mt.c revision 1.14.6.1 1 /* $NetBSD: mt.c,v 1.14.6.1 2001/10/10 11:56:05 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1992, The University of Utah and
41 * the Computer Systems Laboratory at the University of Utah (CSL).
42 * All rights reserved.
43 *
44 * Permission to use, copy, modify and distribute this software is hereby
45 * granted provided that (1) source code retains these copyright, permission,
46 * and disclaimer notices, and (2) redistributions including binaries
47 * reproduce the notices in supporting documentation, and (3) all advertising
48 * materials mentioning features or use of this software display the following
49 * acknowledgement: ``This product includes software developed by the
50 * Computer Systems Laboratory at the University of Utah.''
51 *
52 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS
53 * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF
54 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * CSL requests users of this software to return to csl-dist (at) cs.utah.edu any
57 * improvements that they make and grant CSL redistribution rights.
58 *
59 * Utah $Hdr: mt.c 1.8 95/09/12$
60 */
61 /* @(#)mt.c 3.9 90/07/10 mt Xinu
62 *
63 * Magnetic tape driver (7974a, 7978a/b, 7979a, 7980a, 7980xc)
64 * Original version contributed by Mt. Xinu.
65 * Modified for 4.4BSD by Mark Davies and Andrew Vignaux, Department of
66 * Computer Science, Victoria University of Wellington
67 */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/callout.h>
72 #include <sys/buf.h>
73 #include <sys/ioctl.h>
74 #include <sys/mtio.h>
75 #include <sys/file.h>
76 #include <sys/proc.h>
77 #include <sys/errno.h>
78 #include <sys/syslog.h>
79 #include <sys/tty.h>
80 #include <sys/kernel.h>
81 #include <sys/tprintf.h>
82 #include <sys/device.h>
83 #include <sys/conf.h>
84 #include <sys/vnode.h>
85
86 #include <hp300/dev/hpibvar.h>
87
88 #include <hp300/dev/mtreg.h>
89
90 struct mtinfo {
91 u_short hwid;
92 char *desc;
93 } mtinfo[] = {
94 { MT7978ID, "7978" },
95 { MT7979AID, "7979A" },
96 { MT7980ID, "7980" },
97 { MT7974AID, "7974A" },
98 };
99 int nmtinfo = sizeof(mtinfo) / sizeof(mtinfo[0]);
100
101 struct mt_softc {
102 struct device sc_dev;
103 struct callout sc_start_ch;
104 struct callout sc_intr_ch;
105 int sc_hpibno; /* logical HPIB this slave it attached to */
106 int sc_slave; /* HPIB slave address (0-6) */
107 short sc_flags; /* see below */
108 u_char sc_lastdsj; /* place for DSJ in mtreaddsj() */
109 u_char sc_lastecmd; /* place for End Command in mtreaddsj() */
110 short sc_recvtimeo; /* count of hpibsend timeouts to prevent hang */
111 short sc_statindex; /* index for next sc_stat when MTF_STATTIMEO */
112 struct mt_stat sc_stat;/* status bytes last read from device */
113 short sc_density; /* current density of tape (mtio.h format) */
114 short sc_type; /* tape drive model (hardware IDs) */
115 struct hpibqueue sc_hq; /* HPIB device queue member */
116 tpr_t sc_ttyp;
117 struct buf_queue sc_tab;/* buf queue */
118 int sc_active;
119 struct buf sc_bufstore; /* XXX buffer storage */
120 };
121
122 #ifdef DEBUG
123 int mtdebug = 0;
124 #define dlog if (mtdebug) log
125 #else
126 #define dlog if (0) log
127 #endif
128
129 #define UNIT(x) (minor(x) & 3)
130
131 #define B_CMD B_XXX /* command buf instead of data */
