rd.c revision 1.3 1 /*
2 * Copyright (c) 1988 University of Utah.
3 * Copyright (c) 1982, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the Systems Programming Group of the University of Utah Computer
8 * Science Department.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: Utah Hdr: rd.c 1.38 90/10/12
39 * from: @(#)rd.c 7.9 (Berkeley) 5/7/91
40 * $Id: rd.c,v 1.3 1993/08/01 19:24:28 mycroft Exp $
41 */
42
43 /*
44 * CS80/SS80 disk driver
45 */
46 #include "rd.h"
47 #if NRD > 0
48
49 #include "sys/param.h"
50 #include "sys/systm.h"
51 #include "sys/errno.h"
52 #include "sys/dkstat.h"
53 #include "sys/disklabel.h"
54 #include "sys/buf.h"
55 #include "sys/uio.h"
56
57 #include "device.h"
58 #include "rdreg.h"
59
60 #include "vm/vm_param.h"
61 #include "vm/lock.h"
62 #include "vm/vm_statistics.h"
63 #include "vm/pmap.h"
64 #include "vm/vm_prot.h"
65
66 int rdinit(), rdstart(), rdgo(), rdintr();
67 struct driver rddriver = {
68 rdinit, "rd", rdstart, rdgo, rdintr,
69 };
70
71 struct rd_softc {
72 struct hp_device *sc_hd;
73 int sc_flags;
74 short sc_type;
75 short sc_punit;
76 char *sc_addr;
77 int sc_resid;
78 u_int sc_wpms;
79 struct rdinfo *sc_info;
80 struct devqueue sc_dq;
81 struct rd_iocmd sc_ioc;
82 struct rd_rscmd sc_rsc;
83 struct rd_stat sc_stat;
84 struct rd_ssmcmd sc_ssmc;
85 struct rd_srcmd sc_src;
86 struct rd_clearcmd sc_clear;
87 } rd_softc[NRD];
88
89 /* sc_flags values */
90 #define RDF_ALIVE 0x1
91 #define RDF_SEEK 0x2
92 #define RDF_SWAIT 0x4
93
94 struct size {
95 daddr_t nblocks;
96 int cyloff;
97 };
98
99 #ifdef DEBUG
100 int rddebug = 0x80;
101 #define RDB_FOLLOW 0x01
102 #define RDB_STATUS 0x02
103 #define RDB_IDENT 0x04
104 #define RDB_IO 0x08
105 #define RDB_ASYNC 0x10
106 #define RDB_ERROR 0x80
107 #define RDB_DUMP 0x80000000
108
109 struct rdstats {
110 long rdretries;
111 long rdresets;
112 long rdtimeouts;
113 long rdpolltries;
114 long rdpollwaits;
115 } rdstats[NRD];
116
117 /* error message tables */
118 char *err_reject[] = {
119 0, 0,
120 "channel parity error", /* 0x2000 */
121 0, 0,
122 "illegal opcode", /* 0x0400 */
123 "module addressing", /* 0x0200 */
124 "address bounds", /* 0x0100 */
125 "parameter bounds", /* 0x0080 */
126 "illegal parameter", /* 0x0040 */
127 "message sequence", /* 0x0020 */
128 0,
129 "message length", /* 0x0008 */
130 0, 0, 0
131 };
132
133 char *err_fault[] = {
134 0,
135 "cross unit", /* 0x4000 */
136 0,
137 "controller fault", /* 0x1000 */
138 0, 0,
139 "unit fault", /* 0x0200 */
140 0,
141 "diagnostic result", /* 0x0080 */
142 0,
143 "operator release request", /* 0x0020 */
144 "diagnostic release request", /* 0x0010 */
145 "internal maintenance release request", /* 0x0008 */
146 0,
147 "power fail", /* 0x0002 */
148 "retransmit" /* 0x0001 */
149 };
150
151 char *err_access[] = {
152 "illegal parallel operation", /* 0x8000 */
153 "uninitialized media", /* 0x4000 */
154 "no spares available", /* 0x2000 */
155 "not ready", /* 0x1000 */
156 "write protect", /* 0x0800 */
157 "no data found", /* 0x0400 */
158 0, 0,
159 "unrecoverable data overflow", /* 0x0080 */
160 "unrecoverable data", /* 0x0040 */
161 0,
162 "end of file", /* 0x0010 */
163 "end of volume", /* 0x0008 */
164 0, 0, 0
165 };
166
167 char *err_info[] = {
168 "operator release request", /* 0x8000 */
169 "diagnostic release request", /* 0x4000 */
170 "internal maintenance release request", /* 0x2000 */
171 "media wear", /* 0x1000 */
172 "latency induced", /* 0x0800 */
173 0, 0,
174 "auto sparing invoked", /* 0x0100 */
175 0,
176 "recoverable data overflow", /* 0x0040 */
177 "marginal data", /* 0x0020 */
178 "recoverable data", /* 0x0010 */
179 0,
180 "maintenance track overflow", /* 0x0004 */
181 0, 0
182 };
183 #endif
184
185 /*
186 * CS/80 partitions. We reserve the first cylinder for a LIF
187 * style boot directory (the 8k allowed in the BSD filesystem
188 * is just way too small). This boot area is outside of all but
189 * the C partition. This implies that you cannot use the C
190 * partition on a bootable disk since the filesystem would overlay
191 * the boot area. You must use the A partition.
192 *
193 * These maps support four basic layouts:
194 *
195 * A/B/G: This is the "traditional" setup for a bootable disk.
196 * A is the root partition, B the swap, and G a user partition.
