mt.c revision 1.14 1 /* $NetBSD: mt.c,v 1.14 2000/05/19 18:54:31 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1992, The University of Utah and
41 * the Computer Systems Laboratory at the University of Utah (CSL).
42 * All rights reserved.
43 *
44 * Permission to use, copy, modify and distribute this software is hereby
45 * granted provided that (1) source code retains these copyright, permission,
46 * and disclaimer notices, and (2) redistributions including binaries
47 * reproduce the notices in supporting documentation, and (3) all advertising
48 * materials mentioning features or use of this software display the following
49 * acknowledgement: ``This product includes software developed by the
50 * Computer Systems Laboratory at the University of Utah.''
51 *
52 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS
53 * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF
54 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * CSL requests users of this software to return to csl-dist (at) cs.utah.edu any
57 * improvements that they make and grant CSL redistribution rights.
58 *
59 * Utah $Hdr: mt.c 1.8 95/09/12$
60 */
61 /* @(#)mt.c 3.9 90/07/10 mt Xinu
62 *
63 * Magnetic tape driver (7974a, 7978a/b, 7979a, 7980a, 7980xc)
64 * Original version contributed by Mt. Xinu.
65 * Modified for 4.4BSD by Mark Davies and Andrew Vignaux, Department of
66 * Computer Science, Victoria University of Wellington
67 */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/callout.h>
72 #include <sys/buf.h>
73 #include <sys/ioctl.h>
74 #include <sys/mtio.h>
75 #include <sys/file.h>
76 #include <sys/proc.h>
77 #include <sys/errno.h>
78 #include <sys/syslog.h>
79 #include <sys/tty.h>
80 #include <sys/kernel.h>
81 #include <sys/tprintf.h>
82 #include <sys/device.h>
83 #include <sys/conf.h>
84
85 #include <hp300/dev/hpibvar.h>
86
87 #include <hp300/dev/mtreg.h>
88
89 struct mtinfo {
90 u_short hwid;
91 char *desc;
92 } mtinfo[] = {
93 { MT7978ID, "7978" },
94 { MT7979AID, "7979A" },
95 { MT7980ID, "7980" },
96 { MT7974AID, "7974A" },
97 };
98 int nmtinfo = sizeof(mtinfo) / sizeof(mtinfo[0]);
99
100 struct mt_softc {
101 struct device sc_dev;
102 struct callout sc_start_ch;
103 struct callout sc_intr_ch;
104 int sc_hpibno; /* logical HPIB this slave it attached to */
105 int sc_slave; /* HPIB slave address (0-6) */
106 short sc_flags; /* see below */
107 u_char sc_lastdsj; /* place for DSJ in mtreaddsj() */
108 u_char sc_lastecmd; /* place for End Command in mtreaddsj() */
109 short sc_recvtimeo; /* count of hpibsend timeouts to prevent hang */
110 short sc_statindex; /* index for next sc_stat when MTF_STATTIMEO */
111 struct mt_stat sc_stat;/* status bytes last read from device */
112 short sc_density; /* current density of tape (mtio.h format) */
113 short sc_type; /* tape drive model (hardware IDs) */
114 struct hpibqueue sc_hq; /* HPIB device queue member */
115 tpr_t sc_ttyp;
116 struct buf_queue sc_tab;/* buf queue */
117 int sc_active;
118 struct buf sc_bufstore; /* XXX buffer storage */
119 };
120
121 #ifdef DEBUG
122 int mtdebug = 0;
123 #define dlog if (mtdebug) log
124 #else
125 #define dlog if (0) log
126 #endif
127
128 #define UNIT(x) (minor(x) & 3)
129
130 #define B_CMD B_XXX /* command buf instead of data */