132 #define b_cmd b_blkno /* blkno holds cmd when B_CMD */
133
134 int mtmatch __P((struct device *, struct cfdata *, void *));
135 void mtattach __P((struct device *, struct device *, void *));
136
137 struct cfattach mt_ca = {
138 sizeof(struct mt_softc), mtmatch, mtattach
139 };
140
141 extern struct cfdriver mt_cd;
142
143 int mtident __P((struct mt_softc *, struct hpibbus_attach_args *));
144 void mtustart __P((struct mt_softc *));
145 int mtreaddsj __P((struct mt_softc *, int));
146 int mtcommand __P((struct vnode *, int, int));
147 void spl_mtintr __P((void *));
148 void spl_mtstart __P((void *));
149
150 void mtstart __P((void *));
151 void mtgo __P((void *));
152 void mtintr __P((void *));
153
154 bdev_decl(mt);
155 cdev_decl(mt);
156
157 int
158 mtmatch(parent, match, aux)
159 struct device *parent;
160 struct cfdata *match;
161 void *aux;
162 {
163 struct hpibbus_attach_args *ha = aux;
164
165 return (mtident(NULL, ha));
166 }
167
168 void
169 mtattach(parent, self, aux)
170 struct device *parent, *self;
171 void *aux;
172 {
173 struct mt_softc *sc = (struct mt_softc *)self;
174 struct hpibbus_attach_args *ha = aux;
175 int unit, hpibno, slave;
176
177 if (mtident(sc, ha) == 0) {
178 printf("\n%s: impossible!\n", sc->sc_dev.dv_xname);
179 return;
180 }
181
182 unit = self->dv_unit;
183 hpibno = parent->dv_unit;
184 slave = ha->ha_slave;
185
186 BUFQ_INIT(&sc->sc_tab);
187 callout_init(&sc->sc_start_ch);
188 callout_init(&sc->sc_intr_ch);
189
190 sc->sc_hpibno = hpibno;
191 sc->sc_slave = slave;
192 sc->sc_flags = MTF_EXISTS;
193
194 /* Initialize hpib job queue entry. */
195 sc->sc_hq.hq_softc = sc;
196 sc->sc_hq.hq_slave = sc->sc_slave;
197 sc->sc_hq.hq_start = mtstart;
198 sc->sc_hq.hq_go = mtgo;
199 sc->sc_hq.hq_intr = mtintr;
200 }
201
202 int
203 mtident(sc, ha)
204 struct mt_softc *sc;
205 struct hpibbus_attach_args *ha;
206 {
207 int i;
208
209 for (i = 0; i < nmtinfo; i++) {
210 if (ha->ha_id == mtinfo[i].hwid) {
211 if (sc != NULL) {
212 sc->sc_type = mtinfo[i].hwid;
213 printf(": %s tape\n", mtinfo[i].desc);
214 }
215 return (1);
216 }
217 }
218 return (0);
219 }
220
221 /*
222 * Perform a read of "Device Status Jump" register and update the
223 * status if necessary. If status is read, the given "ecmd" is also
224 * performed, unless "ecmd" is zero. Returns DSJ value, -1 on failure
225 * and -2 on "temporary" failure.
226 */
227 int
228 mtreaddsj(sc, ecmd)
229 struct mt_softc *sc;
230 int ecmd;
231 {
232 int retval;
233
234 if (sc->sc_flags & MTF_STATTIMEO)
235 goto getstats;
236 retval = hpibrecv(sc->sc_hpibno,
237 (sc->sc_flags & MTF_DSJTIMEO) ? -1 : sc->sc_slave,
238 MTT_DSJ, &(sc->sc_lastdsj), 1);
239 sc->sc_flags &= ~MTF_DSJTIMEO;
240 if (retval != 1) {
241 dlog(LOG_DEBUG, "%s can't hpibrecv DSJ",
242 sc->sc_dev.dv_xname);
243 if (sc->sc_recvtimeo == 0)
244 sc->sc_recvtimeo = hz;
245 if (--sc->sc_recvtimeo == 0)
246 return (-1);
247 if (retval == 0)
248 sc->sc_flags |= MTF_DSJTIMEO;
249 return (-2);
250 }
251 sc->sc_recvtimeo = 0;
252 sc->sc_statindex = 0;
253 dlog(LOG_DEBUG, "%s readdsj: 0x%x", sc->sc_dev.dv_xname,
254 sc->sc_lastdsj);
255 sc->sc_lastecmd = ecmd;
256 switch (sc->sc_lastdsj) {
257 case 0:
258 if (ecmd & MTE_DSJ_FORCE)
259 break;
260 return (0);
261
262 case 2:
263 sc->sc_lastecmd = MTE_COMPLETE;
264 case 1:
265 break;
266
267 default:
268 log(LOG_ERR, "%s readdsj: DSJ 0x%x\n", sc->sc_dev.dv_xname,
269 sc->sc_lastdsj);
270 return (-1);
271 }
272 getstats:
273 retval = hpibrecv(sc->sc_hpibno,
274 (sc->sc_flags & MTF_STATCONT) ? -1 : sc->sc_slave,
275 MTT_STAT, ((char *)&(sc->sc_stat)) + sc->sc_statindex,
276 sizeof(sc->sc_stat) - sc->sc_statindex);
277 sc->sc_flags &= ~(MTF_STATTIMEO | MTF_STATCONT);
278 if (retval != sizeof(sc->sc_stat) - sc->sc_statindex) {
279 if (sc->sc_recvtimeo == 0)
280 sc->sc_recvtimeo = hz;
281 if (--sc->sc_recvtimeo != 0) {
282 if (retval >= 0) {
283 sc->sc_statindex += retval;
284 sc->sc_flags |= MTF_STATCONT;
285 }
286 sc->sc_flags |= MTF_STATTIMEO;
287 return (-2);
288 }
289 log(LOG_ERR, "%s readdsj: can't read status",
290 sc->sc_dev.dv_xname);
291 return (-1);
292 }
293 sc->sc_recvtimeo = 0;
294 sc->sc_statindex = 0;
295 dlog(LOG_DEBUG, "%s readdsj: status is %x %x %x %x %x %x",
296 sc->sc_dev.dv_xname,
297 sc->sc_stat1, sc->sc_stat2, sc->sc_stat3,
298 sc->sc_stat4, sc->sc_stat5, sc->sc_stat6);
299 if (sc->sc_lastecmd)
300 (void) hpibsend(sc->sc_hpibno, sc->sc_slave,
301 MTL_ECMD, &(sc->sc_lastecmd), 1);
302 return ((int) sc->sc_lastdsj);
303 }
304
305 int
306 mtopen(devvp, flag, mode, p)
307 struct vnode *devvp;
308 int flag, mode;
309 struct proc *p;
310 {
311 dev_t dev = vdev_rdev(devvp);
312 int unit = UNIT(dev);
313 struct mt_softc *sc;
314 int req_den;
315 int error;
316
317 if (unit >= mt_cd.cd_ndevs ||
318 (sc = mt_cd.cd_devs[unit]) == NULL ||
319 (sc->sc_flags & MTF_EXISTS) == 0)
320 return (ENXIO);
321
322 dlog(LOG_DEBUG, "%s open: flags 0x%x", sc->sc_dev.dv_xname,
323 sc->sc_flags);
324 if (sc->sc_flags & MTF_OPEN)
325 return (EBUSY);
326
327 vdev_setprivdata(devvp, sc);
328
329 sc->sc_flags |= MTF_OPEN;
330 sc->sc_ttyp = tprintf_open(p);
331 if ((sc->sc_flags & MTF_ALIVE) == 0) {
332 error = mtcommand(devvp, MTRESET, 0);
333 if (error != 0 || (sc->sc_flags & MTF_ALIVE) == 0)
334 goto errout;
335 if ((sc->sc_stat1 & (SR1_BOT | SR1_ONLINE)) == SR1_ONLINE)
336 (void) mtcommand(devvp, MTREW, 0);
337 }
338 for (;;) {
339 if ((error = mtcommand(devvp, MTNOP, 0)) != 0)
340 goto errout;
341 if (!(sc->sc_flags & MTF_REW))
342 break;
343 if (tsleep((caddr_t) &lbolt, PCATCH | (PZERO + 1),
344 "mt", 0) != 0) {
345 error = EINTR;
346 goto errout;
347 }
348 }
349 if ((flag & FWRITE) && (sc->sc_stat1 & SR1_RO)) {
350 error = EROFS;
351 goto errout;
352 }
353 if (!(sc->sc_stat1 & SR1_ONLINE)) {
354 uprintf("%s: not online\n", sc->sc_dev.dv_xname);
355 error = EIO;
356 goto errout;
357 }
358 /*
359 * Select density:
360 * - find out what density the drive is set to
361 * (i.e. the density of the current tape)
362 * - if we are going to write
363 * - if we're not at the beginning of the tape
364 * - complain if we want to change densities
365 * - otherwise, select the mtcommand to set the density
366 *
367 * If the drive doesn't support it then don't change the recorded
368 * density.
369 *
370 * The original MOREbsd code had these additional conditions
371 * for the mid-tape change
372 *
373 * req_den != T_BADBPI &&
374 * sc->sc_density != T_6250BPI
375 *
376 * which suggests that it would be possible to write multiple
377 * densities if req_den == T_BAD_BPI or the current tape
378 * density was 6250. Testing of our 7980 suggests that the
379 * device cannot change densities mid-tape.