197 * A/D/H: This is a setup for bootable systems requiring more swap
198 * (e.g. those who use HPCL). It has A as the root, D as a
199 * larger swap, and H as a smaller user partition.
200 * A/D/E/F: Similar to A/D/H with E and F breaking H into two partitions.
201 * E could be used for /usr and F for users.
202 * C: This gives a single, non-bootable, large user filesystem.
203 * Good for second drives on a machine (e.g. /usr/src).
204 */
205 struct size rd7945A_sizes[8] = {
206 RDSZ(15904), 1, /* A=cyl 1 thru 142 */
207 RDSZ(20160), 143, /* B=cyl 143 thru 322 */
208 RDSZ(108416), 0, /* C=cyl 0 thru 967 */
209 RDSZ(40320), 143, /* D=cyl 143 thru 502 */
210 RDSZ(0), 0, /* E=<undefined> */
211 RDSZ(0), 0, /* F=<undefined> */
212 RDSZ(72240), 323, /* G=cyl 323 thru 967 */
213 RDSZ(52080), 503, /* H=cyl 503 thru 967 */
214 }, rd9134D_sizes[8] = {
215 RDSZ(15936), 1, /* A=cyl 1 thru 166 */
216 RDSZ(13056), 167, /* B=cyl 167 thru 302 */
217 RDSZ(29088), 0, /* C=cyl 0 thru 302 */
218 RDSZ(0), 0, /* D=<undefined> */
219 RDSZ(0), 0, /* E=<undefined> */
220 RDSZ(0), 0, /* F=<undefined> */
221 RDSZ(0), 0, /* G=<undefined> */
222 RDSZ(0), 0, /* H=<undefined> */
223 }, rd9122S_sizes[8] = {
224 RDSZ(0), 0, /* A=<undefined> */
225 RDSZ(0), 0, /* B=<undefined> */
226 RDSZ(1232), 0, /* C=cyl 0 thru 76 */
227 RDSZ(0), 0, /* D=<undefined> */
228 RDSZ(0), 0, /* E=<undefined> */
229 RDSZ(0), 0, /* F=<undefined> */
230 RDSZ(0), 0, /* G=<undefined> */
231 RDSZ(0), 0, /* H=<undefined> */
232 }, rd7912P_sizes[8] = {
233 RDSZ(15904), 0, /* A=cyl 1 thru 71 */
234 RDSZ(22400), 72, /* B=cyl 72 thru 171 */
235 RDSZ(128128), 0, /* C=cyl 0 thru 571 */
236 RDSZ(42560), 72, /* D=cyl 72 thru 261 */
237 RDSZ(0), 292, /* E=<undefined> */
238 RDSZ(0), 542, /* F=<undefined> */
239 RDSZ(89600), 172, /* G=cyl 221 thru 571 */
240 RDSZ(69440), 262, /* H=cyl 262 thru 571 */
241 }, rd7914P_sizes[8] = {
242 RDSZ(15904), 1, /* A=cyl 1 thru 71 */
243 RDSZ(40320), 72, /* B=cyl 72 thru 251 */
244 RDSZ(258048), 0, /* C=cyl 0 thru 1151 */
245 RDSZ(64960), 72, /* D=cyl 72 thru 361 */
246 RDSZ(98560), 362, /* E=cyl 362 thru 801 */
247 RDSZ(78400), 802, /* F=cyl 802 thru 1151 */
248 RDSZ(201600), 252, /* G=cyl 221 thru 1151 */
249 RDSZ(176960), 362, /* H=cyl 362 thru 1151 */
250 }, rd7933H_sizes[8] = {
251 RDSZ(16146), 1, /* A=cyl 1 thru 27 */
252 RDSZ(66976), 28, /* B=cyl 28 thru 139 */
253 RDSZ(789958), 0, /* C=cyl 0 thru 1320 */
254 RDSZ(16146), 140, /* D=cyl 140 thru 166 */
255 RDSZ(165646), 167, /* E=cyl 167 thru 443 */
256 RDSZ(165646), 444, /* F=cyl 444 thru 720 */
257 RDSZ(706238), 140, /* G=cyl 140 thru 1320 */
258 RDSZ(358800), 721, /* H=cyl 721 thru 1320 */
259 }, rd9134L_sizes[8] = {
260 RDSZ(15920), 1, /* A=cyl 1 thru 199 */
261 RDSZ(20000), 200, /* B=cyl 200 thru 449 */
262 RDSZ(77840), 0, /* C=cyl 0 thru 972 */
263 RDSZ(32000), 200, /* D=cyl 200 thru 599 */
264 RDSZ(0), 0, /* E=<undefined> */
265 RDSZ(0), 0, /* F=<undefined> */
266 RDSZ(41840), 450, /* G=cyl 450 thru 972 */