131 #define b_cmd b_blkno /* blkno holds cmd when B_CMD */
132
133 int mtmatch __P((struct device *, struct cfdata *, void *));
134 void mtattach __P((struct device *, struct device *, void *));
135
136 struct cfattach mt_ca = {
137 sizeof(struct mt_softc), mtmatch, mtattach
138 };
139
140 extern struct cfdriver mt_cd;
141
142 int mtident __P((struct mt_softc *, struct hpibbus_attach_args *));
143 void mtustart __P((struct mt_softc *));
144 int mtreaddsj __P((struct mt_softc *, int));
145 int mtcommand __P((dev_t, int, int));
146 void spl_mtintr __P((void *));
147 void spl_mtstart __P((void *));
148
149 void mtstart __P((void *));
150 void mtgo __P((void *));
151 void mtintr __P((void *));
152
153 bdev_decl(mt);
154 cdev_decl(mt);
155
156 int
157 mtmatch(parent, match, aux)
158 struct device *parent;
159 struct cfdata *match;
160 void *aux;
161 {
162 struct hpibbus_attach_args *ha = aux;
163
164 return (mtident(NULL, ha));
165 }
166
167 void
168 mtattach(parent, self, aux)
169 struct device *parent, *self;
170 void *aux;
171 {
172 struct mt_softc *sc = (struct mt_softc *)self;
173 struct hpibbus_attach_args *ha = aux;
174 int unit, hpibno, slave;
175
176 if (mtident(sc, ha) == 0) {
177 printf("\n%s: impossible!\n", sc->sc_dev.dv_xname);
178 return;
179 }
180
181 unit = self->dv_unit;
182 hpibno = parent->dv_unit;
183 slave = ha->ha_slave;
184
185 BUFQ_INIT(&sc->sc_tab);
186 callout_init(&sc->sc_start_ch);
187 callout_init(&sc->sc_intr_ch);
188
189 sc->sc_hpibno = hpibno;
190 sc->sc_slave = slave;
191 sc->sc_flags = MTF_EXISTS;
192
193 /* Initialize hpib job queue entry. */
194 sc->sc_hq.hq_softc = sc;
195 sc->sc_hq.hq_slave = sc->sc_slave;
196 sc->sc_hq.hq_start = mtstart;
197 sc->sc_hq.hq_go = mtgo;
198 sc->sc_hq.hq_intr = mtintr;
199 }
200
201 int
202 mtident(sc, ha)
203 struct mt_softc *sc;
204 struct hpibbus_attach_args *ha;
205 {
206 int i;
207
208 for (i = 0; i < nmtinfo; i++) {
209 if (ha->ha_id == mtinfo[i].hwid) {
210 if (sc != NULL) {
211 sc->sc_type = mtinfo[i].hwid;
212 printf(": %s tape\n", mtinfo[i].desc);
213 }
214 return (1);
215 }
216 }
217 return (0);
218 }
219
220 /*
221 * Perform a read of "Device Status Jump" register and update the
222 * status if necessary. If status is read, the given "ecmd" is also
223 * performed, unless "ecmd" is zero. Returns DSJ value, -1 on failure
224 * and -2 on "temporary" failure.
225 */
226 int
227 mtreaddsj(sc, ecmd)
228 struct mt_softc *sc;
229 int ecmd;
230 {
231 int retval;
232
233 if (sc->sc_flags & MTF_STATTIMEO)
234 goto getstats;
235 retval = hpibrecv(sc->sc_hpibno,
236 (sc->sc_flags & MTF_DSJTIMEO) ? -1 : sc->sc_slave,
237 MTT_DSJ, &(sc->sc_lastdsj), 1);
238 sc->sc_flags &= ~MTF_DSJTIMEO;
239 if (retval != 1) {
240 dlog(LOG_DEBUG, "%s can't hpibrecv DSJ",
241 sc->sc_dev.dv_xname);
242 if (sc->sc_recvtimeo == 0)
243 sc->sc_recvtimeo = hz;
244 if (--sc->sc_recvtimeo == 0)
245 return (-1);
246 if (retval == 0)
247 sc->sc_flags |= MTF_DSJTIMEO;
248 return (-2);
249 }
250 sc->sc_recvtimeo = 0;
251 sc->sc_statindex = 0;
252 dlog(LOG_DEBUG, "%s readdsj: 0x%x", sc->sc_dev.dv_xname,
253 sc->sc_lastdsj);
254 sc->sc_lastecmd = ecmd;
255 switch (sc->sc_lastdsj) {
256 case 0:
257 if (ecmd & MTE_DSJ_FORCE)
258 break;
259 return (0);
260
261 case 2:
262 sc->sc_lastecmd = MTE_COMPLETE;
