mt.c revision 1.17 1 /* $NetBSD: mt.c,v 1.17 2002/07/26 13:19:53 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1992, The University of Utah and
41 * the Computer Systems Laboratory at the University of Utah (CSL).
42 * All rights reserved.
43 *
44 * Permission to use, copy, modify and distribute this software is hereby
45 * granted provided that (1) source code retains these copyright, permission,
46 * and disclaimer notices, and (2) redistributions including binaries
47 * reproduce the notices in supporting documentation, and (3) all advertising
48 * materials mentioning features or use of this software display the following
49 * acknowledgement: ``This product includes software developed by the
50 * Computer Systems Laboratory at the University of Utah.''
51 *
52 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS
53 * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF
54 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * CSL requests users of this software to return to csl-dist (at) cs.utah.edu any
57 * improvements that they make and grant CSL redistribution rights.
58 *
59 * Utah $Hdr: mt.c 1.8 95/09/12$
60 */
61 /* @(#)mt.c 3.9 90/07/10 mt Xinu
62 *
63 * Magnetic tape driver (7974a, 7978a/b, 7979a, 7980a, 7980xc)
64 * Original version contributed by Mt. Xinu.
65 * Modified for 4.4BSD by Mark Davies and Andrew Vignaux, Department of
66 * Computer Science, Victoria University of Wellington
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: mt.c,v 1.17 2002/07/26 13:19:53 hannken Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/buf.h>
76 #include <sys/ioctl.h>
77 #include <sys/mtio.h>
78 #include <sys/file.h>
79 #include <sys/proc.h>
80 #include <sys/errno.h>
81 #include <sys/syslog.h>
82 #include <sys/tty.h>
83 #include <sys/kernel.h>
84 #include <sys/tprintf.h>
85 #include <sys/device.h>
86 #include <sys/conf.h>
87
88 #include <hp300/dev/hpibvar.h>
89
90 #include <hp300/dev/mtreg.h>
91
92 struct mtinfo {
93 u_short hwid;
94 char *desc;
95 } mtinfo[] = {
96 { MT7978ID, "7978" },
97 { MT7979AID, "7979A" },
98 { MT7980ID, "7980" },
99 { MT7974AID, "7974A" },
100 };
101 int nmtinfo = sizeof(mtinfo) / sizeof(mtinfo[0]);
102
103 struct mt_softc {
104 struct device sc_dev;
105 struct callout sc_start_ch;
106 struct callout sc_intr_ch;
107 int sc_hpibno; /* logical HPIB this slave it attached to */
108 int sc_slave; /* HPIB slave address (0-6) */
109 short sc_flags; /* see below */
110 u_char sc_lastdsj; /* place for DSJ in mtreaddsj() */
111 u_char sc_lastecmd; /* place for End Command in mtreaddsj() */
112 short sc_recvtimeo; /* count of hpibsend timeouts to prevent hang */
113 short sc_statindex; /* index for next sc_stat when MTF_STATTIMEO */
114 struct mt_stat sc_stat;/* status bytes last read from device */
115 short sc_density; /* current density of tape (mtio.h format) */
116 short sc_type; /* tape drive model (hardware IDs) */
117 struct hpibqueue sc_hq; /* HPIB device queue member */
118 tpr_t sc_ttyp;
119 struct bufq_state sc_tab;/* buf queue */
120 int sc_active;
121 struct buf sc_bufstore; /* XXX buffer storage */
122 };
123
124 #ifdef DEBUG
125 int mtdebug = 0;
126 #define dlog if (mtdebug) log
127 #else
128 #define dlog if (0) log
129 #endif
130
131 #define UNIT(x) (minor(x) & 3)
132