267 RDSZ(29840), 600, /* H=cyl 600 thru 972 */
268 }, rd7957A_sizes[8] = {
269 RDSZ(16016), 1, /* A=cyl 1 thru 104 */
270 RDSZ(24640), 105, /* B=cyl 105 thru 264 */
271 RDSZ(159544), 0, /* C=cyl 0 thru 1035 */
272 RDSZ(42350), 105, /* D=cyl 105 thru 379 */
273 RDSZ(54824), 380, /* E=cyl 380 thru 735 */
274 RDSZ(46200), 736, /* F=cyl 736 thru 1035 */
275 RDSZ(118734), 265, /* G=cyl 265 thru 1035 */
276 RDSZ(101024), 380, /* H=cyl 380 thru 1035 */
277 }, rd7958A_sizes[8] = {
278 RDSZ(16128), 1, /* A=cyl 1 thru 64 */
279 RDSZ(32256), 65, /* B=cyl 65 thru 192 */
280 RDSZ(255276), 0, /* C=cyl 0 thru 1012 */
281 RDSZ(48384), 65, /* D=cyl 65 thru 256 */
282 RDSZ(100800), 257, /* E=cyl 257 thru 656 */
283 RDSZ(89712), 657, /* F=cyl 657 thru 1012 */
284 RDSZ(206640), 193, /* G=cyl 193 thru 1012 */
285 RDSZ(190512), 257, /* H=cyl 257 thru 1012 */
286 }, rd7957B_sizes[8] = {
287 RDSZ(16002), 1, /* A=cyl 1 thru 127 */
288 RDSZ(32760), 128, /* B=cyl 128 thru 387 */
289 RDSZ(159894), 0, /* C=cyl 0 thru 1268 */
290 RDSZ(49140), 128, /* D=cyl 128 thru 517 */
291 RDSZ(50400), 518, /* E=cyl 518 thru 917 */
292 RDSZ(44226), 918, /* F=cyl 918 thru 1268 */
293 RDSZ(111006), 388, /* G=cyl 388 thru 1268 */
294 RDSZ(94626), 518, /* H=cyl 518 thru 1268 */
295 }, rd7958B_sizes[8] = {
296 RDSZ(16254), 1, /* A=cyl 1 thru 43 */
297 RDSZ(32886), 44, /* B=cyl 44 thru 130 */
298 RDSZ(297108), 0, /* C=cyl 0 thru 785 */
299 RDSZ(49140), 44, /* D=cyl 44 thru 173 */
300 RDSZ(121716), 174, /* E=cyl 174 thru 495 */
301 RDSZ(109620), 496, /* F=cyl 496 thru 785 */
302 RDSZ(247590), 131, /* G=cyl 131 thru 785 */
303 RDSZ(231336), 174, /* H=cyl 174 thru 785 */
304 }, rd7959B_sizes[8] = {
305 RDSZ(16254), 1, /* A=cyl 1 thru 43 */
306 RDSZ(49140), 44, /* B=cyl 44 thru 173 */
307 RDSZ(594216), 0, /* C=cyl 0 thru 1571 */
308 RDSZ(65772), 44, /* D=cyl 44 thru 217 */
309 RDSZ(303912), 218, /* E=cyl 218 thru 1021 */
310 RDSZ(207900), 1022, /* F=cyl 1022 thru 1571 */
311 RDSZ(528444), 174, /* G=cyl 174 thru 1571 */
312 RDSZ(511812), 218, /* H=cyl 218 thru 1571 */
313 }, rd2200A_sizes[8] = {
314 RDSZ(16272), 1, /* A=cyl 1 thru 36 */
315 RDSZ(49720), 37, /* B=cyl 37 thru 146 */
316 RDSZ(654948), 0, /* C=cyl 0 thru 1448 */
317 RDSZ(65992), 37, /* D=cyl 37 thru 182 */
318 RDSZ(304648), 183, /* E=cyl 183 thru 856 */
319 RDSZ(267584), 857, /* F=cyl 857 thru 1448 */
320 RDSZ(588504), 147, /* G=cyl 147 thru 1448 */
321 RDSZ(572232), 183, /* H=cyl 183 thru 1448 */
322 }, rd2203A_sizes[8] = {
323 /* modelled after the 7937; i.e. bogus */
324 RDSZ(16272), 1, /* A=cyl 1 thru 18 */
325 RDSZ(67800), 19, /* B=cyl 19 thru 93 */
326 RDSZ(1309896), 0, /* C=cyl 0 thru 1448 */
327 RDSZ(16272), 94, /* D=cyl 19 thru 111 */
328 RDSZ(305552), 112, /* E=cyl 112 thru 449 */
329 RDSZ(305552), 450, /* F=cyl 450 thru 787 */
330 RDSZ(1224920), 94, /* G=cyl 94 thru 1448 */
331 RDSZ(597544), 788, /* H=cyl 788 thru 1448 */
332
333 #if DEV_BSIZE == 512
334 /*
335 * These values would not work for 1k,
336 * since the number of cylinders would be different.