263 case 1:
264 break;
265
266 default:
267 log(LOG_ERR, "%s readdsj: DSJ 0x%x\n", sc->sc_dev.dv_xname,
268 sc->sc_lastdsj);
269 return (-1);
270 }
271 getstats:
272 retval = hpibrecv(sc->sc_hpibno,
273 (sc->sc_flags & MTF_STATCONT) ? -1 : sc->sc_slave,
274 MTT_STAT, ((char *)&(sc->sc_stat)) + sc->sc_statindex,
275 sizeof(sc->sc_stat) - sc->sc_statindex);
276 sc->sc_flags &= ~(MTF_STATTIMEO | MTF_STATCONT);
277 if (retval != sizeof(sc->sc_stat) - sc->sc_statindex) {
278 if (sc->sc_recvtimeo == 0)
279 sc->sc_recvtimeo = hz;
280 if (--sc->sc_recvtimeo != 0) {
281 if (retval >= 0) {
282 sc->sc_statindex += retval;
283 sc->sc_flags |= MTF_STATCONT;
284 }
285 sc->sc_flags |= MTF_STATTIMEO;
286 return (-2);
287 }
288 log(LOG_ERR, "%s readdsj: can't read status",
289 sc->sc_dev.dv_xname);
290 return (-1);
291 }
292 sc->sc_recvtimeo = 0;
293 sc->sc_statindex = 0;
294 dlog(LOG_DEBUG, "%s readdsj: status is %x %x %x %x %x %x",
295 sc->sc_dev.dv_xname,
296 sc->sc_stat1, sc->sc_stat2, sc->sc_stat3,
297 sc->sc_stat4, sc->sc_stat5, sc->sc_stat6);
298 if (sc->sc_lastecmd)
299 (void) hpibsend(sc->sc_hpibno, sc->sc_slave,
300 MTL_ECMD, &(sc->sc_lastecmd), 1);
301 return ((int) sc->sc_lastdsj);
302 }
303
304 int
305 mtopen(dev, flag, mode, p)
306 dev_t dev;
307 int flag, mode;
308 struct proc *p;
309 {
310 int unit = UNIT(dev);
311 struct mt_softc *sc;
312 int req_den;
313 int error;
314
315 if (unit >= mt_cd.cd_ndevs ||
316 (sc = mt_cd.cd_devs[unit]) == NULL ||
317 (sc->sc_flags & MTF_EXISTS) == 0)
318 return (ENXIO);
319
320 dlog(LOG_DEBUG, "%s open: flags 0x%x", sc->sc_dev.dv_xname,
321 sc->sc_flags);
322 if (sc->sc_flags & MTF_OPEN)
323 return (EBUSY);
324 sc->sc_flags |= MTF_OPEN;
325 sc->sc_ttyp = tprintf_open(p);
326 if ((sc->sc_flags & MTF_ALIVE) == 0) {
327 error = mtcommand(dev, MTRESET, 0);
328 if (error != 0 || (sc->sc_flags & MTF_ALIVE) == 0)
329 goto errout;
330 if ((sc->sc_stat1 & (SR1_BOT | SR1_ONLINE)) == SR1_ONLINE)
331 (void) mtcommand(dev, MTREW, 0);
332 }
333 for (;;) {
334 if ((error = mtcommand(dev, MTNOP, 0)) != 0)
335 goto errout;
336 if (!(sc->sc_flags & MTF_REW))
337 break;
338 if (tsleep((caddr_t) &lbolt, PCATCH | (PZERO + 1),
339 "mt", 0) != 0) {
340 error = EINTR;
341 goto errout;
342 }
343 }
344 if ((flag & FWRITE) && (sc->sc_stat1 & SR1_RO)) {
345 error = EROFS;
346 goto errout;
347 }
348 if (!(sc->sc_stat1 & SR1_ONLINE)) {
349 uprintf("%s: not online\n", sc->sc_dev.dv_xname);
350 error = EIO;
351 goto errout;
352 }
353 /*
354 * Select density:
355 * - find out what density the drive is set to
356 * (i.e. the density of the current tape)
357 * - if we are going to write
358 * - if we're not at the beginning of the tape
359 * - complain if we want to change densities
360 * - otherwise, select the mtcommand to set the density
361 *
362 * If the drive doesn't support it then don't change the recorded
363 * density.
364 *
365 * The original MOREbsd code had these additional conditions
366 * for the mid-tape change
367 *
368 * req_den != T_BADBPI &&
369 * sc->sc_density != T_6250BPI
370 *
371 * which suggests that it would be possible to write multiple
372 * densities if req_den == T_BAD_BPI or the current tape
373 * density was 6250. Testing of our 7980 suggests that the
374 * device cannot change densities mid-tape.