133 #define B_CMD B_XXX /* command buf instead of data */
134 #define b_cmd b_blkno /* blkno holds cmd when B_CMD */
135
136 int mtmatch __P((struct device *, struct cfdata *, void *));
137 void mtattach __P((struct device *, struct device *, void *));
138
139 struct cfattach mt_ca = {
140 sizeof(struct mt_softc), mtmatch, mtattach
141 };
142
143 extern struct cfdriver mt_cd;
144
145 int mtident __P((struct mt_softc *, struct hpibbus_attach_args *));
146 void mtustart __P((struct mt_softc *));
147 int mtreaddsj __P((struct mt_softc *, int));
148 int mtcommand __P((dev_t, int, int));
149 void spl_mtintr __P((void *));
150 void spl_mtstart __P((void *));
151
152 void mtstart __P((void *));
153 void mtgo __P((void *));
154 void mtintr __P((void *));
155
156 bdev_decl(mt);
157 cdev_decl(mt);
158
159 int
160 mtmatch(parent, match, aux)
161 struct device *parent;
162 struct cfdata *match;
163 void *aux;
164 {
165 struct hpibbus_attach_args *ha = aux;
166
167 return (mtident(NULL, ha));
168 }
169
170 void
171 mtattach(parent, self, aux)
172 struct device *parent, *self;
173 void *aux;
174 {
175 struct mt_softc *sc = (struct mt_softc *)self;
176 struct hpibbus_attach_args *ha = aux;
177 int unit, hpibno, slave;
178
179 if (mtident(sc, ha) == 0) {
180 printf("\n%s: impossible!\n", sc->sc_dev.dv_xname);
181 return;
182 }
183
184 unit = self->dv_unit;
185 hpibno = parent->dv_unit;
186 slave = ha->ha_slave;
187
188 bufq_alloc(&sc->sc_tab, BUFQ_FCFS);
189 callout_init(&sc->sc_start_ch);
190 callout_init(&sc->sc_intr_ch);
191
192 sc->sc_hpibno = hpibno;
193 sc->sc_slave = slave;
194 sc->sc_flags = MTF_EXISTS;
195
196 /* Initialize hpib job queue entry. */
197 sc->sc_hq.hq_softc = sc;
198 sc->sc_hq.hq_slave = sc->sc_slave;
199 sc->sc_hq.hq_start = mtstart;
200 sc->sc_hq.hq_go = mtgo;
201 sc->sc_hq.hq_intr = mtintr;
202 }
203
204 int
205 mtident(sc, ha)
206 struct mt_softc *sc;
207 struct hpibbus_attach_args *ha;
208 {
209 int i;
210
211 for (i = 0; i < nmtinfo; i++) {
212 if (ha->ha_id == mtinfo[i].hwid) {
213 if (sc != NULL) {
214 sc->sc_type = mtinfo[i].hwid;
215 printf(": %s tape\n", mtinfo[i].desc);
216 }
217 return (1);
218 }
219 }
220 return (0);
221 }
222
223 /*
224 * Perform a read of "Device Status Jump" register and update the
225 * status if necessary. If status is read, the given "ecmd" is also
226 * performed, unless "ecmd" is zero. Returns DSJ value, -1 on failure
227 * and -2 on "temporary" failure.
228 */
229 int
230 mtreaddsj(sc, ecmd)
231 struct mt_softc *sc;
232 int ecmd;
233 {
234 int retval;
235
236 if (sc->sc_flags & MTF_STATTIMEO)
237 goto getstats;
238 retval = hpibrecv(sc->sc_hpibno,
239 (sc->sc_flags & MTF_DSJTIMEO) ? -1 : sc->sc_slave,
240 MTT_DSJ, &(sc->sc_lastdsj), 1);
241 sc->sc_flags &= ~MTF_DSJTIMEO;
242 if (retval != 1) {
243 dlog(LOG_DEBUG, "%s can't hpibrecv DSJ",
244 sc->sc_dev.dv_xname);
245 if (sc->sc_recvtimeo == 0)
246 sc->sc_recvtimeo = hz;
247 if (--sc->sc_recvtimeo == 0)
248 return (-1);
249 if (retval == 0)
250 sc->sc_flags |= MTF_DSJTIMEO;
251 return (-2);
252 }
253 sc->sc_recvtimeo = 0;
254 sc->sc_statindex = 0;
255 dlog(LOG_DEBUG, "%s readdsj: 0x%x", sc->sc_dev.dv_xname,
256 sc->sc_lastdsj);
257 sc->sc_lastecmd = ecmd;
258 switch (sc->sc_lastdsj) {
259 case 0:
260 if (ecmd & MTE_DSJ_FORCE)
261 break;
262 return (0);
263
264 case 2:
265 sc->sc_lastecmd = MTE_COMPLETE;
266 case 1:
267 break;
268
269 default:
270 log(LOG_ERR, "%s readdsj: DSJ 0x%x\n", sc->sc_dev.dv_xname,
271 sc->sc_lastdsj);
272 return (-1);
273 }
274 getstats:
275 retval = hpibrecv(sc->sc_hpibno,
276 (sc->sc_flags & MTF_STATCONT) ? -1 : sc->sc_slave,
277 MTT_STAT, ((char *)&(sc->sc_stat)) + sc->sc_statindex,
278 sizeof(sc->sc_stat) - sc->sc_statindex);
279 sc->sc_flags &= ~(MTF_STATTIMEO | MTF_STATCONT);
280 if (retval != sizeof(sc->sc_stat) - sc->sc_statindex) {
281 if (sc->sc_recvtimeo == 0)
282 sc->sc_recvtimeo = hz;
283 if (--sc->sc_recvtimeo != 0) {
284 if (retval >= 0) {
285 sc->sc_statindex += retval;
286 sc->sc_flags |= MTF_STATCONT;
287 }
288 sc->sc_flags |= MTF_STATTIMEO;
289 return (-2);
290 }
291 log(LOG_ERR, "%s readdsj: can't read status",
292 sc->sc_dev.dv_xname);
293 return (-1);
294 }
295 sc->sc_recvtimeo = 0;
296 sc->sc_statindex = 0;
297 dlog(LOG_DEBUG, "%s readdsj: status is %x %x %x %x %x %x",
298 sc->sc_dev.dv_xname,
299 sc->sc_stat1, sc->sc_stat2, sc->sc_stat3,
300 sc->sc_stat4, sc->sc_stat5, sc->sc_stat6);
301 if (sc->sc_lastecmd)
302 (void) hpibsend(sc->sc_hpibno, sc->sc_slave,
303 MTL_ECMD, &(sc->sc_lastecmd), 1);
304 return ((int) sc->sc_lastdsj);
305 }
306
307 int
308 mtopen(dev, flag, mode, p)
309 dev_t dev;
310 int flag, mode;
311 struct proc *p;
312 {
313 int unit = UNIT(dev);
314 struct mt_softc *sc;
315 int req_den;
316 int error;
317
318 if (unit >= mt_cd.cd_ndevs ||
319 (sc = mt_cd.cd_devs[unit]) == NULL ||
320 (sc->sc_flags & MTF_EXISTS) == 0)
321 return (ENXIO);
322
323 dlog(LOG_DEBUG, "%s open: flags 0x%x", sc->sc_dev.dv_xname,
324 sc->sc_flags);
325 if (sc->sc_flags & MTF_OPEN)
326 return (EBUSY);
327 sc->sc_flags |= MTF_OPEN;
328 sc->sc_ttyp = tprintf_open(p);
329 if ((sc->sc_flags & MTF_ALIVE) == 0) {
330 error = mtcommand(dev, MTRESET, 0);
331 if (error != 0 || (sc->sc_flags & MTF_ALIVE) == 0)
332 goto errout;
333 if ((sc->sc_stat1 & (SR1_BOT | SR1_ONLINE)) == SR1_ONLINE)
334 (void) mtcommand(dev, MTREW, 0);
335 }
336 for (;;) {
337 if ((error = mtcommand(dev, MTNOP, 0)) != 0)
338 goto errout;
339 if (!(sc->sc_flags & MTF_REW))
340 break;
341 if (tsleep((caddr_t) &lbolt, PCATCH | (PZERO + 1),
342 "mt", 0) != 0) {
343 error = EINTR;
344 goto errout;
345 }
346 }
347 if ((flag & FWRITE) && (sc->sc_stat1 & SR1_RO)) {
348 error = EROFS;
349 goto errout;
350 }
351 if (!(sc->sc_stat1 & SR1_ONLINE)) {
352 uprintf("%s: not online\n", sc->sc_dev.dv_xname);
353 error = EIO;
354 goto errout;
355 }
356 /*
357 * Select density:
358 * - find out what density the drive is set to
359 * (i.e. the density of the current tape)
360 * - if we are going to write
361 * - if we're not at the beginning of the tape
362 * - complain if we want to change densities
363 * - otherwise, select the mtcommand to set the density
364 *
365 * If the drive doesn't support it then don't change the recorded
366 * density.
367 *
368 * The original MOREbsd code had these additional conditions
369 * for the mid-tape change
370 *
371 * req_den != T_BADBPI &&
372 * sc->sc_density != T_6250BPI
373 *
374 * which suggests that it would be possible to write multiple
375 * densities if req_den == T_BAD_BPI or the current tape
376 * density was 6250. Testing of our 7980 suggests that the
377 * device cannot change densities mid-tape.