337 */
338 }, rd7936H_sizes[8] = {
339 RDSZ(16359), 1, /* A=cyl 1 thru 19 */
340 RDSZ(67158), 20, /* B=cyl 20 thru 97 */
341 RDSZ(600978), 0, /* C=cyl 0 thru 697 */
342 RDSZ(16359), 98, /* D=cyl 98 thru 116 */
343 RDSZ(120540), 117, /* E=cyl 117 thru 256 */
344 RDSZ(120540), 256, /* F=cyl 256 thru 396 */
345 RDSZ(516600), 98, /* G=cyl 98 thru 697 */
346 RDSZ(259161), 397, /* H=cyl 397 thru 697 */
347 }, rd7937H_sizes[8] = {
348 #ifdef UTAH
349 RDSZ(15990), 1, /* A=cyl 1 thru 10 */
350 RDSZ(67158), 11, /* B=cyl 11 thru 52 */
351 RDSZ(1116102), 0, /* C=cyl 0 thru 697 */
352 RDSZ(124722), 53, /* D=cyl 53 thru 130 */
353 RDSZ(163098), 131, /* E=cyl 131 thru 232 */
354 RDSZ(287820), 233, /* F=cyl 233 thru 412 */
355 RDSZ(1031355), 53, /* G=cyl 53 thru 697 */
356 RDSZ(455715), 413, /* H=cyl 413 thru 697 */
357 #else
358 RDSZ(15990), 1, /* A=cyl 1 thru 10 */
359 RDSZ(67158), 11, /* B=cyl 11 thru 52 */
360 RDSZ(1116102), 0, /* C=cyl 0 thru 697 */
361 RDSZ(15990), 53, /* D=cyl 53 thru 62 */
362 RDSZ(246246), 63, /* E=cyl 63 thru 216 */
363 RDSZ(246246), 217, /* F=cyl 217 thru 370 */
364 RDSZ(1031355), 53, /* G=cyl 53 thru 697 */
365 RDSZ(522873), 371, /* H=cyl 371 thru 697 */
366 #endif
367 #endif
368 };
369
370 struct rdinfo {
371 int nbpt; /* DEV_BSIZE blocks per track */
372 int ntpc; /* tracks per cylinder */
373 int nbpc; /* blocks per cylinder */
374 struct size *sizes; /* default partition info (if no disklabel) */
375 short hwid; /* 2 byte HW id */
376 short maxunum; /* maximum allowed unit number */
377 char *desc; /* drive type description */
378 };
379
380 struct rdinfo rdinfo[] = {
381 NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK,
382 rd7945A_sizes, RD7946AID, 0, "7945A",
383 NRD9134DBPT, NRD9134DTRK, NRD9134DBPT * NRD9134DTRK,
384 rd9134D_sizes, RD9134DID, 1, "9134D",
385 NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK,
386 rd9122S_sizes, RD9134LID, 1, "9122S",
387 NRD7912PBPT, NRD7912PTRK, NRD7912PBPT * NRD7912PTRK,
388 rd7912P_sizes, RD7912PID, 0, "7912P",
389 NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK,
390 rd7914P_sizes, RD7914PID, 0, "7914P",
391 NRD7958ABPT, NRD7958ATRK, NRD7958ABPT * NRD7958ATRK,
392 rd7958A_sizes, RD7958AID, 0, "7958A",
393 NRD7957ABPT, NRD7957ATRK, NRD7957ABPT * NRD7957ATRK,
394 rd7957A_sizes, RD7957AID, 0, "7957A",
395 NRD7933HBPT, NRD7933HTRK, NRD7933HBPT * NRD7933HTRK,
396 rd7933H_sizes, RD7933HID, 0, "7933H",
397 NRD9134LBPT, NRD9134LTRK, NRD9134LBPT * NRD9134LTRK,
398 rd9134L_sizes, RD9134LID, 1, "9134L",
399 NRD7936HBPT, NRD7936HTRK, NRD7936HBPT * NRD7936HTRK,
400 rd7936H_sizes, RD7936HID, 0, "7936H",
401 NRD7937HBPT, NRD7937HTRK, NRD7937HBPT * NRD7937HTRK,
402 rd7937H_sizes, RD7937HID, 0, "7937H",
403 NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK,
404 rd7914P_sizes, RD7914CTID, 0, "7914CT",
405 NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK,
406 rd7945A_sizes, RD7946AID, 0, "7946A",
407 NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK,
408 rd9122S_sizes, RD9134LID, 1, "9122D",
409 NRD7957BBPT, NRD7957BTRK, NRD7957BBPT * NRD7957BTRK,
410 rd7957B_sizes, RD7957BID, 0, "7957B",
411 NRD7958BBPT, NRD7958BTRK, NRD7958BBPT * NRD7958BTRK,
412 rd7958B_sizes, RD7958BID, 0, "7958B",
413 NRD7959BBPT, NRD7959BTRK, NRD7959BBPT * NRD7959BTRK,
414 rd7959B_sizes, RD7959BID, 0, "7959B",
415 NRD2200ABPT, NRD2200ATRK, NRD2200ABPT * NRD2200ATRK,
416 rd2200A_sizes, RD2200AID, 0, "2200A",
417 NRD2203ABPT, NRD2203ATRK, NRD2203ABPT * NRD2203ATRK,
418 rd2203A_sizes, RD2203AID, 0, "2203A",
419 };
420 int nrdinfo = sizeof(rdinfo) / sizeof(rdinfo[0]);
421
422 struct buf rdtab[NRD];
423
424 #define rdunit(x) (minor(x) >> 3)
425 #define rdpart(x) (minor(x) & 0x7)
426 #define rdpunit(x) ((x) & 7)
427 #define b_cylin b_resid
428 #define RDRETRY 5
429 #define RDWAITC 1 /* min time for timeout in seconds */
430
431 int rderrthresh = RDRETRY-1; /* when to start reporting errors */
432
433 rdinit(hd)
434 register struct hp_device *hd;
435 {
436 register struct rd_softc *rs = &rd_softc[hd->hp_unit];
437
438 rs->sc_hd = hd;
439 rs->sc_punit = rdpunit(hd->hp_flags);
440 rs->sc_type = rdident(rs, hd);
441 if (rs->sc_type < 0)
442 return(0);
443 rs->sc_dq.dq_ctlr = hd->hp_ctlr;
444 rs->sc_dq.dq_unit = hd->hp_unit;
445 rs->sc_dq.dq_slave = hd->hp_slave;
446 rs->sc_dq.dq_driver = &rddriver;
447 rs->sc_info = &rdinfo[rs->sc_type];
448 rs->sc_flags = RDF_ALIVE;
449 #ifdef DEBUG
450 /* always report errors */
451 if (rddebug & RDB_ERROR)
452 rderrthresh = 0;
453 #endif
454 return(1);
455 }
456
457 rdident(rs, hd)
458 struct rd_softc *rs;
459 struct hp_device *hd;
460 {
461 struct rd_describe desc;
462 u_char stat, cmd[3];
463 int unit, lunit;
464 char name[7];
465 register int ctlr, slave, id, i;
466
467 ctlr = hd->hp_ctlr;
468 slave = hd->hp_slave;
469 unit = rs->sc_punit;
470 lunit = hd->hp_unit;
471
472 /*
473 * Grab device id and make sure:
474 * 1. It is a CS80 device.