375 *
376 * ajv (at) comp.vuw.ac.nz
377 */
378 sc->sc_density = (sc->sc_stat2 & SR2_6250) ? T_6250BPI : (
379 (sc->sc_stat3 & SR3_1600) ? T_1600BPI : (
380 (sc->sc_stat3 & SR3_800) ? T_800BPI : -1));
381 req_den = (dev & T_DENSEL);
382
383 if (flag & FWRITE) {
384 if (!(sc->sc_stat1 & SR1_BOT)) {
385 if (sc->sc_density != req_den) {
386 uprintf("%s: can't change density mid-tape\n",
387 sc->sc_dev.dv_xname);
388 error = EIO;
389 goto errout;
390 }
391 }
392 else {
393 int mtset_density =
394 (req_den == T_800BPI ? MTSET800BPI : (
395 req_den == T_1600BPI ? MTSET1600BPI : (
396 req_den == T_6250BPI ? MTSET6250BPI : (
397 sc->sc_type == MT7980ID
398 ? MTSET6250DC
399 : MTSET6250BPI))));
400 if (mtcommand(dev, mtset_density, 0) == 0)
401 sc->sc_density = req_den;
402 }
403 }
404 return (0);
405 errout:
406 sc->sc_flags &= ~MTF_OPEN;
407 return (error);
408 }
409
410 int
411 mtclose(dev, flag, fmt, p)
412 dev_t dev;
413 int flag, fmt;
414 struct proc *p;
415 {
416 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
417
418 if (sc->sc_flags & MTF_WRT) {
419 (void) mtcommand(dev, MTWEOF, 2);
420 (void) mtcommand(dev, MTBSF, 0);
421 }
422 if ((minor(dev) & T_NOREWIND) == 0)
423 (void) mtcommand(dev, MTREW, 0);
424 sc->sc_flags &= ~MTF_OPEN;
425 tprintf_close(sc->sc_ttyp);
426 return (0);
427 }
428
429 int
430 mtcommand(dev, cmd, cnt)
431 dev_t dev;
432 int cmd;
433 int cnt;
434 {
435 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
436 struct buf *bp = &sc->sc_bufstore;
437 int error = 0;
438
439 #if 1
440 if (bp->b_flags & B_BUSY)
441 return (EBUSY);
442 #endif
443 bp->b_cmd = cmd;
444 bp->b_dev = dev;
445 do {
446 bp->b_flags = B_BUSY | B_CMD;
447 mtstrategy(bp);
448 biowait(bp);
449 if (bp->b_flags & B_ERROR) {
450 error = (int) (unsigned) bp->b_error;
451 break;
452 }
453 } while (--cnt > 0);
454 #if 0
455 bp->b_flags = 0 /*&= ~B_BUSY*/;
456 #else
457 bp->b_flags &= ~B_BUSY;
458 #endif
459 return (error);
460 }
461
462 /*
463 * Only thing to check here is for legal record lengths (writes only).
464 */
465 void
466 mtstrategy(bp)
467 struct buf *bp;
468 {
469 struct mt_softc *sc;
470 int unit;
471 int s;
472
473 unit = UNIT(bp->b_dev);
474 sc = mt_cd.cd_devs[unit];
475 dlog(LOG_DEBUG, "%s strategy", sc->sc_dev.dv_xname);
476 if ((bp->b_flags & (B_CMD | B_READ)) == 0) {
477 #define WRITE_BITS_IGNORED 8
478 #if 0
479 if (bp->b_bcount & ((1 << WRITE_BITS_IGNORED) - 1)) {
480 tprintf(sc->sc_ttyp,
481 "%s: write record must be multiple of %d\n",
482 sc->sc_dev.dv_xname, 1 << WRITE_BITS_IGNORED);
483 goto error;
484 }
485 #endif
486 s = 16 * 1024;
487 if (sc->sc_stat2 & SR2_LONGREC) {
488 switch (sc->sc_density) {
489 case T_1600BPI:
490 s = 32 * 1024;
491 break;
492
493 case T_6250BPI:
494 case T_BADBPI:
495 s = 60 * 1024;
496 break;
497 }
498 }
499 if (bp->b_bcount > s) {
500 tprintf(sc->sc_ttyp,
501 "%s: write record (%ld) too big: limit (%d)\n",
502 sc->sc_dev.dv_xname, bp->b_bcount, s);
503 #if 0 /* XXX see above */