380 *
381 * ajv (at) comp.vuw.ac.nz
382 */
383 sc->sc_density = (sc->sc_stat2 & SR2_6250) ? T_6250BPI : (
384 (sc->sc_stat3 & SR3_1600) ? T_1600BPI : (
385 (sc->sc_stat3 & SR3_800) ? T_800BPI : -1));
386 req_den = (dev & T_DENSEL);
387
388 if (flag & FWRITE) {
389 if (!(sc->sc_stat1 & SR1_BOT)) {
390 if (sc->sc_density != req_den) {
391 uprintf("%s: can't change density mid-tape\n",
392 sc->sc_dev.dv_xname);
393 error = EIO;
394 goto errout;
395 }
396 }
397 else {
398 int mtset_density =
399 (req_den == T_800BPI ? MTSET800BPI : (
400 req_den == T_1600BPI ? MTSET1600BPI : (
401 req_den == T_6250BPI ? MTSET6250BPI : (
402 sc->sc_type == MT7980ID
403 ? MTSET6250DC
404 : MTSET6250BPI))));
405 if (mtcommand(devvp, mtset_density, 0) == 0)
406 sc->sc_density = req_den;
407 }
408 }
409 return (0);
410 errout:
411 sc->sc_flags &= ~MTF_OPEN;
412 return (error);
413 }
414
415 int
416 mtclose(devvp, flag, fmt, p)
417 struct vnode *devvp;
418 int flag, fmt;
419 struct proc *p;
420 {
421 struct mt_softc *sc;
422
423 sc = vdev_privdata(devvp);
424
425 if (sc->sc_flags & MTF_WRT) {
426 (void) mtcommand(devvp, MTWEOF, 2);
427 (void) mtcommand(devvp, MTBSF, 0);
428 }
429 if ((minor(vdev_rdev(devvp)) & T_NOREWIND) == 0)
430 (void) mtcommand(devvp, MTREW, 0);
431 sc->sc_flags &= ~MTF_OPEN;
432 tprintf_close(sc->sc_ttyp);
433 return (0);
434 }
435
436 int
437 mtcommand(devvp, cmd, cnt)
438 struct vnode *devvp;
439 int cmd;
440 int cnt;
441 {
442 struct mt_softc *sc = vdev_privdata(devvp);
443 struct buf *bp = &sc->sc_bufstore;
444 int error = 0;
445
446 #if 1
447 if (bp->b_flags & B_BUSY)
448 return (EBUSY);
449 #endif
450 bp->b_cmd = cmd;
451 bp->b_devvp = devvp;
452 do {
453 bp->b_flags = B_BUSY | B_CMD;
454 mtstrategy(bp);
455 biowait(bp);
456 if (bp->b_flags & B_ERROR) {
457 error = (int) (unsigned) bp->b_error;
458 break;
459 }
460 } while (--cnt > 0);
461 #if 0
462 bp->b_flags = 0 /*&= ~B_BUSY*/;
463 #else
464 bp->b_flags &= ~B_BUSY;
465 #endif
466 return (error);
467 }
468
469 /*
470 * Only thing to check here is for legal record lengths (writes only).
