 1:
258 break;
259
260 default:
261 log(LOG_ERR, "%s readdsj: DSJ 0x%x\n", sc->sc_dev.dv_xname,
262 sc->sc_lastdsj);
263 return (-1);
264 }
265 getstats:
266 retval = hpibrecv(sc->sc_hpibno,
267 (sc->sc_flags & MTF_STATCONT) ? -1 : sc->sc_slave,
268 MTT_STAT, ((char *)&(sc->sc_stat)) + sc->sc_statindex,
269 sizeof(sc->sc_stat) - sc->sc_statindex);
270 sc->sc_flags &= ~(MTF_STATTIMEO | MTF_STATCONT);
271 if (retval != sizeof(sc->sc_stat) - sc->sc_statindex) {
272 if (sc->sc_recvtimeo == 0)
273 sc->sc_recvtimeo = hz;
274 if (--sc->sc_recvtimeo != 0) {
275 if (retval >= 0) {
276 sc->sc_statindex += retval;
277 sc->sc_flags |= MTF_STATCONT;
278 }
279 sc->sc_flags |= MTF_STATTIMEO;
280 return (-2);
281 }
282 log(LOG_ERR, "%s readdsj: can't read status",
283 sc->sc_dev.dv_xname);
284 return (-1);
285 }
286 sc->sc_recvtimeo = 0;
287 sc->sc_statindex = 0;
288 dlog(LOG_DEBUG, "%s readdsj: status is %x %x %x %x %x %x",
289 sc->sc_dev.dv_xname,
290 sc->sc_stat1, sc->sc_stat2, sc->sc_stat3,
291 sc->sc_stat4, sc->sc_stat5, sc->sc_stat6);
292 if (sc->sc_lastecmd)
293 (void) hpibsend(sc->sc_hpibno, sc->sc_slave,
294 MTL_ECMD, &(sc->sc_lastecmd), 1);
295 return ((int) sc->sc_lastdsj);
296 }
297
298 int
299 mtopen(dev, flag, mode, p)
300 dev_t dev;
301 int flag, mode;
302 struct proc *p;
303 {
304 int unit = UNIT(dev);
305 struct mt_softc *sc;
306 int req_den;
307 int error;
308
309 if (unit >= mt_cd.cd_ndevs ||
310 (sc = mt_cd.cd_devs[unit]) == NULL ||
311 (sc->sc_flags & MTF_EXISTS) == 0)
312 return (ENXIO);
313
314 dlog(LOG_DEBUG, "%s open: flags 0x%x", sc->sc_dev.dv_xname,
315 sc->sc_flags);
316 if (sc->sc_flags & MTF_OPEN)
317 return (EBUSY);
318 sc->sc_flags |= MTF_OPEN;
319 sc->sc_ttyp = tprintf_open(p);
320 if ((sc->sc_flags & MTF_ALIVE) == 0) {
321 error = mtcommand(dev, MTRESET, 0);
322 if (error != 0 || (sc->sc_flags & MTF_ALIVE) == 0)
323 goto errout;
324 if ((sc->sc_stat1 & (SR1_BOT | SR1_ONLINE)) == SR1_ONLINE)
325 (void) mtcommand(dev, MTREW, 0);
326 }
327 for (;;) {
328 if ((error = mtcommand(dev, MTNOP, 0)) != 0)
329 goto errout;
330 if (!(sc->sc_flags & MTF_REW))
331 break;
332 if (tsleep((caddr_t) &lbolt, PCATCH | (PZERO + 1),
333 "mt", 0) != 0) {
334 error = EINTR;
335 goto errout;
336 }
337 }
338 if ((flag & FWRITE) && (sc->sc_stat1 & SR1_RO)) {
339 error = EROFS;
340 goto errout;
341 }
342 if (!(sc->sc_stat1 & SR1_ONLINE)) {
343 uprintf("%s: not online\n", sc->sc_dev.dv_xname);
344 error = EIO;
345 goto errout;
346 }
347 /*
348 * Select density:
349 * - find out what density the drive is set to
350 * (i.e. the density of the current tape)
351 * - if we are going to write
352 * - if we're not at the beginning of the tape
353 * - complain if we want to change densities
354 * - otherwise, select the mtcommand to set the density
355 *
356 * If the drive doesn't support it then don't change the recorded
357 * density.