504 error:
505 #endif
506 bp->b_flags |= B_ERROR;
507 bp->b_error = EIO;
508 biodone(bp);
509 return;
510 }
511 }
512 s = splbio();
513 BUFQ_INSERT_TAIL(&sc->sc_tab, bp);
514 if (sc->sc_active == 0) {
515 sc->sc_active = 1;
516 mtustart(sc);
517 }
518 splx(s);
519 }
520
521 void
522 mtustart(sc)
523 struct mt_softc *sc;
524 {
525
526 dlog(LOG_DEBUG, "%s ustart", sc->sc_dev.dv_xname);
527 if (hpibreq(sc->sc_dev.dv_parent, &sc->sc_hq))
528 mtstart(sc);
529 }
530
531 void
532 spl_mtintr(arg)
533 void *arg;
534 {
535 struct mt_softc *sc = arg;
536 int s = splbio();
537
538 hpibppclear(sc->sc_hpibno);
539 mtintr(sc);
540 (void) splx(s);
541 }
542
543 void
544 spl_mtstart(arg)
545 void *arg;
546 {
547 int s = splbio();
548
549 mtstart(arg);
550 (void) splx(s);
551 }
552
553 void
554 mtstart(arg)
555 void *arg;
556 {
557 struct mt_softc *sc = arg;
558 struct buf *bp;
559 short cmdcount = 1;
560 u_char cmdbuf[2];
561
562 dlog(LOG_DEBUG, "%s start", sc->sc_dev.dv_xname);
563 sc->sc_flags &= ~MTF_WRT;
564 bp = BUFQ_FIRST(&sc->sc_tab);
565 if ((sc->sc_flags & MTF_ALIVE) == 0 &&
566 ((bp->b_flags & B_CMD) == 0 || bp->b_cmd != MTRESET))
567 goto fatalerror;
568
569 if (sc->sc_flags & MTF_REW) {
570 if (!hpibpptest(sc->sc_hpibno, sc->sc_slave))
571 goto stillrew;
572 switch (mtreaddsj(sc, MTE_DSJ_FORCE|MTE_COMPLETE|MTE_IDLE)) {
573 case 0:
574 case 1:
575 stillrew:
576 if ((sc->sc_stat1 & SR1_BOT) ||
577 !(sc->sc_stat1 & SR1_ONLINE)) {
578 sc->sc_flags &= ~MTF_REW;
579 break;
580 }
581 case -2:
582 /*
583 * -2 means "timeout" reading DSJ, which is probably
584 * temporary. This is considered OK when doing a NOP,
585 * but not otherwise.
586 */
587 if (sc->sc_flags & (MTF_DSJTIMEO | MTF_STATTIMEO)) {
588 callout_reset(&sc->sc_start_ch, hz >> 5,
589 spl_mtstart, sc);
590 return;
591 }
592 case 2:
593 if (bp->b_cmd != MTNOP || !(bp->b_flags & B_CMD)) {
594 bp->b_error = EBUSY;
595 goto errdone;
596 }
597 goto done;
598
599 default:
600 goto fatalerror;
601 }
602 }
603 if (bp->b_flags & B_CMD) {
604 if (sc->sc_flags & MTF_PASTEOT) {
605 switch(bp->b_cmd) {
606 case MTFSF:
607 case MTWEOF:
608 case MTFSR:
609 bp->b_error = ENOSPC;
610 goto errdone;
611
612 case MTBSF:
613 case MTOFFL:
614 case MTBSR:
615 case MTREW:
616 sc->sc_flags &= ~(MTF_PASTEOT | MTF_ATEOT);
617 break;
618 }
619 }
620 switch(bp->b_cmd) {
621 case MTFSF:
622 if (sc->sc_flags & MTF_HITEOF)
623 goto done;
624 cmdbuf[0] = MTTC_FSF;
625 break;
626
627 case MTBSF:
628 if (sc->sc_flags & MTF_HITBOF)
629 goto done;
630 cmdbuf[0] = MTTC_BSF;
631 break;
632
633 case MTOFFL:
634 sc->sc_flags |= MTF_REW;
635 cmdbuf[0] = MTTC_REWOFF;
636 break;
637
638 case MTWEOF:
639 cmdbuf[0] = MTTC_WFM;
640 break;
641
642 case MTBSR:
643 cmdbuf[0] = MTTC_BSR;
644 break;
645
646 case MTFSR:
647 cmdbuf[0] = MTTC_FSR;
648 break;
649
650 case MTREW:
651 sc->sc_flags |= MTF_REW;
652 cmdbuf[0] = MTTC_REW;
653 break;
654
655 case MTNOP:
656 /*
657 * NOP is supposed to set status bits.