475 * 2. It is one of the types we support.
476 * 3. If it is a 7946, we are accessing the disk unit (0)
477 */
478 id = hpibid(ctlr, slave);
479 #ifdef DEBUG
480 if (rddebug & RDB_IDENT)
481 printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id);
482 #endif
483 if ((id & 0x200) == 0)
484 return(-1);
485 for (i = 0; i < nrdinfo; i++)
486 if (id == rdinfo[i].hwid)
487 break;
488 if (i == nrdinfo || unit > rdinfo[i].maxunum)
489 return(-1);
490 id = i;
491
492 /*
493 * Reset drive and collect device description.
494 * Don't really use the description info right now but
495 * might come in handy in the future (for disk labels).
496 */
497 rdreset(rs, hd);
498 cmd[0] = C_SUNIT(unit);
499 cmd[1] = C_SVOL(0);
500 cmd[2] = C_DESC;
501 hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd));
502 hpibrecv(ctlr, slave, C_EXEC, &desc, 37);
503 hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat));
504 bzero(name, sizeof(name));
505 if (!stat) {
506 register int n = desc.d_name;
507 for (i = 5; i >= 0; i--) {
508 name[i] = (n & 0xf) + '0';
509 n >>= 4;
510 }
511 /* use drive characteristics to calculate xfer rate */
512 rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime;
513 }
514 #ifdef DEBUG
515 if (rddebug & RDB_IDENT) {
516 printf("rd%d: name: %x ('%s')\n",
517 lunit, desc.d_name, name);
518 printf(" iuw %x, maxxfr %d, ctype %d\n",
519 desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype);
520 printf(" utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n",
521 desc.d_utype, desc.d_sectsize,
522 desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime);
523 printf(" avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n",
524 desc.d_uavexfr, desc.d_retry, desc.d_access,
525 desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte);
526 printf(" maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n",
527 desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect,
528 desc.d_maxvsectl, desc.d_interleave);
529 }
530 #endif
531 /*
532 * Take care of a couple of anomolies:
533 * 1. 7945A and 7946A both return same HW id
534 * 2. 9122S and 9134D both return same HW id
535 * 3. 9122D and 9134L both return same HW id
536 */
537 switch (rdinfo[id].hwid) {
538 case RD7946AID:
539 if (bcmp(name, "079450", 6) == 0)
540 id = RD7945A;
541 else
542 id = RD7946A;
543 break;
544
545 case RD9134LID:
546 if (bcmp(name, "091340", 6) == 0)
547 id = RD9134L;
548 else
549 id = RD9122D;
550 break;
551
552 case RD9134DID:
553 if (bcmp(name, "091220", 6) == 0)
554 id = RD9122S;
555 else
556 id = RD9134D;
557 break;
558 }
559 printf("rd%d: %s\n", lunit, rdinfo[id].desc);
560 return(id);
561 }
562
563 rdreset(rs, hd)
564 register struct rd_softc *rs;
565 register struct hp_device *hd;
566 {
567 u_char stat;
568
569 rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit);
570 rs->sc_clear.c_cmd = C_CLEAR;
571 hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear,
572 sizeof(rs->sc_clear));
573 hpibswait(hd->hp_ctlr, hd->hp_slave);
574 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
575 rs->sc_src.c_unit = C_SUNIT(RDCTLR);
576 rs->sc_src.c_nop = C_NOP;
577 rs->sc_src.c_cmd = C_SREL;
578 rs->sc_src.c_param = C_REL;
579 hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src,
580 sizeof(rs->sc_src));
581 hpibswait(hd->hp_ctlr, hd->hp_slave);
582 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
583 rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit);
584 rs->sc_ssmc.c_cmd = C_SSM;
585 rs->sc_ssmc.c_refm = REF_MASK;
586 rs->sc_ssmc.c_fefm = FEF_MASK;
587 rs->sc_ssmc.c_aefm = AEF_MASK;
588 rs->sc_ssmc.c_iefm = IEF_MASK;
589 hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc,
590 sizeof(rs->sc_ssmc));
591 hpibswait(hd->hp_ctlr, hd->hp_slave);
592 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
593 #ifdef DEBUG
594 rdstats[hd->hp_unit].rdresets++;
