rd.c revision 1.2 1 /*
2 * Copyright (c) 1988 University of Utah.
3 * Copyright (c) 1982, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the Systems Programming Group of the University of Utah Computer
8 * Science Department.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: Utah $Hdr: rd.c 1.38 90/10/12$
39 *
40 * from: @(#)rd.c 7.9 (Berkeley) 5/7/91
41 * $Id: rd.c,v 1.2 1993/05/22 07:56:45 cgd Exp $
42 */
43
44 /*
45 * CS80/SS80 disk driver
46 */
47 #include "rd.h"
48 #if NRD > 0
49
50 #include "sys/param.h"
51 #include "sys/systm.h"
52 #include "sys/errno.h"
53 #include "sys/dkstat.h"
54 #include "sys/disklabel.h"
55 #include "sys/buf.h"
56 #include "sys/uio.h"
57
58 #include "device.h"
59 #include "rdreg.h"
60
61 #include "vm/vm_param.h"
62 #include "vm/lock.h"
63 #include "vm/vm_statistics.h"
64 #include "vm/pmap.h"
65 #include "vm/vm_prot.h"
66
67 int rdinit(), rdstart(), rdgo(), rdintr();
68 struct driver rddriver = {
69 rdinit, "rd", rdstart, rdgo, rdintr,
70 };
71
72 struct rd_softc {
73 struct hp_device *sc_hd;
74 int sc_flags;
75 short sc_type;
76 short sc_punit;
77 char *sc_addr;
78 int sc_resid;
79 u_int sc_wpms;
80 struct rdinfo *sc_info;
81 struct devqueue sc_dq;
82 struct rd_iocmd sc_ioc;
83 struct rd_rscmd sc_rsc;
84 struct rd_stat sc_stat;
85 struct rd_ssmcmd sc_ssmc;
86 struct rd_srcmd sc_src;
87 struct rd_clearcmd sc_clear;
88 } rd_softc[NRD];
89
90 /* sc_flags values */
91 #define RDF_ALIVE 0x1
92 #define RDF_SEEK 0x2
93 #define RDF_SWAIT 0x4
94
95 struct size {
96 daddr_t nblocks;
97 int cyloff;
98 };
99
100 #ifdef DEBUG
101 int rddebug = 0x80;
102 #define RDB_FOLLOW 0x01
103 #define RDB_STATUS 0x02
104 #define RDB_IDENT 0x04
105 #define RDB_IO 0x08
106 #define RDB_ASYNC 0x10
107 #define RDB_ERROR 0x80
108 #define RDB_DUMP 0x80000000
109
110 struct rdstats {
111 long rdretries;
112 long rdresets;
113 long rdtimeouts;
114 long rdpolltries;
115 long rdpollwaits;
116 } rdstats[NRD];
117
118 /* error message tables */
119 char *err_reject[] = {
120 0, 0,
121 "channel parity error", /* 0x2000 */
122 0, 0,
123 "illegal opcode", /* 0x0400 */
124 "module addressing", /* 0x0200 */
125 "address bounds", /* 0x0100 */
126 "parameter bounds", /* 0x0080 */
127 "illegal parameter", /* 0x0040 */
128 "message sequence", /* 0x0020 */
129 0,
130 "message length", /* 0x0008 */
131 0, 0, 0
132 };
133
134 char *err_fault[] = {
135 0,
136 "cross unit", /* 0x4000 */
137 0,
138 "controller fault", /* 0x1000 */
139 0, 0,
140 "unit fault", /* 0x0200 */
141 0,
142 "diagnostic result", /* 0x0080 */
143 0,
144 "operator release request", /* 0x0020 */
145 "diagnostic release request", /* 0x0010 */
146 "internal maintenance release request", /* 0x0008 */
147 0,
148 "power fail", /* 0x0002 */
149 "retransmit" /* 0x0001 */
150 };
151
152 char *err_access[] = {
153 "illegal parallel operation", /* 0x8000 */
154 "uninitialized media", /* 0x4000 */
155 "no spares available", /* 0x2000 */
156 "not ready", /* 0x1000 */
157 "write protect", /* 0x0800 */
158 "no data found", /* 0x0400 */
159 0, 0,
160 "unrecoverable data overflow", /* 0x0080 */
161 "unrecoverable data", /* 0x0040 */
162 0,
163 "end of file", /* 0x0010 */
164 "end of volume", /* 0x0008 */
165 0, 0, 0
166 };
167
168 char *err_info[] = {
169 "operator release request", /* 0x8000 */
170 "diagnostic release request", /* 0x4000 */
171 "internal maintenance release request", /* 0x2000 */
172 "media wear", /* 0x1000 */
173 "latency induced", /* 0x0800 */
174 0, 0,
175 "auto sparing invoked", /* 0x0100 */
176 0,
177 "recoverable data overflow", /* 0x0040 */
178 "marginal data", /* 0x0020 */
179 "recoverable data", /* 0x0010 */
180 0,
181 "maintenance track overflow", /* 0x0004 */
182 0, 0
183 };
184 #endif
185
186 /*
187 * CS/80 partitions. We reserve the first cylinder for a LIF
188 * style boot directory (the 8k allowed in the BSD filesystem
189 * is just way too small). This boot area is outside of all but
190 * the C partition. This implies that you cannot use the C
191 * partition on a bootable disk since the filesystem would overlay
192 * the boot area. You must use the A partition.
193 *
194 * These maps support four basic layouts:
195 *
196 * A/B/G: This is the "traditional" setup for a bootable disk.
197 * A is the root partition, B the swap, and G a user partition.
198 * A/D/H: This is a setup for bootable systems requiring more swap
199 * (e.g. those who use HPCL). It has A as the root, D as a
200 * larger swap, and H as a smaller user partition.
201 * A/D/E/F: Similar to A/D/H with E and F breaking H into two partitions.
202 * E could be used for /usr and F for users.