358 *
359 * The original MOREbsd code had these additional conditions
360 * for the mid-tape change
361 *
362 * req_den != T_BADBPI &&
363 * sc->sc_density != T_6250BPI
364 *
365 * which suggests that it would be possible to write multiple
366 * densities if req_den == T_BAD_BPI or the current tape
367 * density was 6250. Testing of our 7980 suggests that the
368 * device cannot change densities mid-tape.
369 *
370 * ajv (at) comp.vuw.ac.nz
371 */
372 sc->sc_density = (sc->sc_stat2 & SR2_6250) ? T_6250BPI : (
373 (sc->sc_stat3 & SR3_1600) ? T_1600BPI : (
374 (sc->sc_stat3 & SR3_800) ? T_800BPI : -1));
375 req_den = (dev & T_DENSEL);
376
377 if (flag & FWRITE) {
378 if (!(sc->sc_stat1 & SR1_BOT)) {
379 if (sc->sc_density != req_den) {
380 uprintf("%s: can't change density mid-tape\n",
381 sc->sc_dev.dv_xname);
382 error = EIO;
383 goto errout;
384 }
385 }
386 else {
387 int mtset_density =
388 (req_den == T_800BPI ? MTSET800BPI : (
389 req_den == T_1600BPI ? MTSET1600BPI : (
390 req_den == T_6250BPI ? MTSET6250BPI : (
391 sc->sc_type == MT7980ID
392 ? MTSET6250DC
393 : MTSET6250BPI))));
394 if (mtcommand(dev, mtset_density, 0) == 0)
395 sc->sc_density = req_den;
396 }
397 }
398 return (0);
399 errout:
400 sc->sc_flags &= ~MTF_OPEN;
401 return (error);
402 }
403
404 int
405 mtclose(dev, flag, fmt, p)
406 dev_t dev;
407 int flag, fmt;
408 struct proc *p;
409 {
410 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
411
412 if (sc->sc_flags & MTF_WRT) {
413 (void) mtcommand(dev, MTWEOF, 2);
414 (void) mtcommand(dev, MTBSF, 0);
415 }
416 if ((minor(dev) & T_NOREWIND) == 0)
417 (void) mtcommand(dev, MTREW, 0);
418 sc->sc_flags &= ~MTF_OPEN;
419 tprintf_close(sc->sc_ttyp);
420 return (0);
421 }
422
423 int
424 mtcommand(dev, cmd, cnt)
425 dev_t dev;
426 int cmd;
427 int cnt;
428 {
429 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
430 struct buf *bp = &sc->sc_bufstore;
431 int error = 0;
432
433 #if 1
434 if (bp->b_flags & B_BUSY)
435 return (EBUSY);
436 #endif
437 bp->b_cmd = cmd;
438 bp->b_dev = dev;
439 do {
440 bp->b_flags = B_BUSY | B_CMD;
441 mtstrategy(bp);
442 iowait(bp);
443 if (bp->b_flags & B_ERROR) {
444 error = (int) (unsigned) bp->b_error;
445 break;
446 }
447 } while (--cnt > 0);
448 #if 0
449 bp->b_flags = 0 /*&= ~B_BUSY*/;
450 #else
451 bp->b_flags &= ~B_BUSY;
452 #endif
453 return (error);
454 }
455
456 /*
457 * Only thing to check here is for legal record lengths (writes only).