595 #endif
596 }
597
598 int
599 rdopen(dev, flags, mode, p)
600 dev_t dev;
601 int flags, mode;
602 struct proc *p;
603 {
604 register int unit = rdunit(dev);
605 register struct rd_softc *rs = &rd_softc[unit];
606
607 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
608 return(ENXIO);
609 if (rs->sc_hd->hp_dk >= 0) {
610 /* guess at xfer rate based on 3600 rpm (60 rps) */
611 if (rs->sc_wpms == 0)
612 rs->sc_wpms = 60 * rs->sc_info->nbpt * DEV_BSIZE / 2;
613 dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms;
614 }
615 return(0);
616 }
617
618 rdstrategy(bp)
619 register struct buf *bp;
620 {
621 register int unit = rdunit(bp->b_dev);
622 register struct rd_softc *rs = &rd_softc[unit];
623 register struct size *pinfo = &rs->sc_info->sizes[rdpart(bp->b_dev)];
624 register struct buf *dp = &rdtab[unit];
625 register daddr_t bn;
626 register int sz, s;
627
628 #ifdef DEBUG
629 if (rddebug & RDB_FOLLOW)
630 printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n",
631 bp, bp->b_dev, bp->b_blkno, bp->b_bcount,
632 (bp->b_flags & B_READ) ? 'R' : 'W');
633 #endif
634 bn = bp->b_blkno;
635 sz = howmany(bp->b_bcount, DEV_BSIZE);
636 if (bn < 0 || bn + sz > pinfo->nblocks) {
637 sz = pinfo->nblocks - bn;
638 if (sz == 0) {
639 bp->b_resid = bp->b_bcount;
640 goto done;
641 }
642 if (sz < 0) {
643 bp->b_error = EINVAL;
644 bp->b_flags |= B_ERROR;
645 goto done;
646 }
647 bp->b_bcount = dbtob(sz);
648 }
649 bp->b_cylin = bn / rs->sc_info->nbpc + pinfo->cyloff;
650 s = splbio();
651 disksort(dp, bp);
652 if (dp->b_active == 0) {
653 dp->b_active = 1;
654 rdustart(unit);
655 }
656 splx(s);
657 return;
658 done:
659 biodone(bp);
660 }
661
662 /*
663 * Called from timeout() when handling maintenance releases
664 */
665 rdrestart(unit)
666 int unit;
667 {
668 int s = splbio();
669 rdustart(unit);
670 splx(s);
671 }
672
673 rdustart(unit)
674 register int unit;
675 {
676 register struct buf *bp;
677 register struct rd_softc *rs = &rd_softc[unit];
678
679 bp = rdtab[unit].b_actf;
680 rs->sc_addr = bp->b_un.b_addr;
681 rs->sc_resid = bp->b_bcount;
682 if (hpibreq(&rs->sc_dq))
683 rdstart(unit);
684 }
685
686 rdstart(unit)
687 register int unit;
688 {
689 register struct rd_softc *rs = &rd_softc[unit];
690 register struct buf *bp = rdtab[unit].b_actf;
691 register struct hp_device *hp = rs->sc_hd;
692 register int part;
693
694 again:
695 #ifdef DEBUG
696 if (rddebug & RDB_FOLLOW)
697 printf("rdstart(%d): bp %x, %c\n", unit, bp,
698 (bp->b_flags & B_READ) ? 'R' : 'W');
699 #endif
700 part = rdpart(bp->b_dev);
701 rs->sc_flags |= RDF_SEEK;
702 rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
703 rs->sc_ioc.c_volume = C_SVOL(0);
704 rs->sc_ioc.c_saddr = C_SADDR;
705 rs->sc_ioc.c_hiaddr = 0;
706 rs->sc_ioc.c_addr = RDBTOS(bp->b_blkno + rs->sc_info->nbpc *
707 rs->sc_info->sizes[part].cyloff);
708 rs->sc_ioc.c_nop2 = C_NOP;
709 rs->sc_ioc.c_slen = C_SLEN;
710 rs->sc_ioc.c_len = rs->sc_resid;
711 rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE;
712 #ifdef DEBUG
713 if (rddebug & RDB_IO)
714 printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n",
715 hp->hp_ctlr, hp->hp_slave, C_CMD,
716 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
717 #endif
718 if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit,
719 sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) {
720 if (hp->hp_dk >= 0) {
721 dk_busy |= 1 << hp->hp_dk;
722 dk_seek[hp->hp_dk]++;
723 }
724 #ifdef DEBUG
725 if (rddebug & RDB_IO)
726 printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr);
727 #endif
728 hpibawait(hp->hp_ctlr);
729 return;
730 }
731 /*
732 * Experience has shown that the hpibwait in this hpibsend will
733 * occasionally timeout. It appears to occur mostly on old 7914
734 * drives with full maintenance tracks. We should probably
735 * integrate this with the backoff code in rderror.