203 * C: This gives a single, non-bootable, large user filesystem.
204 * Good for second drives on a machine (e.g. /usr/src).
205 */
206 struct size rd7945A_sizes[8] = {
207 RDSZ(15904), 1, /* A=cyl 1 thru 142 */
208 RDSZ(20160), 143, /* B=cyl 143 thru 322 */
209 RDSZ(108416), 0, /* C=cyl 0 thru 967 */
210 RDSZ(40320), 143, /* D=cyl 143 thru 502 */
211 RDSZ(0), 0, /* E=<undefined> */
212 RDSZ(0), 0, /* F=<undefined> */
213 RDSZ(72240), 323, /* G=cyl 323 thru 967 */
214 RDSZ(52080), 503, /* H=cyl 503 thru 967 */
215 }, rd9134D_sizes[8] = {
216 RDSZ(15936), 1, /* A=cyl 1 thru 166 */
217 RDSZ(13056), 167, /* B=cyl 167 thru 302 */
218 RDSZ(29088), 0, /* C=cyl 0 thru 302 */
219 RDSZ(0), 0, /* D=<undefined> */
220 RDSZ(0), 0, /* E=<undefined> */
221 RDSZ(0), 0, /* F=<undefined> */
222 RDSZ(0), 0, /* G=<undefined> */
223 RDSZ(0), 0, /* H=<undefined> */
224 }, rd9122S_sizes[8] = {
225 RDSZ(0), 0, /* A=<undefined> */
226 RDSZ(0), 0, /* B=<undefined> */
227 RDSZ(1232), 0, /* C=cyl 0 thru 76 */
228 RDSZ(0), 0, /* D=<undefined> */
229 RDSZ(0), 0, /* E=<undefined> */
230 RDSZ(0), 0, /* F=<undefined> */
231 RDSZ(0), 0, /* G=<undefined> */
232 RDSZ(0), 0, /* H=<undefined> */
233 }, rd7912P_sizes[8] = {
234 RDSZ(15904), 0, /* A=cyl 1 thru 71 */
235 RDSZ(22400), 72, /* B=cyl 72 thru 171 */
236 RDSZ(128128), 0, /* C=cyl 0 thru 571 */
237 RDSZ(42560), 72, /* D=cyl 72 thru 261 */
238 RDSZ(0), 292, /* E=<undefined> */
239 RDSZ(0), 542, /* F=<undefined> */
240 RDSZ(89600), 172, /* G=cyl 221 thru 571 */
241 RDSZ(69440), 262, /* H=cyl 262 thru 571 */
242 }, rd7914P_sizes[8] = {
243 RDSZ(15904), 1, /* A=cyl 1 thru 71 */
244 RDSZ(40320), 72, /* B=cyl 72 thru 251 */
245 RDSZ(258048), 0, /* C=cyl 0 thru 1151 */
246 RDSZ(64960), 72, /* D=cyl 72 thru 361 */
247 RDSZ(98560), 362, /* E=cyl 362 thru 801 */
248 RDSZ(78400), 802, /* F=cyl 802 thru 1151 */
249 RDSZ(201600), 252, /* G=cyl 221 thru 1151 */
250 RDSZ(176960), 362, /* H=cyl 362 thru 1151 */
251 }, rd7933H_sizes[8] = {
252 RDSZ(16146), 1, /* A=cyl 1 thru 27 */
253 RDSZ(66976), 28, /* B=cyl 28 thru 139 */
254 RDSZ(789958), 0, /* C=cyl 0 thru 1320 */
255 RDSZ(16146), 140, /* D=cyl 140 thru 166 */
256 RDSZ(165646), 167, /* E=cyl 167 thru 443 */
257 RDSZ(165646), 444, /* F=cyl 444 thru 720 */
258 RDSZ(706238), 140, /* G=cyl 140 thru 1320 */
259 RDSZ(358800), 721, /* H=cyl 721 thru 1320 */
260 }, rd9134L_sizes[8] = {
261 RDSZ(15920), 1, /* A=cyl 1 thru 199 */
262 RDSZ(20000), 200, /* B=cyl 200 thru 449 */
263 RDSZ(77840), 0, /* C=cyl 0 thru 972 */
264 RDSZ(32000), 200, /* D=cyl 200 thru 599 */
265 RDSZ(0), 0, /* E=<undefined> */
266 RDSZ(0), 0, /* F=<undefined> */
267 RDSZ(41840), 450, /* G=cyl 450 thru 972 */
268 RDSZ(29840), 600, /* H=cyl 600 thru 972 */
269 }, rd7957A_sizes[8] = {
270 RDSZ(16016), 1, /* A=cyl 1 thru 104 */
271 RDSZ(24640), 105, /* B=cyl 105 thru 264 */
272 RDSZ(159544), 0, /* C=cyl 0 thru 1035 */
273 RDSZ(42350), 105, /* D=cyl 105 thru 379 */
274 RDSZ(54824), 380, /* E=cyl 380 thru 735 */
275 RDSZ(46200), 736, /* F=cyl 736 thru 1035 */
276 RDSZ(118734), 265, /* G=cyl 265 thru 1035 */
277 RDSZ(101024), 380, /* H=cyl 380 thru 1035 */
278 }, rd7958A_sizes[8] = {
279 RDSZ(16128), 1, /* A=cyl 1 thru 64 */
280 RDSZ(32256), 65, /* B=cyl 65 thru 192 */
281 RDSZ(255276), 0, /* C=cyl 0 thru 1012 */
282 RDSZ(48384), 65, /* D=cyl 65 thru 256 */
283 RDSZ(100800), 257, /* E=cyl 257 thru 656 */
284 RDSZ(89712), 657, /* F=cyl 657 thru 1012 */
285 RDSZ(206640), 193, /* G=cyl 193 thru 1012 */
286 RDSZ(190512), 257, /* H=cyl 257 thru 1012 */
287 }, rd7957B_sizes[8] = {
288 RDSZ(16002), 1, /* A=cyl 1 thru 127 */
289 RDSZ(32760), 128, /* B=cyl 128 thru 387 */
290 RDSZ(159894), 0, /* C=cyl 0 thru 1268 */
291 RDSZ(49140), 128, /* D=cyl 128 thru 517 */