658 * Force readdsj to do it.
659 */
660 switch (mtreaddsj(sc,
661 MTE_DSJ_FORCE | MTE_COMPLETE | MTE_IDLE)) {
662 default:
663 goto done;
664
665 case -1:
666 /*
667 * If this fails, perform a device clear
668 * to fix any protocol problems and (most
669 * likely) get the status.
670 */
671 bp->b_cmd = MTRESET;
672 break;
673
674 case -2:
675 callout_reset(&sc->sc_start_ch, hz >> 5,
676 spl_mtstart, sc);
677 return;
678 }
679
680 case MTRESET:
681 /*
682 * 1) selected device clear (send with "-2" secondary)
683 * 2) set timeout, then wait for "service request"
684 * 3) interrupt will read DSJ (and END COMPLETE-IDLE)
685 */
686 if (hpibsend(sc->sc_hpibno, sc->sc_slave, -2, NULL, 0)){
687 log(LOG_ERR, "%s can't reset",
688 sc->sc_dev.dv_xname);
689 goto fatalerror;
690 }
691 callout_reset(&sc->sc_intr_ch, 4 * hz, spl_mtintr, sc);
692 hpibawait(sc->sc_hpibno);
693 return;
694
695 case MTSET800BPI:
696 cmdbuf[0] = MTTC_800;
697 break;
698
699 case MTSET1600BPI:
700 cmdbuf[0] = MTTC_1600;
701 break;
702
703 case MTSET6250BPI:
704 cmdbuf[0] = MTTC_6250;
705 break;
706
707 case MTSET6250DC:
708 cmdbuf[0] = MTTC_DC6250;
709 break;
710 }
711 } else {
712 if (sc->sc_flags & MTF_PASTEOT) {
713 bp->b_error = ENOSPC;
714 goto errdone;
715 }
716 if (bp->b_flags & B_READ) {
717 sc->sc_flags |= MTF_IO;
718 cmdbuf[0] = MTTC_READ;
719 } else {
720 sc->sc_flags |= MTF_WRT | MTF_IO;
721 cmdbuf[0] = MTTC_WRITE;
722 cmdbuf[1] = (bp->b_bcount + ((1 << WRITE_BITS_IGNORED) - 1)) >> WRITE_BITS_IGNORED;
723 cmdcount = 2;
724 }
725 }
726 if (hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_TCMD, cmdbuf, cmdcount)
727 == cmdcount) {
728 if (sc->sc_flags & MTF_REW)
729 goto done;
730 hpibawait(sc->sc_hpibno);
731 return;
732 }
733 fatalerror:
734 /*
735 * If anything fails, the drive is probably hosed, so mark it not
736 * "ALIVE" (but it EXISTS and is OPEN or we wouldn't be here, and
737 * if, last we heard, it was REWinding, remember that).
738 */
739 sc->sc_flags &= MTF_EXISTS | MTF_OPEN | MTF_REW;
740 bp->b_error = EIO;
741 errdone:
742 bp->b_flags |= B_ERROR;
743 done:
744 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF);
745 BUFQ_REMOVE(&sc->sc_tab, bp);
746 biodone(bp);
747 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq);
748 if ((bp = BUFQ_FIRST(&sc->sc_tab)) == NULL)
749 sc->sc_active = 0;
750 else
751 mtustart(sc);
752 }
753
754 /*
755 * The Utah code had a bug which meant that the driver was unable to read.
756 * "rw" was initialized to bp->b_flags & B_READ before "bp" was initialized.