378 *
379 * ajv (at) comp.vuw.ac.nz
380 */
381 sc->sc_density = (sc->sc_stat2 & SR2_6250) ? T_6250BPI : (
382 (sc->sc_stat3 & SR3_1600) ? T_1600BPI : (
383 (sc->sc_stat3 & SR3_800) ? T_800BPI : -1));
384 req_den = (dev & T_DENSEL);
385
386 if (flag & FWRITE) {
387 if (!(sc->sc_stat1 & SR1_BOT)) {
388 if (sc->sc_density != req_den) {
389 uprintf("%s: can't change density mid-tape\n",
390 sc->sc_dev.dv_xname);
391 error = EIO;
392 goto errout;
393 }
394 }
395 else {
396 int mtset_density =
397 (req_den == T_800BPI ? MTSET800BPI : (
398 req_den == T_1600BPI ? MTSET1600BPI : (
399 req_den == T_6250BPI ? MTSET6250BPI : (
400 sc->sc_type == MT7980ID
401 ? MTSET6250DC
402 : MTSET6250BPI))));
403 if (mtcommand(dev, mtset_density, 0) == 0)
404 sc->sc_density = req_den;
405 }
406 }
407 return (0);
408 errout:
409 sc->sc_flags &= ~MTF_OPEN;
410 return (error);
411 }
412
413 int
414 mtclose(dev, flag, fmt, p)
415 dev_t dev;
416 int flag, fmt;
417 struct proc *p;
418 {
419 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
420
421 if (sc->sc_flags & MTF_WRT) {
422 (void) mtcommand(dev, MTWEOF, 2);
423 (void) mtcommand(dev, MTBSF, 0);
424 }
425 if ((minor(dev) & T_NOREWIND) == 0)
426 (void) mtcommand(dev, MTREW, 0);
427 sc->sc_flags &= ~MTF_OPEN;
428 tprintf_close(sc->sc_ttyp);
429 return (0);
430 }
431
432 int
433 mtcommand(dev, cmd, cnt)
434 dev_t dev;
435 int cmd;
436 int cnt;
437 {
438 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
439 struct buf *bp = &sc->sc_bufstore;
440 int error = 0;
441
442 #if 1
443 if (bp->b_flags & B_BUSY)
444 return (EBUSY);
445 #endif
446 bp->b_cmd = cmd;
447 bp->b_dev = dev;
448 do {
449 bp->b_flags = B_BUSY | B_CMD;
450 mtstrategy(bp);
451 biowait(bp);
452 if (bp->b_flags & B_ERROR) {
453 error = (int) (unsigned) bp->b_error;
454 break;
455 }
456 } while (--cnt > 0);
457 #if 0
458 bp->b_flags = 0 /*&= ~B_BUSY*/;
459 #else
460 bp->b_flags &= ~B_BUSY;
461 #endif
462 return (error);
463 }
464
465 /*
466 * Only thing to check here is for legal record lengths (writes only).
467 */
468 void
469 mtstrategy(bp)
470 struct buf *bp;
471 {
472 struct mt_softc *sc;
473 int unit;
474 int s;
475
476 unit = UNIT(bp->b_dev);
477 sc = mt_cd.cd_devs[unit];
478 dlog(LOG_DEBUG, "%s strategy", sc->sc_dev.dv_xname);
479 if ((bp->b_flags & (B_CMD | B_READ)) == 0) {
480 #define WRITE_BITS_IGNORED 8
481 #if 0
482 if (bp->b_bcount & ((1 << WRITE_BITS_IGNORED) - 1)) {
483 tprintf(sc->sc_ttyp,
484 "%s: write record must be multiple of %d\n",
485 sc->sc_dev.dv_xname, 1 << WRITE_BITS_IGNORED);
486 goto error;
487 }
488 #endif
489 s = 16 * 1024;
490 if (sc->sc_stat2 & SR2_LONGREC) {
491 switch (sc->sc_density) {
492 case T_1600BPI:
493 s = 32 * 1024;
494 break;
495
496 case T_6250BPI:
497 case T_BADBPI:
498 s = 60 * 1024;
499 break;
500 }
501 }
502 if (bp->b_bcount > s) {
503 tprintf(sc->sc_ttyp,
504 "%s: write record (%ld) too big: limit (%d)\n",
505 sc->sc_dev.dv_xname, bp->b_bcount, s);