458 */
459 void
460 mtstrategy(bp)
461 struct buf *bp;
462 {
463 struct mt_softc *sc;
464 struct buf *dp;
465 int unit;
466 int s;
467
468 unit = UNIT(bp->b_dev);
469 sc = mt_cd.cd_devs[unit];
470 dlog(LOG_DEBUG, "%s strategy", sc->sc_dev.dv_xname);
471 if ((bp->b_flags & (B_CMD | B_READ)) == 0) {
472 #define WRITE_BITS_IGNORED 8
473 #if 0
474 if (bp->b_bcount & ((1 << WRITE_BITS_IGNORED) - 1)) {
475 tprintf(sc->sc_ttyp,
476 "%s: write record must be multiple of %d\n",
477 sc->sc_dev.dv_xname, 1 << WRITE_BITS_IGNORED);
478 goto error;
479 }
480 #endif
481 s = 16 * 1024;
482 if (sc->sc_stat2 & SR2_LONGREC) {
483 switch (sc->sc_density) {
484 case T_1600BPI:
485 s = 32 * 1024;
486 break;
487
488 case T_6250BPI:
489 case T_BADBPI:
490 s = 60 * 1024;
491 break;
492 }
493 }
494 if (bp->b_bcount > s) {
495 tprintf(sc->sc_ttyp,
496 "%s: write record (%ld) too big: limit (%d)\n",
497 sc->sc_dev.dv_xname, bp->b_bcount, s);
498 #if 0 /* XXX see above */
499 error:
500 #endif
501 bp->b_flags |= B_ERROR;
502 bp->b_error = EIO;
503 iodone(bp);
504 return;
505 }
506 }
507 dp = &sc->sc_tab;
508 bp->b_actf = NULL;
509 s = splbio();
510 bp->b_actb = dp->b_actb;
511 *dp->b_actb = bp;
512 dp->b_actb = &bp->b_actf;
513 if (dp->b_active == 0) {
514 dp->b_active = 1;
515 mtustart(sc);
516 }
517 splx(s);
518 }
519
520 void
521 mtustart(sc)
522 struct mt_softc *sc;
523 {
524
525 dlog(LOG_DEBUG, "%s ustart", sc->sc_dev.dv_xname);
526 if (hpibreq(sc->sc_dev.dv_parent, &sc->sc_hq))
527 mtstart(sc);
528 }
529
530 void
531 spl_mtintr(arg)
532 void *arg;
533 {
534 struct mt_softc *sc = arg;
535 int s = splbio();
536
537 hpibppclear(sc->sc_hpibno);
538 mtintr(sc);
539 (void) splx(s);
540 }
541
542 void
543 spl_mtstart(arg)
544 void *arg;
545 {
546 int s = splbio();
547
548 mtstart(arg);
549 (void) splx(s);
550 }
551
552 void
553 mtstart(arg)
554 void *arg;
555 {
556 struct mt_softc *sc = arg;
557 struct buf *bp, *dp;
558 short cmdcount = 1;
559 u_char cmdbuf[2];
560
561 dlog(LOG_DEBUG, "%s start", sc->sc_dev.dv_xname);
562 sc->sc_flags &= ~MTF_WRT;
563 bp = sc->sc_tab.b_actf;
564 if ((sc->sc_flags & MTF_ALIVE) == 0 &&
565 ((bp->b_flags & B_CMD) == 0 || bp->b_cmd != MTRESET))
566 goto fatalerror;
567
568 if (sc->sc_flags & MTF_REW) {
569 if (!hpibpptest(sc->sc_hpibno, sc->sc_slave))
570 goto stillrew;
571 switch (mtreaddsj(sc, MTE_DSJ_FORCE|MTE_COMPLETE|MTE_IDLE)) {
572 case 0:
573 case 1:
574 stillrew:
575 if ((sc->sc_stat1 & SR1_BOT) ||
576 !(sc->sc_stat1 & SR1_ONLINE)) {
577 sc->sc_flags &= ~MTF_REW;
578 break;
579 }
580 case -2:
581 /*
582 * -2 means "timeout" reading DSJ, which is probably
583 * temporary. This is considered OK when doing a NOP,
584 * but not otherwise.
585 */
586 if (sc->sc_flags & (MTF_DSJTIMEO | MTF_STATTIMEO)) {
587 timeout(spl_mtstart, sc, hz >> 5);
588 return;
589 }
590 case 2:
591 if (bp->b_cmd != MTNOP || !(bp->b_flags & B_CMD)) {
592 bp->b_error = EBUSY;
593 goto errdone;
594 }
595 goto done;
596
597 default:
598 goto fatalerror;
599 }
600 }
601 if (bp->b_flags & B_CMD) {
602 if (sc->sc_flags & MTF_PASTEOT) {
603 switch(bp->b_cmd) {
604 case MTFSF:
605 case MTWEOF:
606 case MTFSR:
607 bp->b_error = ENOSPC;
608 goto errdone;
609
610 case MTBSF:
611 case MTOFFL:
612 case MTBSR:
613 case MTREW:
614 sc->sc_flags &= ~(MTF_PASTEOT | MTF_ATEOT);
615 break;
616 }
617 }
618 switch(bp->b_cmd) {
619 case MTFSF:
620 if (sc->sc_flags & MTF_HITEOF)
621 goto done;
622 cmdbuf[0] = MTTC_FSF;
623 break;
624
625 case MTBSF:
626 if (sc->sc_flags & MTF_HITBOF)
627 goto done;
628 cmdbuf[0] = MTTC_BSF;
629 break;
630
631 case MTOFFL:
632 sc->sc_flags |= MTF_REW;
633 cmdbuf[0] = MTTC_REWOFF;
634 break;
635
636 case MTWEOF:
637 cmdbuf[0] = MTTC_WFM;
638 break;
639
640 case MTBSR:
641 cmdbuf[0] = MTTC_BSR;
642 break;
643
644 case MTFSR:
645 cmdbuf[0] = MTTC_FSR;
646 break;
647
648 case MTREW:
649 sc->sc_flags |= MTF_REW;
650 cmdbuf[0] = MTTC_REW;
651 break;
652
653 case MTNOP:
654 /*
655 * NOP is supposed to set status bits.