471 */
472 void
473 mtstrategy(bp)
474 struct buf *bp;
475 {
476 struct mt_softc *sc;
477 int s;
478
479 sc = vdev_privdata(bp->b_devvp);
480 dlog(LOG_DEBUG, "%s strategy", sc->sc_dev.dv_xname);
481 if ((bp->b_flags & (B_CMD | B_READ)) == 0) {
482 #define WRITE_BITS_IGNORED 8
483 #if 0
484 if (bp->b_bcount & ((1 << WRITE_BITS_IGNORED) - 1)) {
485 tprintf(sc->sc_ttyp,
486 "%s: write record must be multiple of %d\n",
487 sc->sc_dev.dv_xname, 1 << WRITE_BITS_IGNORED);
488 goto error;
489 }
490 #endif
491 s = 16 * 1024;
492 if (sc->sc_stat2 & SR2_LONGREC) {
493 switch (sc->sc_density) {
494 case T_1600BPI:
495 s = 32 * 1024;
496 break;
497
498 case T_6250BPI:
499 case T_BADBPI:
500 s = 60 * 1024;
501 break;
502 }
503 }
504 if (bp->b_bcount > s) {
505 tprintf(sc->sc_ttyp,
506 "%s: write record (%ld) too big: limit (%d)\n",
507 sc->sc_dev.dv_xname, bp->b_bcount, s);
508 #if 0 /* XXX see above */
509 error:
510 #endif
511 bp->b_flags |= B_ERROR;
512 bp->b_error = EIO;
513 biodone(bp);
514 return;
515 }
516 }
517 s = splbio();
518 BUFQ_INSERT_TAIL(&sc->sc_tab, bp);
519 if (sc->sc_active == 0) {
520 sc->sc_active = 1;
521 mtustart(sc);
522 }
523 splx(s);
524 }
525
526 void
527 mtustart(sc)
528 struct mt_softc *sc;
529 {
530
531 dlog(LOG_DEBUG, "%s ustart", sc->sc_dev.dv_xname);
532 if (hpibreq(sc->sc_dev.dv_parent, &sc->sc_hq))
533 mtstart(sc);
534 }
535
536 void
537 spl_mtintr(arg)
538 void *arg;
539 {
540 struct mt_softc *sc = arg;
541 int s = splbio();
542
543 hpibppclear(sc->sc_hpibno);
544 mtintr(sc);
545 (void) splx(s);
546 }
547
548 void
549 spl_mtstart(arg)
550 void *arg;
551 {
552 int s = splbio();
553
554 mtstart(arg);
555 (void) splx(s);
556 }
557
558 void
559 mtstart(arg)
560 void *arg;
561 {
562 struct mt_softc *sc = arg;
563 struct buf *bp;
564 short cmdcount = 1;
565 u_char cmdbuf[2];
566
567 dlog(LOG_DEBUG, "%s start", sc->sc_dev.dv_xname);
568 sc->sc_flags &= ~MTF_WRT;
569 bp = BUFQ_FIRST(&sc->sc_tab);
570 if ((sc->sc_flags & MTF_ALIVE) == 0 &&
571 ((bp->b_flags & B_CMD) == 0 || bp->b_cmd != MTRESET))
572 goto fatalerror;
573
574 if (sc->sc_flags & MTF_REW) {
575 if (!hpibpptest(sc->sc_hpibno, sc->sc_slave))
576 goto stillrew;
577 switch (mtreaddsj(sc, MTE_DSJ_FORCE|MTE_COMPLETE|MTE_IDLE)) {
578 case 0:
579 case 1:
580 stillrew:
581 if ((sc->sc_stat1 & SR1_BOT) ||
582 !(sc->sc_stat1 & SR1_ONLINE)) {
583 sc->sc_flags &= ~MTF_REW;
584 break;
585 }
586 case -2:
587 /*
588 * -2 means "timeout" reading DSJ, which is probably
589 * temporary. This is considered OK when doing a NOP,
590 * but not otherwise.
591 */
592 if (sc->sc_flags & (MTF_DSJTIMEO | MTF_STATTIMEO)) {
593 callout_reset(&sc->sc_start_ch, hz >> 5,
594 spl_mtstart, sc);
595 return;
596 }
597 case 2:
598 if (bp->b_cmd != MTNOP || !(bp->b_flags & B_CMD)) {
599 bp->b_error = EBUSY;
600 goto errdone;
601 }
602 goto done;
603
604 default:
605 goto fatalerror;
606 }
607 }
608 if (bp->b_flags & B_CMD) {
609 if (sc->sc_flags & MTF_PASTEOT) {
610 switch(bp->b_cmd) {
611 case MTFSF:
612 case MTWEOF:
613 case MTFSR:
614 bp->b_error = ENOSPC;
615 goto errdone;
616
617 case MTBSF:
618 case MTOFFL:
619 case MTBSR:
620 case MTREW:
621 sc->sc_flags &= ~(MTF_PASTEOT | MTF_ATEOT);
622 break;
623 }
624 }
625 switch(bp->b_cmd) {
626 case MTFSF:
627 if (sc->sc_flags & MTF_HITEOF)
628 goto done;
629 cmdbuf[0] = MTTC_FSF;
630 break;
631
632 case MTBSF:
633 if (sc->sc_flags & MTF_HITBOF)
634 goto done;
635 cmdbuf[0] = MTTC_BSF;
636 break;
637
638 case MTOFFL:
639 sc->sc_flags |= MTF_REW;
640 cmdbuf[0] = MTTC_REWOFF;
641 break;
642
643 case MTWEOF:
644 cmdbuf[0] = MTTC_WFM;
645 break;
646
647 case MTBSR:
648 cmdbuf[0] = MTTC_BSR;
649 break;
650
651 case MTFSR:
652 cmdbuf[0] = MTTC_FSR;
653 break;
654
655 case MTREW:
656 sc->sc_flags |= MTF_REW;
657 cmdbuf[0] = MTTC_REW;
658 break;
659
660 case MTNOP:
661 /*
662 * NOP is supposed to set status bits.