506 #if 0 /* XXX see above */
507 error:
508 #endif
509 bp->b_flags |= B_ERROR;
510 bp->b_error = EIO;
511 biodone(bp);
512 return;
513 }
514 }
515 s = splbio();
516 BUFQ_PUT(&sc->sc_tab, bp);
517 if (sc->sc_active == 0) {
518 sc->sc_active = 1;
519 mtustart(sc);
520 }
521 splx(s);
522 }
523
524 void
525 mtustart(sc)
526 struct mt_softc *sc;
527 {
528
529 dlog(LOG_DEBUG, "%s ustart", sc->sc_dev.dv_xname);
530 if (hpibreq(sc->sc_dev.dv_parent, &sc->sc_hq))
531 mtstart(sc);
532 }
533
534 void
535 spl_mtintr(arg)
536 void *arg;
537 {
538 struct mt_softc *sc = arg;
539 int s = splbio();
540
541 hpibppclear(sc->sc_hpibno);
542 mtintr(sc);
543 splx(s);
544 }
545
546 void
547 spl_mtstart(arg)
548 void *arg;
549 {
550 int s = splbio();
551
552 mtstart(arg);
553 splx(s);
554 }
555
556 void
557 mtstart(arg)
558 void *arg;
559 {
560 struct mt_softc *sc = arg;
561 struct buf *bp;
562 short cmdcount = 1;
563 u_char cmdbuf[2];
564
565 dlog(LOG_DEBUG, "%s start", sc->sc_dev.dv_xname);
566 sc->sc_flags &= ~MTF_WRT;
567 bp = BUFQ_PEEK(&sc->sc_tab);
568 if ((sc->sc_flags & MTF_ALIVE) == 0 &&
569 ((bp->b_flags & B_CMD) == 0 || bp->b_cmd != MTRESET))
570 goto fatalerror;
571
572 if (sc->sc_flags & MTF_REW) {
573 if (!hpibpptest(sc->sc_hpibno, sc->sc_slave))
574 goto stillrew;
575 switch (mtreaddsj(sc, MTE_DSJ_FORCE|MTE_COMPLETE|MTE_IDLE)) {
576 case 0:
577 case 1:
578 stillrew:
579 if ((sc->sc_stat1 & SR1_BOT) ||
580 !(sc->sc_stat1 & SR1_ONLINE)) {
581 sc->sc_flags &= ~MTF_REW;
582 break;
583 }
584 case -2:
585 /*
586 * -2 means "timeout" reading DSJ, which is probably
587 * temporary. This is considered OK when doing a NOP,
588 * but not otherwise.
589 */
590 if (sc->sc_flags & (MTF_DSJTIMEO | MTF_STATTIMEO)) {
591 callout_reset(&sc->sc_start_ch, hz >> 5,
592 spl_mtstart, sc);
593 return;
594 }
595 case 2:
596 if (bp->b_cmd != MTNOP || !(bp->b_flags & B_CMD)) {
597 bp->b_error = EBUSY;
598 goto errdone;
599 }
600 goto done;
601
602 default:
603 goto fatalerror;
604 }
605 }
606 if (bp->b_flags & B_CMD) {
607 if (sc->sc_flags & MTF_PASTEOT) {
608 switch(bp->b_cmd) {
609 case MTFSF:
610 case MTWEOF:
611 case MTFSR:
612 bp->b_error = ENOSPC;
613 goto errdone;
614
615 case MTBSF:
616 case MTOFFL:
617 case MTBSR:
618 case MTREW:
619 sc->sc_flags &= ~(MTF_PASTEOT | MTF_ATEOT);
620 break;
621 }
622 }
623 switch(bp->b_cmd) {
624 case MTFSF:
625 if (sc->sc_flags & MTF_HITEOF)
626 goto done;
627 cmdbuf[0] = MTTC_FSF;
628 break;
629
630 case MTBSF:
631 if (sc->sc_flags & MTF_HITBOF)
632 goto done;
633 cmdbuf[0] = MTTC_BSF;
634 break;
635
636 case MTOFFL:
637 sc->sc_flags |= MTF_REW;
638 cmdbuf[0] = MTTC_REWOFF;
639 break;
640
641 case MTWEOF:
642 cmdbuf[0] = MTTC_WFM;
643 break;
644
645 case MTBSR:
646 cmdbuf[0] = MTTC_BSR;
647 break;
648
649 case MTFSR:
650 cmdbuf[0] = MTTC_FSR;
651 break;
652
653 case MTREW:
654 sc->sc_flags |= MTF_REW;
655 cmdbuf[0] = MTTC_REW;
656 break;
657
658 case MTNOP:
659 /*
660 * NOP is supposed to set status bits.