292 RDSZ(50400), 518, /* E=cyl 518 thru 917 */
293 RDSZ(44226), 918, /* F=cyl 918 thru 1268 */
294 RDSZ(111006), 388, /* G=cyl 388 thru 1268 */
295 RDSZ(94626), 518, /* H=cyl 518 thru 1268 */
296 }, rd7958B_sizes[8] = {
297 RDSZ(16254), 1, /* A=cyl 1 thru 43 */
298 RDSZ(32886), 44, /* B=cyl 44 thru 130 */
299 RDSZ(297108), 0, /* C=cyl 0 thru 785 */
300 RDSZ(49140), 44, /* D=cyl 44 thru 173 */
301 RDSZ(121716), 174, /* E=cyl 174 thru 495 */
302 RDSZ(109620), 496, /* F=cyl 496 thru 785 */
303 RDSZ(247590), 131, /* G=cyl 131 thru 785 */
304 RDSZ(231336), 174, /* H=cyl 174 thru 785 */
305 }, rd7959B_sizes[8] = {
306 RDSZ(16254), 1, /* A=cyl 1 thru 43 */
307 RDSZ(49140), 44, /* B=cyl 44 thru 173 */
308 RDSZ(594216), 0, /* C=cyl 0 thru 1571 */
309 RDSZ(65772), 44, /* D=cyl 44 thru 217 */
310 RDSZ(303912), 218, /* E=cyl 218 thru 1021 */
311 RDSZ(207900), 1022, /* F=cyl 1022 thru 1571 */
312 RDSZ(528444), 174, /* G=cyl 174 thru 1571 */
313 RDSZ(511812), 218, /* H=cyl 218 thru 1571 */
314 }, rd2200A_sizes[8] = {
315 RDSZ(16272), 1, /* A=cyl 1 thru 36 */
316 RDSZ(49720), 37, /* B=cyl 37 thru 146 */
317 RDSZ(654948), 0, /* C=cyl 0 thru 1448 */
318 RDSZ(65992), 37, /* D=cyl 37 thru 182 */
319 RDSZ(304648), 183, /* E=cyl 183 thru 856 */
320 RDSZ(267584), 857, /* F=cyl 857 thru 1448 */
321 RDSZ(588504), 147, /* G=cyl 147 thru 1448 */
322 RDSZ(572232), 183, /* H=cyl 183 thru 1448 */
323 }, rd2203A_sizes[8] = {
324 /* modelled after the 7937; i.e. bogus */
325 RDSZ(16272), 1, /* A=cyl 1 thru 18 */
326 RDSZ(67800), 19, /* B=cyl 19 thru 93 */
327 RDSZ(1309896), 0, /* C=cyl 0 thru 1448 */
328 RDSZ(16272), 94, /* D=cyl 19 thru 111 */
329 RDSZ(305552), 112, /* E=cyl 112 thru 449 */
330 RDSZ(305552), 450, /* F=cyl 450 thru 787 */
331 RDSZ(1224920), 94, /* G=cyl 94 thru 1448 */
332 RDSZ(597544), 788, /* H=cyl 788 thru 1448 */
333
334 #if DEV_BSIZE == 512
335 /*
336 * These values would not work for 1k,
337 * since the number of cylinders would be different.
338 */
339 }, rd7936H_sizes[8] = {
340 RDSZ(16359), 1, /* A=cyl 1 thru 19 */
341 RDSZ(67158), 20, /* B=cyl 20 thru 97 */
342 RDSZ(600978), 0, /* C=cyl 0 thru 697 */
343 RDSZ(16359), 98, /* D=cyl 98 thru 116 */
344 RDSZ(120540), 117, /* E=cyl 117 thru 256 */
345 RDSZ(120540), 256, /* F=cyl 256 thru 396 */
346 RDSZ(516600), 98, /* G=cyl 98 thru 697 */
347 RDSZ(259161), 397, /* H=cyl 397 thru 697 */
348 }, rd7937H_sizes[8] = {
349 #ifdef UTAH
350 RDSZ(15990), 1, /* A=cyl 1 thru 10 */
351 RDSZ(67158), 11, /* B=cyl 11 thru 52 */
352 RDSZ(1116102), 0, /* C=cyl 0 thru 697 */
353 RDSZ(124722), 53, /* D=cyl 53 thru 130 */
354 RDSZ(163098), 131, /* E=cyl 131 thru 232 */
355 RDSZ(287820), 233, /* F=cyl 233 thru 412 */
356 RDSZ(1031355), 53, /* G=cyl 53 thru 697 */
357 RDSZ(455715), 413, /* H=cyl 413 thru 697 */
358 #else
359 RDSZ(15990), 1, /* A=cyl 1 thru 10 */
360 RDSZ(67158), 11, /* B=cyl 11 thru 52 */
361 RDSZ(1116102), 0, /* C=cyl 0 thru 697 */
362 RDSZ(15990), 53, /* D=cyl 53 thru 62 */
363 RDSZ(246246), 63, /* E=cyl 63 thru 216 */
364 RDSZ(246246), 217, /* F=cyl 217 thru 370 */
365 RDSZ(1031355), 53, /* G=cyl 53 thru 697 */
366 RDSZ(522873), 371, /* H=cyl 371 thru 697 */
367 #endif
368 #endif
369 };
370
371 struct rdinfo {
372 int nbpt; /* DEV_BSIZE blocks per track */
373 int ntpc; /* tracks per cylinder */
374 int nbpc; /* blocks per cylinder */
375 struct size *sizes; /* default partition info (if no disklabel) */
376 short hwid; /* 2 byte HW id */
377 short maxunum; /* maximum allowed unit number */
378 char *desc; /* drive type description */
379 };
380
381 struct rdinfo rdinfo[] = {
382 NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK,
383 rd7945A_sizes, RD7946AID, 0, "7945A",
384 NRD9134DBPT, NRD9134DTRK, NRD9134DBPT * NRD9134DTRK,
385 rd9134D_sizes, RD9134DID, 1, "9134D",