736 */
737 #ifdef DEBUG
738 if (rddebug & RDB_ERROR)
739 printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n",
740 unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
741 bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt);
742 rdstats[unit].rdretries++;
743 #endif
744 rs->sc_flags &= ~RDF_SEEK;
745 rdreset(rs, hp);
746 if (rdtab[unit].b_errcnt++ < RDRETRY)
747 goto again;
748 printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n",
749 unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
750 bp->b_blkno, rs->sc_resid);
751 rdtab[unit].b_errcnt = 0;
752 rdtab[unit].b_actf = bp->b_actf;
753 bp->b_flags |= B_ERROR;
754 bp->b_error = EIO;
755 bp->b_resid = 0;
756 biodone(bp);
757 hpibfree(&rs->sc_dq);
758 bp = rdtab[unit].b_actf;
759 if (bp == NULL) {
760 rdtab[unit].b_active = 0;
761 return;
762 }
763 rs->sc_addr = bp->b_un.b_addr;
764 rs->sc_resid = bp->b_bcount;
765 if (hpibreq(&rs->sc_dq))
766 goto again;
767 }
768
769 rdgo(unit)
770 register int unit;
771 {
772 register struct rd_softc *rs = &rd_softc[unit];
773 register struct hp_device *hp = rs->sc_hd;
774 struct buf *bp = rdtab[unit].b_actf;
775
776 if (hp->hp_dk >= 0) {
777 dk_busy |= 1 << hp->hp_dk;
778 dk_xfer[hp->hp_dk]++;
779 dk_wds[hp->hp_dk] += rs->sc_resid >> 6;
780 }
781 hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC,
782 rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ);
783 }
784
785 rdintr(unit)
786 register int unit;
787 {
788 register struct rd_softc *rs = &rd_softc[unit];
789 register struct buf *bp = rdtab[unit].b_actf;
790 register struct hp_device *hp = rs->sc_hd;
791 u_char stat = 13; /* in case hpibrecv fails */
792 int rv, restart;
793
794 #ifdef DEBUG
795 if (rddebug & RDB_FOLLOW)
796 printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp,
797 (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags);
798 if (bp == NULL) {
799 printf("rd%d: bp == NULL\n", unit);
800 return;
801 }
802 #endif
803 if (hp->hp_dk >= 0)
804 dk_busy &= ~(1 << hp->hp_dk);
805 if (rs->sc_flags & RDF_SEEK) {
806 rs->sc_flags &= ~RDF_SEEK;
807 if (hpibustart(hp->hp_ctlr))
808 rdgo(unit);
809 return;
810 }
811 if ((rs->sc_flags & RDF_SWAIT) == 0) {
812 #ifdef DEBUG
813 rdstats[unit].rdpolltries++;
814 #endif
815 if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) {
816 #ifdef DEBUG
817 rdstats[unit].rdpollwaits++;
818 #endif
819 if (hp->hp_dk >= 0)
820 dk_busy |= 1 << hp->hp_dk;
821 rs->sc_flags |= RDF_SWAIT;
822 hpibawait(hp->hp_ctlr);
823 return;
824 }
825 } else
826 rs->sc_flags &= ~RDF_SWAIT;
827 rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
828 if (rv != 1 || stat) {
829 #ifdef DEBUG
830 if (rddebug & RDB_ERROR)
831 printf("rdintr: recv failed or bad stat %d\n", stat);
832 #endif
833 restart = rderror(unit);
834 #ifdef DEBUG
835 rdstats[unit].rdretries++;
836 #endif
837 if (rdtab[unit].b_errcnt++ < RDRETRY) {
838 if (restart)
839 rdstart(unit);
840 return;
841 }
842 bp->b_flags |= B_ERROR;
843 bp->b_error = EIO;
844 }
845 rdtab[unit].b_errcnt = 0;
846 rdtab[unit].b_actf = bp->b_actf;
847 bp->b_resid = 0;
848 biodone(bp);
849 hpibfree(&rs->sc_dq);
850 if (rdtab[unit].b_actf)
851 rdustart(unit);
852 else
853 rdtab[unit].b_active = 0;
854 }
855
856 rdstatus(rs)
857 register struct rd_softc *rs;
858 {
859 register int c, s;
860 u_char stat;
861 int rv;
862
863 c = rs->sc_hd->hp_ctlr;
864 s = rs->sc_hd->hp_slave;
865 rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit);
866 rs->sc_rsc.c_sram = C_SRAM;
867 rs->sc_rsc.c_ram = C_RAM;
868 rs->sc_rsc.c_cmd = C_STATUS;
869 bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat));
870 rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc));
871 if (rv != sizeof(rs->sc_rsc)) {
872 #ifdef DEBUG
873 if (rddebug & RDB_STATUS)
874 printf("rdstatus: send C_CMD failed %d != %d\n",
875 rv, sizeof(rs->sc_rsc));
876 #endif
877 return(1);
878 }
879 rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat));
880 if (rv != sizeof(rs->sc_stat)) {
881 #ifdef DEBUG
882 if (rddebug & RDB_STATUS)
883 printf("rdstatus: send C_EXEC failed %d != %d\n",
884 rv, sizeof(rs->sc_stat));
885 #endif
886 return(1);
887 }
888 rv = hpibrecv(c, s, C_QSTAT, &stat, 1);
889 if (rv != 1 || stat) {
890 #ifdef DEBUG
891 if (rddebug & RDB_STATUS)
892 printf("rdstatus: recv failed %d or bad stat %d\n",
893 rv, stat);
894 #endif
895 return(1);
896 }
897 return(0);
898 }
899
900 /*
901 * Deal with errors.
902 * Returns 1 if request should be restarted,
903 * 0 if we should just quietly give up.
904 */
905 rderror(unit)
906 int unit;
907 {
908 struct rd_softc *rs = &rd_softc[unit];
909 register struct rd_stat *sp;
910 struct buf *bp;
911 daddr_t hwbn, pbn;
912
913 if (rdstatus(rs)) {
914 #ifdef DEBUG
915 printf("rd%d: couldn't get status\n", unit);
916 #endif
917 rdreset(rs, rs->sc_hd);
918 return(1);
919 }
920 sp = &rs->sc_stat;
921 if (sp->c_fef & FEF_REXMT)
922 return(1);
923 if (sp->c_fef & FEF_PF) {
924 rdreset(rs, rs->sc_hd);
925 return(1);
926 }
927 /*
928 * Unit requests release for internal maintenance.
929 * We just delay awhile and try again later. Use expontially
930 * increasing backoff ala ethernet drivers since we don't really
931 * know how long the maintenance will take. With RDWAITC and
932 * RDRETRY as defined, the range is 1 to 32 seconds.
933 */
934 if (sp->c_fef & FEF_IMR) {
935 extern int hz;
936 int rdtimo = RDWAITC << rdtab[unit].b_errcnt;
937 #ifdef DEBUG
938 printf("rd%d: internal maintenance, %d second timeout\n",
939 unit, rdtimo);
940 rdstats[unit].rdtimeouts++;
941 #endif
942 hpibfree(&rs->sc_dq);
943 timeout(rdrestart, unit, rdtimo*hz);
944 return(0);
945 }
946 /*
947 * Only report error if we have reached the error reporting
948 * threshhold. By default, this will only report after the
949 * retry limit has been exceeded.