656 * Force readdsj to do it.
657 */
658 switch (mtreaddsj(sc,
659 MTE_DSJ_FORCE | MTE_COMPLETE | MTE_IDLE)) {
660 default:
661 goto done;
662
663 case -1:
664 /*
665 * If this fails, perform a device clear
666 * to fix any protocol problems and (most
667 * likely) get the status.
668 */
669 bp->b_cmd = MTRESET;
670 break;
671
672 case -2:
673 timeout(spl_mtstart, sc, hz >> 5);
674 return;
675 }
676
677 case MTRESET:
678 /*
679 * 1) selected device clear (send with "-2" secondary)
680 * 2) set timeout, then wait for "service request"
681 * 3) interrupt will read DSJ (and END COMPLETE-IDLE)
682 */
683 if (hpibsend(sc->sc_hpibno, sc->sc_slave, -2, NULL, 0)){
684 log(LOG_ERR, "%s can't reset",
685 sc->sc_dev.dv_xname);
686 goto fatalerror;
687 }
688 timeout(spl_mtintr, sc, 4 * hz);
689 hpibawait(sc->sc_hpibno);
690 return;
691
692 case MTSET800BPI:
693 cmdbuf[0] = MTTC_800;
694 break;
695
696 case MTSET1600BPI:
697 cmdbuf[0] = MTTC_1600;
698 break;
699
700 case MTSET6250BPI:
701 cmdbuf[0] = MTTC_6250;
702 break;
703
704 case MTSET6250DC:
705 cmdbuf[0] = MTTC_DC6250;
706 break;
707 }
708 } else {
709 if (sc->sc_flags & MTF_PASTEOT) {
710 bp->b_error = ENOSPC;
711 goto errdone;
712 }
713 if (bp->b_flags & B_READ) {
714 sc->sc_flags |= MTF_IO;
715 cmdbuf[0] = MTTC_READ;
716 } else {
717 sc->sc_flags |= MTF_WRT | MTF_IO;
718 cmdbuf[0] = MTTC_WRITE;
719 cmdbuf[1] = (bp->b_bcount + ((1 << WRITE_BITS_IGNORED) - 1)) >> WRITE_BITS_IGNORED;
720 cmdcount = 2;
721 }
722 }
723 if (hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_TCMD, cmdbuf, cmdcount)
724 == cmdcount) {
725 if (sc->sc_flags & MTF_REW)
726 goto done;
727 hpibawait(sc->sc_hpibno);
728 return;
729 }
730 fatalerror:
731 /*
732 * If anything fails, the drive is probably hosed, so mark it not
733 * "ALIVE" (but it EXISTS and is OPEN or we wouldn't be here, and
734 * if, last we heard, it was REWinding, remember that).
735 */
736 sc->sc_flags &= MTF_EXISTS | MTF_OPEN | MTF_REW;
737 bp->b_error = EIO;
738 errdone:
739 bp->b_flags |= B_ERROR;
740 done:
741 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF);
742 iodone(bp);
743 if ((dp = bp->b_actf))
744 dp->b_actb = bp->b_actb;
745 else
746 sc->sc_tab.b_actb = bp->b_actb;
747 *bp->b_actb = dp;
748 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq);
749 if ((bp = dp) == NULL)
750 sc->sc_tab.b_active = 0;
751 else
752 mtustart(sc);
753 }
754
755 /*
756 * The Utah code had a bug which meant that the driver was unable to read.
757 * "rw" was initialized to bp->b_flags & B_READ before "bp" was initialized.