663 * Force readdsj to do it.
664 */
665 switch (mtreaddsj(sc,
666 MTE_DSJ_FORCE | MTE_COMPLETE | MTE_IDLE)) {
667 default:
668 goto done;
669
670 case -1:
671 /*
672 * If this fails, perform a device clear
673 * to fix any protocol problems and (most
674 * likely) get the status.
675 */
676 bp->b_cmd = MTRESET;
677 break;
678
679 case -2:
680 callout_reset(&sc->sc_start_ch, hz >> 5,
681 spl_mtstart, sc);
682 return;
683 }
684
685 case MTRESET:
686 /*
687 * 1) selected device clear (send with "-2" secondary)
688 * 2) set timeout, then wait for "service request"
689 * 3) interrupt will read DSJ (and END COMPLETE-IDLE)
690 */
691 if (hpibsend(sc->sc_hpibno, sc->sc_slave, -2, NULL, 0)){
692 log(LOG_ERR, "%s can't reset",
693 sc->sc_dev.dv_xname);
694 goto fatalerror;
695 }
696 callout_reset(&sc->sc_intr_ch, 4 * hz, spl_mtintr, sc);
697 hpibawait(sc->sc_hpibno);
698 return;
699
700 case MTSET800BPI:
701 cmdbuf[0] = MTTC_800;
702 break;
703
704 case MTSET1600BPI:
705 cmdbuf[0] = MTTC_1600;
706 break;
707
708 case MTSET6250BPI:
709 cmdbuf[0] = MTTC_6250;
710 break;
711
712 case MTSET6250DC:
713 cmdbuf[0] = MTTC_DC6250;
714 break;
715 }
716 } else {
717 if (sc->sc_flags & MTF_PASTEOT) {
718 bp->b_error = ENOSPC;
719 goto errdone;
720 }
721 if (bp->b_flags & B_READ) {
722 sc->sc_flags |= MTF_IO;
723 cmdbuf[0] = MTTC_READ;
724 } else {
725 sc->sc_flags |= MTF_WRT | MTF_IO;
726 cmdbuf[0] = MTTC_WRITE;
727 cmdbuf[1] = (bp->b_bcount + ((1 << WRITE_BITS_IGNORED) - 1)) >> WRITE_BITS_IGNORED;
728 cmdcount = 2;
729 }
730 }
731 if (hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_TCMD, cmdbuf, cmdcount)
732 == cmdcount) {
733 if (sc->sc_flags & MTF_REW)
734 goto done;
735 hpibawait(sc->sc_hpibno);
736 return;
737 }
738 fatalerror:
739 /*
740 * If anything fails, the drive is probably hosed, so mark it not
741 * "ALIVE" (but it EXISTS and is OPEN or we wouldn't be here, and
742 * if, last we heard, it was REWinding, remember that).
743 */
744 sc->sc_flags &= MTF_EXISTS | MTF_OPEN | MTF_REW;
745 bp->b_error = EIO;
746 errdone:
747 bp->b_flags |= B_ERROR;
748 done:
749 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF);
750 BUFQ_REMOVE(&sc->sc_tab, bp);
751 biodone(bp);
752 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq);
753 if ((bp = BUFQ_FIRST(&sc->sc_tab)) == NULL)
754 sc->sc_active = 0;
755 else
756 mtustart(sc);
757 }
758
759 /*
760 * The Utah code had a bug which meant that the driver was unable to read.
761 * "rw" was initialized to bp->b_flags & B_READ before "bp" was initialized.