386 NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK,
387 rd9122S_sizes, RD9134LID, 1, "9122S",
388 NRD7912PBPT, NRD7912PTRK, NRD7912PBPT * NRD7912PTRK,
389 rd7912P_sizes, RD7912PID, 0, "7912P",
390 NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK,
391 rd7914P_sizes, RD7914PID, 0, "7914P",
392 NRD7958ABPT, NRD7958ATRK, NRD7958ABPT * NRD7958ATRK,
393 rd7958A_sizes, RD7958AID, 0, "7958A",
394 NRD7957ABPT, NRD7957ATRK, NRD7957ABPT * NRD7957ATRK,
395 rd7957A_sizes, RD7957AID, 0, "7957A",
396 NRD7933HBPT, NRD7933HTRK, NRD7933HBPT * NRD7933HTRK,
397 rd7933H_sizes, RD7933HID, 0, "7933H",
398 NRD9134LBPT, NRD9134LTRK, NRD9134LBPT * NRD9134LTRK,
399 rd9134L_sizes, RD9134LID, 1, "9134L",
400 NRD7936HBPT, NRD7936HTRK, NRD7936HBPT * NRD7936HTRK,
401 rd7936H_sizes, RD7936HID, 0, "7936H",
402 NRD7937HBPT, NRD7937HTRK, NRD7937HBPT * NRD7937HTRK,
403 rd7937H_sizes, RD7937HID, 0, "7937H",
404 NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK,
405 rd7914P_sizes, RD7914CTID, 0, "7914CT",
406 NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK,
407 rd7945A_sizes, RD7946AID, 0, "7946A",
408 NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK,
409 rd9122S_sizes, RD9134LID, 1, "9122D",
410 NRD7957BBPT, NRD7957BTRK, NRD7957BBPT * NRD7957BTRK,
411 rd7957B_sizes, RD7957BID, 0, "7957B",
412 NRD7958BBPT, NRD7958BTRK, NRD7958BBPT * NRD7958BTRK,
413 rd7958B_sizes, RD7958BID, 0, "7958B",
414 NRD7959BBPT, NRD7959BTRK, NRD7959BBPT * NRD7959BTRK,
415 rd7959B_sizes, RD7959BID, 0, "7959B",
416 NRD2200ABPT, NRD2200ATRK, NRD2200ABPT * NRD2200ATRK,
417 rd2200A_sizes, RD2200AID, 0, "2200A",
418 NRD2203ABPT, NRD2203ATRK, NRD2203ABPT * NRD2203ATRK,
419 rd2203A_sizes, RD2203AID, 0, "2203A",
420 };
421 int nrdinfo = sizeof(rdinfo) / sizeof(rdinfo[0]);
422
423 struct buf rdtab[NRD];
424
425 #define rdunit(x) (minor(x) >> 3)
426 #define rdpart(x) (minor(x) & 0x7)
427 #define rdpunit(x) ((x) & 7)
428 #define b_cylin b_resid
429 #define RDRETRY 5
430 #define RDWAITC 1 /* min time for timeout in seconds */
431
432 int rderrthresh = RDRETRY-1; /* when to start reporting errors */
433
434 rdinit(hd)
435 register struct hp_device *hd;
436 {
437 register struct rd_softc *rs = &rd_softc[hd->hp_unit];
438
439 rs->sc_hd = hd;
440 rs->sc_punit = rdpunit(hd->hp_flags);
441 rs->sc_type = rdident(rs, hd);
442 if (rs->sc_type < 0)
443 return(0);
444 rs->sc_dq.dq_ctlr = hd->hp_ctlr;
445 rs->sc_dq.dq_unit = hd->hp_unit;
446 rs->sc_dq.dq_slave = hd->hp_slave;
447 rs->sc_dq.dq_driver = &rddriver;
448 rs->sc_info = &rdinfo[rs->sc_type];
449 rs->sc_flags = RDF_ALIVE;
450 #ifdef DEBUG
451 /* always report errors */
452 if (rddebug & RDB_ERROR)
453 rderrthresh = 0;
454 #endif
455 return(1);
456 }
457
458 rdident(rs, hd)
459 struct rd_softc *rs;
460 struct hp_device *hd;
461 {
462 struct rd_describe desc;
463 u_char stat, cmd[3];
464 int unit, lunit;
465 char name[7];
466 register int ctlr, slave, id, i;
467
468 ctlr = hd->hp_ctlr;
469 slave = hd->hp_slave;
470 unit = rs->sc_punit;
471 lunit = hd->hp_unit;
472
473 /*
474 * Grab device id and make sure:
475 * 1. It is a CS80 device.
476 * 2. It is one of the types we support.
477 * 3. If it is a 7946, we are accessing the disk unit (0)
478 */
479 id = hpibid(ctlr, slave);
480 #ifdef DEBUG
481 if (rddebug & RDB_IDENT)
482 printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id);
483 #endif
484 if ((id & 0x200) == 0)
485 return(-1);
486 for (i = 0; i < nrdinfo; i++)
487 if (id == rdinfo[i].hwid)
488 break;
489 if (i == nrdinfo || unit > rdinfo[i].maxunum)
490 return(-1);
491 id = i;
492
493 /*
494 * Reset drive and collect device description.
495 * Don't really use the description info right now but
496 * might come in handy in the future (for disk labels).