757 * -- ajv (at) comp.vuw.ac.nz
758 */
759 void
760 mtgo(arg)
761 void *arg;
762 {
763 struct mt_softc *sc = arg;
764 struct buf *bp;
765 int rw;
766
767 dlog(LOG_DEBUG, "%s go", sc->sc_dev.dv_xname);
768 bp = BUFQ_FIRST(&sc->sc_tab);
769 rw = bp->b_flags & B_READ;
770 hpibgo(sc->sc_hpibno, sc->sc_slave, rw ? MTT_READ : MTL_WRITE,
771 bp->b_data, bp->b_bcount, rw, rw != 0);
772 }
773
774 void
775 mtintr(arg)
776 void *arg;
777 {
778 struct mt_softc *sc = arg;
779 struct buf *bp;
780 int i;
781 u_char cmdbuf[4];
782
783 bp = BUFQ_FIRST(&sc->sc_tab);
784 if (bp == NULL) {
785 log(LOG_ERR, "%s intr: bp == NULL", sc->sc_dev.dv_xname);
786 return;
787 }
788
789 dlog(LOG_DEBUG, "%s intr", sc->sc_dev.dv_xname);
790
791 /*
792 * Some operation completed. Read status bytes and report errors.
793 * Clear EOF flags here `cause they're set once on specific conditions
794 * below when a command succeeds.
795 * A DSJ of 2 always means keep waiting. If the command was READ
796 * (and we're in data DMA phase) stop data transfer first.
797 */
798 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF);
799 if ((bp->b_flags & (B_CMD|B_READ)) == B_READ &&
800 !(sc->sc_flags & (MTF_IO | MTF_STATTIMEO | MTF_DSJTIMEO))){
801 cmdbuf[0] = MTE_STOP;
802 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD,cmdbuf,1);
803 }
804 switch (mtreaddsj(sc, 0)) {
805 case 0:
806 break;
807
808 case 1:
809 /*
810 * If we're in the middle of a READ/WRITE and have yet to
811 * start the data transfer, a DSJ of one should terminate it.
812 */
813 sc->sc_flags &= ~MTF_IO;
814 break;
815
816 case 2:
817 (void) hpibawait(sc->sc_hpibno);
818 return;
819
820 case -2:
821 /*
822 * -2 means that the drive failed to respond quickly enough
823 * to the request for DSJ. It's probably just "busy" figuring
824 * it out and will know in a little bit...
825 */
826 callout_reset(&sc->sc_intr_ch, hz >> 5, spl_mtintr, sc);
827 return;
828
829 default:
830 log(LOG_ERR, "%s intr: can't get drive stat",
831 sc->sc_dev.dv_xname);
832 goto error;
833 }
834 if (sc->sc_stat1 & (SR1_ERR | SR1_REJECT)) {
835 i = sc->sc_stat4 & SR4_ERCLMASK;
836 log(LOG_ERR, "%s: %s error, retry %d, SR2/3 %x/%x, code %d",
837 sc->sc_dev.dv_xname, i == SR4_DEVICE ? "device" :
838 (i == SR4_PROTOCOL ? "protocol" :
839 (i == SR4_SELFTEST ? "selftest" : "unknown")),
840 sc->sc_stat4 & SR4_RETRYMASK, sc->sc_stat2,
841 sc->sc_stat3, sc->sc_stat5);
842
843 if ((bp->b_flags & B_CMD) && bp->b_cmd == MTRESET)
844 callout_stop(&sc->sc_intr_ch);
845 if (sc->sc_stat3 & SR3_POWERUP)
846 sc->sc_flags &= MTF_OPEN | MTF_EXISTS;
847 goto error;
848 }
849 /*
850 * Report and clear any soft errors.
851 */
852 if (sc->sc_stat1 & SR1_SOFTERR) {
853 log(LOG_WARNING, "%s: soft error, retry %d\n",
854 sc->sc_dev.dv_xname, sc->sc_stat4 & SR4_RETRYMASK);
855 sc->sc_stat1 &= ~SR1_SOFTERR;
856 }
857 /*
858 * We've initiated a read or write, but haven't actually started to
859 * DMA the data yet. At this point, the drive's ready.
860 */
861 if (sc->sc_flags & MTF_IO) {
862 sc->sc_flags &= ~MTF_IO;
863 if (hpibustart(sc->sc_hpibno))
864 mtgo(sc);
865 return;
866 }
867 /*
868 * Check for End Of Tape - we're allowed to hit EOT and then write (or
869 * read) one more record. If we get here and have not already hit EOT,
870 * return ENOSPC to inform the process that it's hit it. If we get
871 * here and HAVE already hit EOT, don't allow any more operations that
872 * move the tape forward.