661 * Force readdsj to do it.
662 */
663 switch (mtreaddsj(sc,
664 MTE_DSJ_FORCE | MTE_COMPLETE | MTE_IDLE)) {
665 default:
666 goto done;
667
668 case -1:
669 /*
670 * If this fails, perform a device clear
671 * to fix any protocol problems and (most
672 * likely) get the status.
673 */
674 bp->b_cmd = MTRESET;
675 break;
676
677 case -2:
678 callout_reset(&sc->sc_start_ch, hz >> 5,
679 spl_mtstart, sc);
680 return;
681 }
682
683 case MTRESET:
684 /*
685 * 1) selected device clear (send with "-2" secondary)
686 * 2) set timeout, then wait for "service request"
687 * 3) interrupt will read DSJ (and END COMPLETE-IDLE)
688 */
689 if (hpibsend(sc->sc_hpibno, sc->sc_slave, -2, NULL, 0)){
690 log(LOG_ERR, "%s can't reset",
691 sc->sc_dev.dv_xname);
692 goto fatalerror;
693 }
694 callout_reset(&sc->sc_intr_ch, 4 * hz, spl_mtintr, sc);
695 hpibawait(sc->sc_hpibno);
696 return;
697
698 case MTSET800BPI:
699 cmdbuf[0] = MTTC_800;
700 break;
701
702 case MTSET1600BPI:
703 cmdbuf[0] = MTTC_1600;
704 break;
705
706 case MTSET6250BPI:
707 cmdbuf[0] = MTTC_6250;
708 break;
709
710 case MTSET6250DC:
711 cmdbuf[0] = MTTC_DC6250;
712 break;
713 }
714 } else {
715 if (sc->sc_flags & MTF_PASTEOT) {
716 bp->b_error = ENOSPC;
717 goto errdone;
718 }
719 if (bp->b_flags & B_READ) {
720 sc->sc_flags |= MTF_IO;
721 cmdbuf[0] = MTTC_READ;
722 } else {
723 sc->sc_flags |= MTF_WRT | MTF_IO;
724 cmdbuf[0] = MTTC_WRITE;
725 cmdbuf[1] = (bp->b_bcount + ((1 << WRITE_BITS_IGNORED) - 1)) >> WRITE_BITS_IGNORED;
726 cmdcount = 2;
727 }
728 }
729 if (hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_TCMD, cmdbuf, cmdcount)
730 == cmdcount) {
731 if (sc->sc_flags & MTF_REW)
732 goto done;
733 hpibawait(sc->sc_hpibno);
734 return;
735 }
736 fatalerror:
737 /*
738 * If anything fails, the drive is probably hosed, so mark it not
739 * "ALIVE" (but it EXISTS and is OPEN or we wouldn't be here, and
740 * if, last we heard, it was REWinding, remember that).
741 */
742 sc->sc_flags &= MTF_EXISTS | MTF_OPEN | MTF_REW;
743 bp->b_error = EIO;
744 errdone:
745 bp->b_flags |= B_ERROR;
746 done:
747 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF);
748 (void)BUFQ_GET(&sc->sc_tab);
749 biodone(bp);
750 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq);
751 if ((bp = BUFQ_PEEK(&sc->sc_tab)) == NULL)
752 sc->sc_active = 0;
753 else
754 mtustart(sc);
755 }
756
757 /*
758 * The Utah code had a bug which meant that the driver was unable to read.
759 * "rw" was initialized to bp->b_flags & B_READ before "bp" was initialized.