497 */
498 rdreset(rs, hd);
499 cmd[0] = C_SUNIT(unit);
500 cmd[1] = C_SVOL(0);
501 cmd[2] = C_DESC;
502 hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd));
503 hpibrecv(ctlr, slave, C_EXEC, &desc, 37);
504 hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat));
505 bzero(name, sizeof(name));
506 if (!stat) {
507 register int n = desc.d_name;
508 for (i = 5; i >= 0; i--) {
509 name[i] = (n & 0xf) + '0';
510 n >>= 4;
511 }
512 /* use drive characteristics to calculate xfer rate */
513 rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime;
514 }
515 #ifdef DEBUG
516 if (rddebug & RDB_IDENT) {
517 printf("rd%d: name: %x ('%s')\n",
518 lunit, desc.d_name, name);
519 printf(" iuw %x, maxxfr %d, ctype %d\n",
520 desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype);
521 printf(" utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n",
522 desc.d_utype, desc.d_sectsize,
523 desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime);
524 printf(" avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n",
525 desc.d_uavexfr, desc.d_retry, desc.d_access,
526 desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte);
527 printf(" maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n",
528 desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect,
529 desc.d_maxvsectl, desc.d_interleave);
530 }
531 #endif
532 /*
533 * Take care of a couple of anomolies:
534 * 1. 7945A and 7946A both return same HW id
535 * 2. 9122S and 9134D both return same HW id
536 * 3. 9122D and 9134L both return same HW id
537 */
538 switch (rdinfo[id].hwid) {
539 case RD7946AID:
540 if (bcmp(name, "079450", 6) == 0)
541 id = RD7945A;
542 else
543 id = RD7946A;
544 break;
545
546 case RD9134LID:
547 if (bcmp(name, "091340", 6) == 0)
548 id = RD9134L;
549 else
550 id = RD9122D;
551 break;
552
553 case RD9134DID:
554 if (bcmp(name, "091220", 6) == 0)
555 id = RD9122S;
556 else
557 id = RD9134D;
558 break;
559 }
560 printf("rd%d: %s\n", lunit, rdinfo[id].desc);
561 return(id);
562 }
563
564 rdreset(rs, hd)
565 register struct rd_softc *rs;
566 register struct hp_device *hd;
567 {
568 u_char stat;
569
570 rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit);
571 rs->sc_clear.c_cmd = C_CLEAR;
572 hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear,
573 sizeof(rs->sc_clear));
574 hpibswait(hd->hp_ctlr, hd->hp_slave);
575 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
576 rs->sc_src.c_unit = C_SUNIT(RDCTLR);
577 rs->sc_src.c_nop = C_NOP;
578 rs->sc_src.c_cmd = C_SREL;
579 rs->sc_src.c_param = C_REL;
580 hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src,
581 sizeof(rs->sc_src));
582 hpibswait(hd->hp_ctlr, hd->hp_slave);
583 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
584 rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit);
585 rs->sc_ssmc.c_cmd = C_SSM;
586 rs->sc_ssmc.c_refm = REF_MASK;
587 rs->sc_ssmc.c_fefm = FEF_MASK;
588 rs->sc_ssmc.c_aefm = AEF_MASK;
589 rs->sc_ssmc.c_iefm = IEF_MASK;
590 hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc,
591 sizeof(rs->sc_ssmc));
592 hpibswait(hd->hp_ctlr, hd->hp_slave);
593 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
594 #ifdef DEBUG
595 rdstats[hd->hp_unit].rdresets++;
596 #endif
597 }
598
599 int
600 rdopen(dev, flags, mode, p)
601 dev_t dev;
602 int flags, mode;
603 struct proc *p;
604 {
605 register int unit = rdunit(dev);
606 register struct rd_softc *rs = &rd_softc[unit];
607
608 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
609 return(ENXIO);
610 if (rs->sc_hd->hp_dk >= 0) {
611 /* guess at xfer rate based on 3600 rpm (60 rps) */
612 if (rs->sc_wpms == 0)
613 rs->sc_wpms = 60 * rs->sc_info->nbpt * DEV_BSIZE / 2;
614 dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms;
615 }
616 return(0);
617 }
618
619 rdstrategy(bp)
620 register struct buf *bp;
621 {
622 register int unit = rdunit(bp->b_dev);
623 register struct rd_softc *rs = &rd_softc[unit];
624 register struct size *pinfo = &rs->sc_info->sizes[rdpart(bp->b_dev)];
625 register struct buf *dp = &rdtab[unit];
626 register daddr_t bn;
627 register int sz, s;
628
629 #ifdef DEBUG
630 if (rddebug & RDB_FOLLOW)
631 printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n",
632 bp, bp->b_dev, bp->b_blkno, bp->b_bcount,
633 (bp->b_flags & B_READ) ? 'R' : 'W');
634 #endif
635 bn = bp->b_blkno;
636 sz = howmany(bp->b_bcount, DEV_BSIZE);
637 if (bn < 0 || bn + sz > pinfo->nblocks) {
638 sz = pinfo->nblocks - bn;
639 if (sz == 0) {
640 bp->b_resid = bp->b_bcount;
641 goto done;
642 }
643 if (sz < 0) {
644 bp->b_error = EINVAL;
645 bp->b_flags |= B_ERROR;
646 goto done;
647 }
648 bp->b_bcount = dbtob(sz);