758 * -- ajv (at) comp.vuw.ac.nz
759 */
760 void
761 mtgo(arg)
762 void *arg;
763 {
764 struct mt_softc *sc = arg;
765 struct buf *bp;
766 int rw;
767
768 dlog(LOG_DEBUG, "%s go", sc->sc_dev.dv_xname);
769 bp = sc->sc_tab.b_actf;
770 rw = bp->b_flags & B_READ;
771 hpibgo(sc->sc_hpibno, sc->sc_slave, rw ? MTT_READ : MTL_WRITE,
772 bp->b_un.b_addr, bp->b_bcount, rw, rw != 0);
773 }
774
775 void
776 mtintr(arg)
777 void *arg;
778 {
779 struct mt_softc *sc = arg;
780 struct buf *bp, *dp;
781 int i;
782 u_char cmdbuf[4];
783
784 bp = sc->sc_tab.b_actf;
785 if (bp == NULL) {
786 log(LOG_ERR, "%s intr: bp == NULL", sc->sc_dev.dv_xname);
787 return;
788 }
789
790 dlog(LOG_DEBUG, "%s intr", sc->sc_dev.dv_xname);
791
792 /*
793 * Some operation completed. Read status bytes and report errors.
794 * Clear EOF flags here `cause they're set once on specific conditions
795 * below when a command succeeds.
796 * A DSJ of 2 always means keep waiting. If the command was READ
797 * (and we're in data DMA phase) stop data transfer first.
798 */
799 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF);
800 if ((bp->b_flags & (B_CMD|B_READ)) == B_READ &&
801 !(sc->sc_flags & (MTF_IO | MTF_STATTIMEO | MTF_DSJTIMEO))){
802 cmdbuf[0] = MTE_STOP;
803 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD,cmdbuf,1);
804 }
805 switch (mtreaddsj(sc, 0)) {
806 case 0:
807 break;
808
809 case 1:
810 /*
811 * If we're in the middle of a READ/WRITE and have yet to
812 * start the data transfer, a DSJ of one should terminate it.
813 */
814 sc->sc_flags &= ~MTF_IO;
815 break;
816
817 case 2:
818 (void) hpibawait(sc->sc_hpibno);
819 return;
820
821 case -2:
822 /*
823 * -2 means that the drive failed to respond quickly enough
824 * to the request for DSJ. It's probably just "busy" figuring
825 * it out and will know in a little bit...
826 */
827 timeout(spl_mtintr, sc, hz >> 5);
828 return;
829
830 default:
831 log(LOG_ERR, "%s intr: can't get drive stat",
832 sc->sc_dev.dv_xname);
833 goto error;
834 }
835 if (sc->sc_stat1 & (SR1_ERR | SR1_REJECT)) {
836 i = sc->sc_stat4 & SR4_ERCLMASK;
837 log(LOG_ERR, "%s: %s error, retry %d, SR2/3 %x/%x, code %d",
838 sc->sc_dev.dv_xname, i == SR4_DEVICE ? "device" :
839 (i == SR4_PROTOCOL ? "protocol" :
840 (i == SR4_SELFTEST ? "selftest" : "unknown")),
841 sc->sc_stat4 & SR4_RETRYMASK, sc->sc_stat2,
842 sc->sc_stat3, sc->sc_stat5);
843
844 if ((bp->b_flags & B_CMD) && bp->b_cmd == MTRESET)
845 untimeout(spl_mtintr, sc);
846 if (sc->sc_stat3 & SR3_POWERUP)
847 sc->sc_flags &= MTF_OPEN | MTF_EXISTS;
848 goto error;
849 }
850 /*
851 * Report and clear any soft errors.
852 */
853 if (sc->sc_stat1 & SR1_SOFTERR) {
854 log(LOG_WARNING, "%s: soft error, retry %d\n",
855 sc->sc_dev.dv_xname, sc->sc_stat4 & SR4_RETRYMASK);
856 sc->sc_stat1 &= ~SR1_SOFTERR;
857 }
858 /*
859 * We've initiated a read or write, but haven't actually started to
860 * DMA the data yet. At this point, the drive's ready.
861 */
862 if (sc->sc_flags & MTF_IO) {
863 sc->sc_flags &= ~MTF_IO;
864 if (hpibustart(sc->sc_hpibno))
865 mtgo(sc);
866 return;
867 }
868 /*
869 * Check for End Of Tape - we're allowed to hit EOT and then write (or
870 * read) one more record. If we get here and have not already hit EOT,
871 * return ENOSPC to inform the process that it's hit it. If we get
872 * here and HAVE already hit EOT, don't allow any more operations that
873 * move the tape forward.
874 */
875 if (sc->sc_stat1 & SR1_EOT) {
876 if (sc->sc_flags & MTF_ATEOT)
877 sc->sc_flags |= MTF_PASTEOT;
878 else {
879 bp->b_flags |= B_ERROR;
880 bp->b_error = ENOSPC;
881 sc->sc_flags |= MTF_ATEOT;
882 }
883 }
884 /*
885 * If a motion command was being executed, check for Tape Marks.