873 */
874 if (sc->sc_stat1 & SR1_EOT) {
875 if (sc->sc_flags & MTF_ATEOT)
876 sc->sc_flags |= MTF_PASTEOT;
877 else {
878 bp->b_flags |= B_ERROR;
879 bp->b_error = ENOSPC;
880 sc->sc_flags |= MTF_ATEOT;
881 }
882 }
883 /*
884 * If a motion command was being executed, check for Tape Marks.
885 * If we were doing data, make sure we got the right amount, and
886 * check for hitting tape marks on reads.
887 */
888 if (bp->b_flags & B_CMD) {
889 if (sc->sc_stat1 & SR1_EOF) {
890 if (bp->b_cmd == MTFSR)
891 sc->sc_flags |= MTF_HITEOF;
892 if (bp->b_cmd == MTBSR)
893 sc->sc_flags |= MTF_HITBOF;
894 }
895 if (bp->b_cmd == MTRESET) {
896 callout_stop(&sc->sc_intr_ch);
897 sc->sc_flags |= MTF_ALIVE;
898 }
899 } else {
900 i = hpibrecv(sc->sc_hpibno, sc->sc_slave, MTT_BCNT, cmdbuf, 2);
901 if (i != 2) {
902 log(LOG_ERR, "%s intr: can't get xfer length\n",
903 sc->sc_dev.dv_xname);
904 goto error;
905 }
906 i = (int) *((u_short *) cmdbuf);
907 if (i <= bp->b_bcount) {
908 if (i == 0)
909 sc->sc_flags |= MTF_HITEOF;
910 bp->b_resid = bp->b_bcount - i;
911 dlog(LOG_DEBUG, "%s intr: bcount %ld, resid %ld",
912 sc->sc_dev.dv_xname, bp->b_bcount, bp->b_resid);
913 } else {
914 tprintf(sc->sc_ttyp,
915 "%s: record (%d) larger than wanted (%ld)\n",
916 sc->sc_dev.dv_xname, i, bp->b_bcount);
917 error:
918 sc->sc_flags &= ~MTF_IO;
919 bp->b_error = EIO;
920 bp->b_flags |= B_ERROR;
921 }
922 }
923 /*
924 * The operation is completely done.
925 * Let the drive know with an END command.
926 */
927 cmdbuf[0] = MTE_COMPLETE | MTE_IDLE;
928 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD, cmdbuf, 1);
929 bp->b_flags &= ~B_CMD;
930 BUFQ_REMOVE(&sc->sc_tab, bp);
931 biodone(bp);
932 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq);
933 if (BUFQ_FIRST(&sc->sc_tab) == NULL)
934 sc->sc_active = 0;
935 else
936 mtustart(sc);
937 }
938
939 int
940 mtread(dev, uio, flags)
941 dev_t dev;
942 struct uio *uio;
943 int flags;
944 {
945 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
946
947 return(physio(mtstrategy, &sc->sc_bufstore,
948 dev, B_READ, minphys, uio));
949 }
950
951 int
952 mtwrite(dev, uio, flags)
953 dev_t dev;
954 struct uio *uio;
955 int flags;
956 {
957 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
958
959 return(physio(mtstrategy, &sc->sc_bufstore,
960 dev, B_WRITE, minphys, uio));
961 }
962
963 int
964 mtioctl(dev, cmd, data, flag, p)
965 dev_t dev;
966 u_long cmd;
967 caddr_t data;
968 int flag;
969 struct proc *p;
970 {
971 struct mtop *op;
972 int cnt;
973
974 switch (cmd) {
975 case MTIOCTOP:
976 op = (struct mtop *)data;
977 switch(op->mt_op) {
978 case MTWEOF:
979 case MTFSF:
980 case MTBSR:
981 case MTBSF:
982 case MTFSR:
983 cnt = op->mt_count;
984 break;
985
986 case MTOFFL:
987 case MTREW:
988 case MTNOP:
989 cnt = 0;
990 break;
991
992 default:
993 return (EINVAL);
994 }
995 return (mtcommand(dev, op->mt_op, cnt));
996
997 case MTIOCGET:
998 break;
999
1000 default:
1001 return (EINVAL);
1002 }
1003 return (0);
1004 }
1005
1006 /*ARGSUSED*/
1007 int
1008 mtdump(dev, blkno, va, size)
1009 dev_t dev;
1010 daddr_t blkno;
1011 caddr_t va;
1012 size_t size;
1013 {
1014 return (ENODEV);
1015 }
1016