649 }
650 bp->b_cylin = bn / rs->sc_info->nbpc + pinfo->cyloff;
651 s = splbio();
652 disksort(dp, bp);
653 if (dp->b_active == 0) {
654 dp->b_active = 1;
655 rdustart(unit);
656 }
657 splx(s);
658 return;
659 done:
660 biodone(bp);
661 }
662
663 /*
664 * Called from timeout() when handling maintenance releases
665 */
666 rdrestart(unit)
667 int unit;
668 {
669 int s = splbio();
670 rdustart(unit);
671 splx(s);
672 }
673
674 rdustart(unit)
675 register int unit;
676 {
677 register struct buf *bp;
678 register struct rd_softc *rs = &rd_softc[unit];
679
680 bp = rdtab[unit].b_actf;
681 rs->sc_addr = bp->b_un.b_addr;
682 rs->sc_resid = bp->b_bcount;
683 if (hpibreq(&rs->sc_dq))
684 rdstart(unit);
685 }
686
687 rdstart(unit)
688 register int unit;
689 {
690 register struct rd_softc *rs = &rd_softc[unit];
691 register struct buf *bp = rdtab[unit].b_actf;
692 register struct hp_device *hp = rs->sc_hd;
693 register int part;
694
695 again:
696 #ifdef DEBUG
697 if (rddebug & RDB_FOLLOW)
698 printf("rdstart(%d): bp %x, %c\n", unit, bp,
699 (bp->b_flags & B_READ) ? 'R' : 'W');
700 #endif
701 part = rdpart(bp->b_dev);
702 rs->sc_flags |= RDF_SEEK;
703 rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
704 rs->sc_ioc.c_volume = C_SVOL(0);
705 rs->sc_ioc.c_saddr = C_SADDR;
706 rs->sc_ioc.c_hiaddr = 0;
707 rs->sc_ioc.c_addr = RDBTOS(bp->b_blkno + rs->sc_info->nbpc *
708 rs->sc_info->sizes[part].cyloff);
709 rs->sc_ioc.c_nop2 = C_NOP;
710 rs->sc_ioc.c_slen = C_SLEN;
711 rs->sc_ioc.c_len = rs->sc_resid;
712 rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE;
713 #ifdef DEBUG
714 if (rddebug & RDB_IO)
715 printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n",
716 hp->hp_ctlr, hp->hp_slave, C_CMD,
717 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
718 #endif
719 if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit,
720 sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) {
721 if (hp->hp_dk >= 0) {
722 dk_busy |= 1 << hp->hp_dk;
723 dk_seek[hp->hp_dk]++;
724 }
725 #ifdef DEBUG
726 if (rddebug & RDB_IO)
727 printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr);
728 #endif
729 hpibawait(hp->hp_ctlr);
730 return;
731 }
732 /*
733 * Experience has shown that the hpibwait in this hpibsend will
734 * occasionally timeout. It appears to occur mostly on old 7914
735 * drives with full maintenance tracks. We should probably
736 * integrate this with the backoff code in rderror.
737 */
738 #ifdef DEBUG
739 if (rddebug & RDB_ERROR)
740 printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n",
741 unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
742 bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt);
743 rdstats[unit].rdretries++;
744 #endif
745 rs->sc_flags &= ~RDF_SEEK;
746 rdreset(rs, hp);
747 if (rdtab[unit].b_errcnt++ < RDRETRY)
748 goto again;
749 printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n",
750 unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
751 bp->b_blkno, rs->sc_resid);
752 rdtab[unit].b_errcnt = 0;
753 rdtab[unit].b_actf = bp->b_actf;
754 bp->b_flags |= B_ERROR;
755 bp->b_error = EIO;
756 bp->b_resid = 0;
757 biodone(bp);
758 hpibfree(&rs->sc_dq);
759 bp = rdtab[unit].b_actf;
760 if (bp == NULL) {
761 rdtab[unit].b_active = 0;
762 return;
763 }
764 rs->sc_addr = bp->b_un.b_addr;
765 rs->sc_resid = bp->b_bcount;
766 if (hpibreq(&rs->sc_dq))
767 goto again;
768 }
769
770 rdgo(unit)
771 register int unit;
772 {
773 register struct rd_softc *rs = &rd_softc[unit];
774 register struct hp_device *hp = rs->sc_hd;
775 struct buf *bp = rdtab[unit].b_actf;
776
777 if (hp->hp_dk >= 0) {
778 dk_busy |= 1 << hp->hp_dk;
779 dk_xfer[hp->hp_dk]++;
780 dk_wds[hp->hp_dk] += rs->sc_resid >> 6;
781 }
782 hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC,
783 rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ);
784 }
785
786 rdintr(unit)
787 register int unit;
788 {
789 register struct rd_softc *rs = &rd_softc[unit];
790 register struct buf *bp = rdtab[unit].b_actf;
791 register struct hp_device *hp = rs->sc_hd;
792 u_char stat = 13; /* in case hpibrecv fails */
793 int rv, restart;
794
795 #ifdef DEBUG
796 if (rddebug & RDB_FOLLOW)
797 printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp,
798 (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags);
799 if (bp == NULL) {
800 printf("rd%d: bp == NULL\n", unit);
801 return;
802 }
803 #endif
804 if (hp->hp_dk >= 0)
805 dk_busy &= ~(1 << hp->hp_dk);
806 if (rs->sc_flags & RDF_SEEK) {
807 rs->sc_flags &= ~RDF_SEEK;
808 if (hpibustart(hp->hp_ctlr))
809 rdgo(unit);
810 return;
811 }
812 if ((rs->sc_flags & RDF_SWAIT) == 0) {
813 #ifdef DEBUG