760 * -- ajv (at) comp.vuw.ac.nz
761 */
762 void
763 mtgo(arg)
764 void *arg;
765 {
766 struct mt_softc *sc = arg;
767 struct buf *bp;
768 int rw;
769
770 dlog(LOG_DEBUG, "%s go", sc->sc_dev.dv_xname);
771 bp = BUFQ_PEEK(&sc->sc_tab);
772 rw = bp->b_flags & B_READ;
773 hpibgo(sc->sc_hpibno, sc->sc_slave, rw ? MTT_READ : MTL_WRITE,
774 bp->b_data, bp->b_bcount, rw, rw != 0);
775 }
776
777 void
778 mtintr(arg)
779 void *arg;
780 {
781 struct mt_softc *sc = arg;
782 struct buf *bp;
783 int i;
784 u_char cmdbuf[4];
785
786 bp = BUFQ_PEEK(&sc->sc_tab);
787 if (bp == NULL) {
788 log(LOG_ERR, "%s intr: bp == NULL", sc->sc_dev.dv_xname);
789 return;
790 }
791
792 dlog(LOG_DEBUG, "%s intr", sc->sc_dev.dv_xname);
793
794 /*
795 * Some operation completed. Read status bytes and report errors.
796 * Clear EOF flags here `cause they're set once on specific conditions
797 * below when a command succeeds.
798 * A DSJ of 2 always means keep waiting. If the command was READ
799 * (and we're in data DMA phase) stop data transfer first.
800 */
801 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF);
802 if ((bp->b_flags & (B_CMD|B_READ)) == B_READ &&
803 !(sc->sc_flags & (MTF_IO | MTF_STATTIMEO | MTF_DSJTIMEO))){
804 cmdbuf[0] = MTE_STOP;
805 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD,cmdbuf,1);
806 }
807 switch (mtreaddsj(sc, 0)) {
808 case 0:
809 break;
810
811 case 1:
812 /*
813 * If we're in the middle of a READ/WRITE and have yet to
814 * start the data transfer, a DSJ of one should terminate it.
815 */
816 sc->sc_flags &= ~MTF_IO;
817 break;
818
819 case 2:
820 (void) hpibawait(sc->sc_hpibno);
821 return;
822
823 case -2:
824 /*
825 * -2 means that the drive failed to respond quickly enough
826 * to the request for DSJ. It's probably just "busy" figuring
827 * it out and will know in a little bit...
828 */
829 callout_reset(&sc->sc_intr_ch, hz >> 5, spl_mtintr, sc);
830 return;
831
832 default:
833 log(LOG_ERR, "%s intr: can't get drive stat",
834 sc->sc_dev.dv_xname);
835 goto error;
836 }
837 if (sc->sc_stat1 & (SR1_ERR | SR1_REJECT)) {
838 i = sc->sc_stat4 & SR4_ERCLMASK;
839 log(LOG_ERR, "%s: %s error, retry %d, SR2/3 %x/%x, code %d",
840 sc->sc_dev.dv_xname, i == SR4_DEVICE ? "device" :
841 (i == SR4_PROTOCOL ? "protocol" :
842 (i == SR4_SELFTEST ? "selftest" : "unknown")),
843 sc->sc_stat4 & SR4_RETRYMASK, sc->sc_stat2,
844 sc->sc_stat3, sc->sc_stat5);
845
846 if ((bp->b_flags & B_CMD) && bp->b_cmd == MTRESET)
847 callout_stop(&sc->sc_intr_ch);
848 if (sc->sc_stat3 & SR3_POWERUP)
849 sc->sc_flags &= MTF_OPEN | MTF_EXISTS;
850 goto error;
851 }
852 /*
853 * Report and clear any soft errors.
854 */
855 if (sc->sc_stat1 & SR1_SOFTERR) {
856 log(LOG_WARNING, "%s: soft error, retry %d\n",
857 sc->sc_dev.dv_xname, sc->sc_stat4 & SR4_RETRYMASK);
858 sc->sc_stat1 &= ~SR1_SOFTERR;
859 }
860 /*
861 * We've initiated a read or write, but haven't actually started to
862 * DMA the data yet. At this point, the drive's ready.
863 */
864 if (sc->sc_flags & MTF_IO) {
865 sc->sc_flags &= ~MTF_IO;
866 if (hpibustart(sc->sc_hpibno))
867 mtgo(sc);
868 return;
869 }
870 /*
871 * Check for End Of Tape - we're allowed to hit EOT and then write (or
872 * read) one more record. If we get here and have not already hit EOT,
873 * return ENOSPC to inform the process that it's hit it. If we get
874 * here and HAVE already hit EOT, don't allow any more operations that
875 * move the tape forward.