762 * -- ajv (at) comp.vuw.ac.nz
763 */
764 void
765 mtgo(arg)
766 void *arg;
767 {
768 struct mt_softc *sc = arg;
769 struct buf *bp;
770 int rw;
771
772 dlog(LOG_DEBUG, "%s go", sc->sc_dev.dv_xname);
773 bp = BUFQ_FIRST(&sc->sc_tab);
774 rw = bp->b_flags & B_READ;
775 hpibgo(sc->sc_hpibno, sc->sc_slave, rw ? MTT_READ : MTL_WRITE,
776 bp->b_data, bp->b_bcount, rw, rw != 0);
777 }
778
779 void
780 mtintr(arg)
781 void *arg;
782 {
783 struct mt_softc *sc = arg;
784 struct buf *bp;
785 int i;
786 u_char cmdbuf[4];
787
788 bp = BUFQ_FIRST(&sc->sc_tab);
789 if (bp == NULL) {
790 log(LOG_ERR, "%s intr: bp == NULL", sc->sc_dev.dv_xname);
791 return;
792 }
793
794 dlog(LOG_DEBUG, "%s intr", sc->sc_dev.dv_xname);
795
796 /*
797 * Some operation completed. Read status bytes and report errors.
798 * Clear EOF flags here `cause they're set once on specific conditions
799 * below when a command succeeds.
800 * A DSJ of 2 always means keep waiting. If the command was READ
801 * (and we're in data DMA phase) stop data transfer first.
802 */
803 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF);
804 if ((bp->b_flags & (B_CMD|B_READ)) == B_READ &&
805 !(sc->sc_flags & (MTF_IO | MTF_STATTIMEO | MTF_DSJTIMEO))){
806 cmdbuf[0] = MTE_STOP;
807 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD,cmdbuf,1);
808 }
809 switch (mtreaddsj(sc, 0)) {
810 case 0:
811 break;
812
813 case 1:
814 /*
815 * If we're in the middle of a READ/WRITE and have yet to
816 * start the data transfer, a DSJ of one should terminate it.
817 */
818 sc->sc_flags &= ~MTF_IO;
819 break;
820
821 case 2:
822 (void) hpibawait(sc->sc_hpibno);
823 return;
824
825 case -2:
826 /*
827 * -2 means that the drive failed to respond quickly enough
828 * to the request for DSJ. It's probably just "busy" figuring
829 * it out and will know in a little bit...
830 */
831 callout_reset(&sc->sc_intr_ch, hz >> 5, spl_mtintr, sc);
832 return;
833
834 default:
835 log(LOG_ERR, "%s intr: can't get drive stat",
836 sc->sc_dev.dv_xname);
837 goto error;
838 }
839 if (sc->sc_stat1 & (SR1_ERR | SR1_REJECT)) {
840 i = sc->sc_stat4 & SR4_ERCLMASK;
841 log(LOG_ERR, "%s: %s error, retry %d, SR2/3 %x/%x, code %d",
842 sc->sc_dev.dv_xname, i == SR4_DEVICE ? "device" :
843 (i == SR4_PROTOCOL ? "protocol" :
844 (i == SR4_SELFTEST ? "selftest" : "unknown")),
845 sc->sc_stat4 & SR4_RETRYMASK, sc->sc_stat2,
846 sc->sc_stat3, sc->sc_stat5);
847
848 if ((bp->b_flags & B_CMD) && bp->b_cmd == MTRESET)
849 callout_stop(&sc->sc_intr_ch);
850 if (sc->sc_stat3 & SR3_POWERUP)
851 sc->sc_flags &= MTF_OPEN | MTF_EXISTS;
852 goto error;
853 }
854 /*
855 * Report and clear any soft errors.
856 */
857 if (sc->sc_stat1 & SR1_SOFTERR) {
858 log(LOG_WARNING, "%s: soft error, retry %d\n",
859 sc->sc_dev.dv_xname, sc->sc_stat4 & SR4_RETRYMASK);
860 sc->sc_stat1 &= ~SR1_SOFTERR;
861 }
862 /*
863 * We've initiated a read or write, but haven't actually started to
864 * DMA the data yet. At this point, the drive's ready.
865 */
866 if (sc->sc_flags & MTF_IO) {
867 sc->sc_flags &= ~MTF_IO;
868 if (hpibustart(sc->sc_hpibno))
869 mtgo(sc);
870 return;
871 }
872 /*
873 * Check for End Of Tape - we're allowed to hit EOT and then write (or
874 * read) one more record. If we get here and have not already hit EOT,
875 * return ENOSPC to inform the process that it's hit it. If we get
876 * here and HAVE already hit EOT, don't allow any more operations that
877 * move the tape forward.
878 */
879 if (sc->sc_stat1 & SR1_EOT) {
880 if (sc->sc_flags & MTF_ATEOT)
881 sc->sc_flags |= MTF_PASTEOT;
882 else {
883 bp->b_flags |= B_ERROR;
884 bp->b_error = ENOSPC;
885 sc->sc_flags |= MTF_ATEOT;
886 }
887 }
888 /*
889 * If a motion command was being executed, check for Tape Marks.