814 rdstats[unit].rdpolltries++;
815 #endif
816 if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) {
817 #ifdef DEBUG
818 rdstats[unit].rdpollwaits++;
819 #endif
820 if (hp->hp_dk >= 0)
821 dk_busy |= 1 << hp->hp_dk;
822 rs->sc_flags |= RDF_SWAIT;
823 hpibawait(hp->hp_ctlr);
824 return;
825 }
826 } else
827 rs->sc_flags &= ~RDF_SWAIT;
828 rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
829 if (rv != 1 || stat) {
830 #ifdef DEBUG
831 if (rddebug & RDB_ERROR)
832 printf("rdintr: recv failed or bad stat %d\n", stat);
833 #endif
834 restart = rderror(unit);
835 #ifdef DEBUG
836 rdstats[unit].rdretries++;
837 #endif
838 if (rdtab[unit].b_errcnt++ < RDRETRY) {
839 if (restart)
840 rdstart(unit);
841 return;
842 }
843 bp->b_flags |= B_ERROR;
844 bp->b_error = EIO;
845 }
846 rdtab[unit].b_errcnt = 0;
847 rdtab[unit].b_actf = bp->b_actf;
848 bp->b_resid = 0;
849 biodone(bp);
850 hpibfree(&rs->sc_dq);
851 if (rdtab[unit].b_actf)
852 rdustart(unit);
853 else
854 rdtab[unit].b_active = 0;
855 }
856
857 rdstatus(rs)
858 register struct rd_softc *rs;
859 {
860 register int c, s;
861 u_char stat;
862 int rv;
863
864 c = rs->sc_hd->hp_ctlr;
865 s = rs->sc_hd->hp_slave;
866 rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit);
867 rs->sc_rsc.c_sram = C_SRAM;
868 rs->sc_rsc.c_ram = C_RAM;
869 rs->sc_rsc.c_cmd = C_STATUS;
870 bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat));
871 rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc));
872 if (rv != sizeof(rs->sc_rsc)) {
873 #ifdef DEBUG
874 if (rddebug & RDB_STATUS)
875 printf("rdstatus: send C_CMD failed %d != %d\n",
876 rv, sizeof(rs->sc_rsc));
877 #endif
878 return(1);
879 }
880 rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat));
881 if (rv != sizeof(rs->sc_stat)) {
882 #ifdef DEBUG
883 if (rddebug & RDB_STATUS)
884 printf("rdstatus: send C_EXEC failed %d != %d\n",
885 rv, sizeof(rs->sc_stat));
886 #endif
887 return(1);
888 }
889 rv = hpibrecv(c, s, C_QSTAT, &stat, 1);
890 if (rv != 1 || stat) {
891 #ifdef DEBUG
892 if (rddebug & RDB_STATUS)
893 printf("rdstatus: recv failed %d or bad stat %d\n",
894 rv, stat);
895 #endif
896 return(1);
897 }
898 return(0);
899 }
900
901 /*
902 * Deal with errors.
903 * Returns 1 if request should be restarted,
904 * 0 if we should just quietly give up.
905 */
906 rderror(unit)
907 int unit;
908 {
909 struct rd_softc *rs = &rd_softc[unit];
910 register struct rd_stat *sp;
911 struct buf *bp;
912 daddr_t hwbn, pbn;
913
914 if (rdstatus(rs)) {
915 #ifdef DEBUG
916 printf("rd%d: couldn't get status\n", unit);
917 #endif
918 rdreset(rs, rs->sc_hd);
919 return(1);
920 }
921 sp = &rs->sc_stat;
922 if (sp->c_fef & FEF_REXMT)
923 return(1);
924 if (sp->c_fef & FEF_PF) {
925 rdreset(rs, rs->sc_hd);
926 return(1);
927 }
928 /*
929 * Unit requests release for internal maintenance.
930 * We just delay awhile and try again later. Use expontially
931 * increasing backoff ala ethernet drivers since we don't really
932 * know how long the maintenance will take. With RDWAITC and
933 * RDRETRY as defined, the range is 1 to 32 seconds.
934 */
935 if (sp->c_fef & FEF_IMR) {
936 extern int hz;
937 int rdtimo = RDWAITC << rdtab[unit].b_errcnt;
938 #ifdef DEBUG
939 printf("rd%d: internal maintenance, %d second timeout\n",
940 unit, rdtimo);
941 rdstats[unit].rdtimeouts++;
942 #endif
943 hpibfree(&rs->sc_dq);
944 timeout(rdrestart, unit, rdtimo*hz);
945 return(0);
946 }
947 /*
948 * Only report error if we have reached the error reporting
949 * threshhold. By default, this will only report after the
950 * retry limit has been exceeded.
951 */
952 if (rdtab[unit].b_errcnt < rderrthresh)
953 return(1);
954
955 /*
956 * First conjure up the block number at which the error occured.
957 * Note that not all errors report a block number, in that case
958 * we just use b_blkno.
959 */
960 bp = rdtab[unit].b_actf;
961 pbn = rs->sc_info->nbpc *
962 rs->sc_info->sizes[rdpart(bp->b_dev)].cyloff;
963 if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) ||
964 (sp->c_ief & IEF_RRMASK)) {
965 hwbn = RDBTOS(pbn + bp->b_blkno);
966 pbn = bp->b_blkno;
967 } else {
968 hwbn = sp->c_blk;
969 pbn = RDSTOB(hwbn) - pbn;
970 }
971 /*
972 * Now output a generic message suitable for badsect.
973 * Note that we don't use harderr cuz it just prints
974 * out b_blkno which is just the beginning block number
975 * of the transfer, not necessary where the error occured.
976 */
977 printf("rd%d%c: hard error sn%d\n",
978 rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn);
979 /*
980 * Now report the status as returned by the hardware with
981 * attempt at interpretation (unless debugging).