876 */
877 if (sc->sc_stat1 & SR1_EOT) {
878 if (sc->sc_flags & MTF_ATEOT)
879 sc->sc_flags |= MTF_PASTEOT;
880 else {
881 bp->b_flags |= B_ERROR;
882 bp->b_error = ENOSPC;
883 sc->sc_flags |= MTF_ATEOT;
884 }
885 }
886 /*
887 * If a motion command was being executed, check for Tape Marks.
888 * If we were doing data, make sure we got the right amount, and
889 * check for hitting tape marks on reads.
890 */
891 if (bp->b_flags & B_CMD) {
892 if (sc->sc_stat1 & SR1_EOF) {
893 if (bp->b_cmd == MTFSR)
894 sc->sc_flags |= MTF_HITEOF;
895 if (bp->b_cmd == MTBSR)
896 sc->sc_flags |= MTF_HITBOF;
897 }
898 if (bp->b_cmd == MTRESET) {
899 callout_stop(&sc->sc_intr_ch);
900 sc->sc_flags |= MTF_ALIVE;
901 }
902 } else {
903 i = hpibrecv(sc->sc_hpibno, sc->sc_slave, MTT_BCNT, cmdbuf, 2);
904 if (i != 2) {
905 log(LOG_ERR, "%s intr: can't get xfer length\n",
906 sc->sc_dev.dv_xname);
907 goto error;
908 }
909 i = (int) *((u_short *) cmdbuf);
910 if (i <= bp->b_bcount) {
911 if (i == 0)
912 sc->sc_flags |= MTF_HITEOF;
913 bp->b_resid = bp->b_bcount - i;
914 dlog(LOG_DEBUG, "%s intr: bcount %ld, resid %ld",
915 sc->sc_dev.dv_xname, bp->b_bcount, bp->b_resid);
916 } else {
917 tprintf(sc->sc_ttyp,
918 "%s: record (%d) larger than wanted (%ld)\n",
919 sc->sc_dev.dv_xname, i, bp->b_bcount);
920 error:
921 sc->sc_flags &= ~MTF_IO;
922 bp->b_error = EIO;
923 bp->b_flags |= B_ERROR;
924 }
925 }
926 /*
927 * The operation is completely done.
928 * Let the drive know with an END command.
929 */
930 cmdbuf[0] = MTE_COMPLETE | MTE_IDLE;
931 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD, cmdbuf, 1);
932 bp->b_flags &= ~B_CMD;
933 (void)BUFQ_GET(&sc->sc_tab);
934 biodone(bp);
935 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq);
936 if (BUFQ_PEEK(&sc->sc_tab) == NULL)
937 sc->sc_active = 0;
938 else
939 mtustart(sc);
940 }
941
942 int
943 mtread(dev, uio, flags)
944 dev_t dev;
945 struct uio *uio;
946 int flags;
947 {
948 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
949
950 return(physio(mtstrategy, &sc->sc_bufstore,
951 dev, B_READ, minphys, uio));
952 }
953
954 int
955 mtwrite(dev, uio, flags)
956 dev_t dev;
957 struct uio *uio;
958 int flags;
959 {
960 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)];
961
962 return(physio(mtstrategy, &sc->sc_bufstore,
963 dev, B_WRITE, minphys, uio));
964 }
965
966 int
967 mtioctl(dev, cmd, data, flag, p)
968 dev_t dev;
969 u_long cmd;
970 caddr_t data;
971 int flag;
972 struct proc *p;
973 {
974 struct mtop *op;
975 int cnt;
976
977 switch (cmd) {
978 case MTIOCTOP:
979 op = (struct mtop *)data;
980 switch(op->mt_op) {
981 case MTWEOF:
982 case MTFSF:
983 case MTBSR:
984 case MTBSF:
985 case MTFSR:
986 cnt = op->mt_count;
987 break;
988
989 case MTOFFL:
990 case MTREW:
991 case MTNOP:
992 cnt = 0;
993 break;
994
995 default:
996 return (EINVAL);
997 }
998 return (mtcommand(dev, op->mt_op, cnt));
999
1000 case MTIOCGET:
1001 break;
1002
1003 default:
1004 return (EINVAL);
1005 }
1006 return (0);
1007 }
1008
1009 /*ARGSUSED*/
1010 int
1011 mtdump(dev, blkno, va, size)
1012 dev_t dev;
1013 daddr_t blkno;
1014 caddr_t va;
1015 size_t size;
1016 {
1017 return (ENODEV);
1018 }
1019