890 * If we were doing data, make sure we got the right amount, and
891 * check for hitting tape marks on reads.
892 */
893 if (bp->b_flags & B_CMD) {
894 if (sc->sc_stat1 & SR1_EOF) {
895 if (bp->b_cmd == MTFSR)
896 sc->sc_flags |= MTF_HITEOF;
897 if (bp->b_cmd == MTBSR)
898 sc->sc_flags |= MTF_HITBOF;
899 }
900 if (bp->b_cmd == MTRESET) {
901 callout_stop(&sc->sc_intr_ch);
902 sc->sc_flags |= MTF_ALIVE;
903 }
904 } else {
905 i = hpibrecv(sc->sc_hpibno, sc->sc_slave, MTT_BCNT, cmdbuf, 2);
906 if (i != 2) {
907 log(LOG_ERR, "%s intr: can't get xfer length\n",
908 sc->sc_dev.dv_xname);
909 goto error;
910 }
911 i = (int) *((u_short *) cmdbuf);
912 if (i <= bp->b_bcount) {
913 if (i == 0)
914 sc->sc_flags |= MTF_HITEOF;
915 bp->b_resid = bp->b_bcount - i;
916 dlog(LOG_DEBUG, "%s intr: bcount %ld, resid %ld",
917 sc->sc_dev.dv_xname, bp->b_bcount, bp->b_resid);
918 } else {
919 tprintf(sc->sc_ttyp,
920 "%s: record (%d) larger than wanted (%ld)\n",
921 sc->sc_dev.dv_xname, i, bp->b_bcount);
922 error:
923 sc->sc_flags &= ~MTF_IO;
924 bp->b_error = EIO;
925 bp->b_flags |= B_ERROR;
926 }
927 }
928 /*
929 * The operation is completely done.
930 * Let the drive know with an END command.
931 */
932 cmdbuf[0] = MTE_COMPLETE | MTE_IDLE;
933 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD, cmdbuf, 1);
934 bp->b_flags &= ~B_CMD;
935 BUFQ_REMOVE(&sc->sc_tab, bp);
936 biodone(bp);
937 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq);
938 if (BUFQ_FIRST(&sc->sc_tab) == NULL)
939 sc->sc_active = 0;
940 else
941 mtustart(sc);
942 }
943
944 int
945 mtread(devvp, uio, flags)
946 struct vnode *devvp;
947 struct uio *uio;
948 int flags;
949 {
950 struct mt_softc *sc = vdev_privdata(devvp);
951
952 return(physio(mtstrategy, &sc->sc_bufstore,
953 devvp, B_READ, minphys, uio));
954 }
955
956 int
957 mtwrite(devvp, uio, flags)
958 struct vnode *devvp;
959 struct uio *uio;
960 int flags;
961 {
962 struct mt_softc *sc = vdev_privdata(devvp);
963
964 return(physio(mtstrategy, &sc->sc_bufstore,
965 devvp, B_WRITE, minphys, uio));
966 }
967
968 int
969 mtioctl(devvp, cmd, data, flag, p)
970 struct vnode *devvp;
971 u_long cmd;
972 caddr_t data;
973 int flag;
974 struct proc *p;
975 {
976 struct mtop *op;
977 int cnt;
978
979 switch (cmd) {
980 case MTIOCTOP:
981 op = (struct mtop *)data;
982 switch(op->mt_op) {
983 case MTWEOF:
984 case MTFSF:
985 case MTBSR:
986 case MTBSF:
987 case MTFSR:
988 cnt = op->mt_count;
989 break;
990
991 case MTOFFL:
992 case MTREW:
993 case MTNOP:
994 cnt = 0;
995 break;
996
997 default:
998 return (EINVAL);
999 }
1000 return (mtcommand(devvp, op->mt_op, cnt));
1001
1002 case MTIOCGET:
1003 break;
1004
1005 default:
1006 return (EINVAL);
1007 }
1008 return (0);
1009 }
1010
1011 /*ARGSUSED*/
1012 int
1013 mtdump(dev, blkno, va, size)
1014 dev_t dev;
1015 daddr_t blkno;
1016 caddr_t va;
1017 size_t size;
1018 {
1019 return (ENODEV);
1020 }
1021