886 * If we were doing data, make sure we got the right amount, and
887 * check for hitting tape marks on reads.
888 */
889 if (bp->b_flags & B_CMD) {
890 if (sc->sc_stat1 & SR1_EOF) {
891 if (bp->b_cmd == MTFSR)
892 sc->sc_flags |= MTF_HITEOF;
893 if (bp->b_cmd == MTBSR)
894 sc->sc_flags |= MTF_HITBOF;
895 }
896 if (bp->b_cmd == MTRESET) {
897 untimeout(spl_mtintr, sc);
898 sc->sc_flags |= MTF_ALIVE;
899 }
900 } else {
901 i = hpibrecv(sc->sc_hpibno, sc->sc_slave, MTT_BCNT, cmdbuf, 2);
902 if (i != 2) {
903 log(LOG_ERR, "%s intr: can't get xfer length\n",
904 sc->sc_dev.dv_xname);
905 goto error;
906 }
907 i = (int) *((u_short *) cmdbuf);
908 if (i <= bp->b_bcount) {
909 if (i == 0)
910 sc->sc_flags |= MTF_HITEOF;
911 bp->b_resid = bp->b_bcount - i;
912 dlog(LOG_DEBUG, "%s intr: bcount %ld, resid %ld",
913 sc->sc_dev.dv_xname, bp->b_bcount, bp->b_resid);
914 } else {
915 tprintf(sc->sc_ttyp,
916 "%s: record (%d) larger than wanted (%ld)\n",
917 sc->sc_dev.dv_xname, i, bp->b_bcount);
918 error:
919 sc->sc_flags &= ~MTF_IO;
920 bp->b_error = EIO;
921 bp->b_flags |= B_ERROR;
922 }
923 }
924 /*
925 * The operation is completely done.
926 * Let the drive know with an END command.
927 */
928 cmdbuf[0] = MTE_COMPLETE | MTE_IDLE;
929 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD, cmdbuf, 1);
930 bp->b_flags &= ~B_CMD;
931 iodone(bp);
932 if ((dp = bp->b_actf))
933 dp->b_actb = bp->b_actb;
934 else
935 sc->sc_tab.b_actb = bp->b_actb;
936 *bp->b_actb = dp;
937 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq);
938 #if 0
939 if (bp /*sc->sc_tab.b_actf*/ == NULL)
940 #else
941 if (sc->sc_tab.b_actf == NULL)
942 #endif
943 sc->sc_tab.b_active = 0;
944 else
945 mtustart(sc);
946 }
947
948 int
949 mtread(dev, uio, flags)
950 dev_t dev;
951 struct uio *uio;
952 int flags;
953 {
954 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
955
956 return(physio(mtstrategy, &sc->sc_bufstore,
957 dev, B_READ, minphys, uio));
958 }
959
960 int
961 mtwrite(dev, uio, flags)
962 dev_t dev;
963 struct uio *uio;
964 int flags;
965 {
966 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
967
968 return(physio(mtstrategy, &sc->sc_bufstore,
969 dev, B_WRITE, minphys, uio));
970 }
971
972 int
973 mtioctl(dev, cmd, data, flag, p)
974 dev_t dev;
975 u_long cmd;
976 caddr_t data;
977 int flag;
978 struct proc *p;
979 {
980 struct mtop *op;
981 int cnt;
982
983 switch (cmd) {
984 case MTIOCTOP:
985 op = (struct mtop *)data;
986 switch(op->mt_op) {
987 case MTWEOF:
988 case MTFSF:
989 case MTBSR:
990 case MTBSF:
991 case MTFSR:
992 cnt = op->mt_count;
993 break;
994
995 case MTOFFL:
996 case MTREW:
997 case MTNOP:
998 cnt = 0;
999 break;
1000
1001 default:
1002 return (EINVAL);
1003 }
1004 return (mtcommand(dev, op->mt_op, cnt));
1005
1006 case MTIOCGET:
1007 break;
1008
1009 default:
1010 return (EINVAL);
1011 }
1012 return (0);
1013 }
1014
1015 /*ARGSUSED*/
1016 int
1017 mtdump(dev, blkno, va, size)
1018 dev_t dev;
1019 daddr_t blkno;
1020 caddr_t va;
1021 size_t size;
1022 {
1023 return (ENODEV);
1024 }
1025