982 */
983 printf("rd%d %s error:",
984 unit, (bp->b_flags & B_READ) ? "read" : "write");
985 #ifdef DEBUG
986 if (rddebug & RDB_ERROR) {
987 /* status info */
988 printf("\n volume: %d, unit: %d\n",
989 (sp->c_vu>>4)&0xF, sp->c_vu&0xF);
990 rdprinterr("reject", sp->c_ref, err_reject);
991 rdprinterr("fault", sp->c_fef, err_fault);
992 rdprinterr("access", sp->c_aef, err_access);
993 rdprinterr("info", sp->c_ief, err_info);
994 printf(" block: %d, P1-P10: ", hwbn);
995 printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
996 printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
997 printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
998 /* command */
999 printf(" ioc: ");
1000 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8));
1001 printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4));
1002 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8));
1003 printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4));
1004 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8));
1005 printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4));
1006 return(1);
1007 }
1008 #endif
1009 printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n",
1010 (sp->c_vu>>4)&0xF, sp->c_vu&0xF,
1011 sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief);
1012 printf("P1-P10: ");
1013 printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
1014 printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
1015 printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
1016 return(1);
1017 }
1018
1019 int
1020 rdread(dev, uio, flags)
1021 dev_t dev;
1022 struct uio *uio;
1023 int flags;
1024 {
1025 register int unit = rdunit(dev);
1026
1027 return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio));
1028 }
1029
1030 int
1031 rdwrite(dev, uio, flags)
1032 dev_t dev;
1033 struct uio *uio;
1034 int flags;
1035 {
1036 register int unit = rdunit(dev);
1037
1038 return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio));
1039 }
1040
1041 int
1042 rdioctl(dev, cmd, data, flag, p)
1043 dev_t dev;
1044 int cmd;
1045 caddr_t data;
1046 int flag;
1047 struct proc *p;
1048 {
1049 return(EINVAL);
1050 }
1051
1052 int
1053 rdsize(dev)
1054 dev_t dev;
1055 {
1056 register int unit = rdunit(dev);
1057 register struct rd_softc *rs = &rd_softc[unit];
1058
1059 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1060 return(-1);
1061 return(rs->sc_info->sizes[rdpart(dev)].nblocks);
1062 }
1063
1064 #ifdef DEBUG
1065 rdprinterr(str, err, tab)
1066 char *str;
1067 short err;
1068 char *tab[];
1069 {
1070 register int i;
1071 int printed;
1072
1073 if (err == 0)
1074 return;
1075 printf(" %s error field:", str, err);
1076 printed = 0;
1077 for (i = 0; i < 16; i++)
1078 if (err & (0x8000 >> i))
1079 printf("%s%s", printed++ ? " + " : " ", tab[i]);
1080 printf("\n");
1081 }
1082 #endif
1083
1084 /*
1085 * Non-interrupt driven, non-dma dump routine.
1086 */
1087 int
1088 rddump(dev)
1089 dev_t dev;
1090 {
1091 int part = rdpart(dev);
1092 int unit = rdunit(dev);
1093 register struct rd_softc *rs = &rd_softc[unit];
1094 register struct hp_device *hp = rs->sc_hd;
1095 register daddr_t baddr;
1096 register int maddr, pages, i;
1097 char stat;
1098 extern int lowram, dumpsize;
1099 #ifdef DEBUG
1100 extern int pmapdebug;
1101 pmapdebug = 0;
1102 #endif
1103
1104 pages = dumpsize;
1105 #ifdef DEBUG
1106 if (rddebug & RDB_DUMP)
1107 printf("rddump(%x): u %d p %d dumplo %d ram %x pmem %d\n",
1108 dev, unit, part, dumplo, lowram, ctod(pages));
1109 #endif
1110 /* is drive ok? */
1111 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1112 return (ENXIO);
1113 /* HPIB idle? */
1114 if (!hpibreq(&rs->sc_dq)) {
1115 #ifdef DEBUG
1116 /* is this a safe thing to do?? */
1117 hpibreset(hp->hp_ctlr);
1118 rdreset(rs, rs->sc_hd);
1119 printf("[ drive %d reset ] ", unit);
1120 #else
1121 return (EFAULT);
1122 #endif
1123 }
1124 /* dump parameters in range? */
1125 if (dumplo < 0 || dumplo >= rs->sc_info->sizes[part].nblocks)
1126 return (EINVAL);
1127 if (dumplo + ctod(pages) > rs->sc_info->sizes[part].nblocks)
1128 pages = dtoc(rs->sc_info->sizes[part].nblocks - dumplo);
1129 maddr = lowram;
1130 baddr = dumplo + rs->sc_info->nbpc * rs->sc_info->sizes[part].cyloff;
1131 #ifdef DEBUG
1132 if (rddebug & RDB_DUMP)
1133 printf("rddump: dumping %d pages from %x to disk block %d\n",
1134 pages, maddr, baddr);
1135 #endif
1136 for (i = 0; i < pages; i++) {
1137 #ifdef DEBUG
1138 #define NPGMB (1024*1024/NBPG)
1139 /* print out how many Mbs we have dumped */
1140 if (i && (i % NPGMB) == 0)
1141 printf("%d ", i / NPGMB);
1142 #undef NPBMG
1143 #endif
1144 rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
1145 rs->sc_ioc.c_volume = C_SVOL(0);
1146 rs->sc_ioc.c_saddr = C_SADDR;
1147 rs->sc_ioc.c_hiaddr = 0;
1148 rs->sc_ioc.c_addr = RDBTOS(baddr);
1149 rs->sc_ioc.c_nop2 = C_NOP;
1150 rs->sc_ioc.c_slen = C_SLEN;
1151 rs->sc_ioc.c_len = NBPG;
1152 rs->sc_ioc.c_cmd = C_WRITE;
1153 hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD,
1154 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
1155 if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1156 #ifdef DEBUG
1157 if (rddebug & RDB_DUMP)
1158 printf("rddump: IOC wait timeout\n");
1159 #endif
1160 return (EIO);
1161 }
1162 pmap_enter(pmap_kernel(), vmmap, maddr, VM_PROT_READ, TRUE);
1163 hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG);
1164 if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1165 #ifdef DEBUG
1166 if (rddebug & RDB_DUMP)
1167 printf("rddump: write wait timeout\n");
1168 #endif
1169 }
1170 hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
1171 if (stat) {
1172 #ifdef DEBUG
1173 if (rddebug & RDB_DUMP)
1174 printf("rddump: write failed, status %x\n",
1175 stat);
1176 #endif
1177 return (EIO);
1178 }
1179 maddr += NBPG;
1180 baddr += ctod(1);
1181 }
1182 return (0);
1183 }
1184 #endif
1185