950 */
951 if (rdtab[unit].b_errcnt < rderrthresh)
952 return(1);
953
954 /*
955 * First conjure up the block number at which the error occured.
956 * Note that not all errors report a block number, in that case
957 * we just use b_blkno.
958 */
959 bp = rdtab[unit].b_actf;
960 pbn = rs->sc_info->nbpc *
961 rs->sc_info->sizes[rdpart(bp->b_dev)].cyloff;
962 if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) ||
963 (sp->c_ief & IEF_RRMASK)) {
964 hwbn = RDBTOS(pbn + bp->b_blkno);
965 pbn = bp->b_blkno;
966 } else {
967 hwbn = sp->c_blk;
968 pbn = RDSTOB(hwbn) - pbn;
969 }
970 /*
971 * Now output a generic message suitable for badsect.
972 * Note that we don't use harderr cuz it just prints
973 * out b_blkno which is just the beginning block number
974 * of the transfer, not necessary where the error occured.
975 */
976 printf("rd%d%c: hard error sn%d\n",
977 rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn);
978 /*
979 * Now report the status as returned by the hardware with
980 * attempt at interpretation (unless debugging).
981 */
982 printf("rd%d %s error:",
983 unit, (bp->b_flags & B_READ) ? "read" : "write");
984 #ifdef DEBUG
985 if (rddebug & RDB_ERROR) {
986 /* status info */
987 printf("\n volume: %d, unit: %d\n",
988 (sp->c_vu>>4)&0xF, sp->c_vu&0xF);
989 rdprinterr("reject", sp->c_ref, err_reject);
990 rdprinterr("fault", sp->c_fef, err_fault);
991 rdprinterr("access", sp->c_aef, err_access);
992 rdprinterr("info", sp->c_ief, err_info);
993 printf(" block: %d, P1-P10: ", hwbn);
994 printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
995 printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
996 printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
997 /* command */
998 printf(" ioc: ");
999 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8));
1000 printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4));
1001 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8));
1002 printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4));
1003 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8));
1004 printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4));
1005 return(1);
1006 }
1007 #endif
1008 printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n",
1009 (sp->c_vu>>4)&0xF, sp->c_vu&0xF,
1010 sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief);
1011 printf("P1-P10: ");
1012 printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
1013 printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
1014 printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
1015 return(1);
1016 }
1017
1018 int
1019 rdread(dev, uio, flags)
1020 dev_t dev;
1021 struct uio *uio;
1022 int flags;
1023 {
1024 register int unit = rdunit(dev);
1025
1026 return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio));
1027 }
1028
1029 int
1030 rdwrite(dev, uio, flags)
1031 dev_t dev;
1032 struct uio *uio;
1033 int flags;
1034 {
1035 register int unit = rdunit(dev);
1036
1037 return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio));
1038 }
1039
1040 int
1041 rdioctl(dev, cmd, data, flag, p)
1042 dev_t dev;
1043 int cmd;
1044 caddr_t data;
1045 int flag;
1046 struct proc *p;
1047 {
1048 return(EINVAL);
1049 }
1050
1051 int
1052 rdsize(dev)
1053 dev_t dev;
1054 {
1055 register int unit = rdunit(dev);
1056 register struct rd_softc *rs = &rd_softc[unit];
1057
1058 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1059 return(-1);
1060 return(rs->sc_info->sizes[rdpart(dev)].nblocks);
1061 }
1062
1063 #ifdef DEBUG
1064 rdprinterr(str, err, tab)
1065 char *str;
1066 short err;
1067 char *tab[];
1068 {
1069 register int i;
1070 int printed;
1071
1072 if (err == 0)
1073 return;
1074 printf(" %s error field:", str, err);
1075 printed = 0;
1076 for (i = 0; i < 16; i++)
1077 if (err & (0x8000 >> i))
1078 printf("%s%s", printed++ ? " + " : " ", tab[i]);
1079 printf("\n");
1080 }
1081 #endif
1082
1083 /*
1084 * Non-interrupt driven, non-dma dump routine.
1085 */
1086 int
1087 rddump(dev)
1088 dev_t dev;
1089 {
1090 int part = rdpart(dev);
1091 int unit = rdunit(dev);
1092 register struct rd_softc *rs = &rd_softc[unit];
1093 register struct hp_device *hp = rs->sc_hd;
1094 register daddr_t baddr;
1095 register int maddr, pages, i;
1096 char stat;
1097 extern int lowram, dumpsize;
1098 #ifdef DEBUG
1099 extern int pmapdebug;
1100 pmapdebug = 0;
1101 #endif
1102
1103 pages = dumpsize;
1104 #ifdef DEBUG
1105 if (rddebug & RDB_DUMP)
1106 printf("rddump(%x): u %d p %d dumplo %d ram %x pmem %d\n",
1107 dev, unit, part, dumplo, lowram, ctod(pages));
1108 #endif
1109 /* is drive ok? */
1110 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1111 return (ENXIO);
1112 /* HPIB idle? */
1113 if (!hpibreq(&rs->sc_dq)) {
1114 #ifdef DEBUG
1115 /* is this a safe thing to do?? */
1116 hpibreset(hp->hp_ctlr);
1117 rdreset(rs, rs->sc_hd);
1118 printf("[ drive %d reset ] ", unit);
1119 #else
1120 return (EFAULT);
1121 #endif
1122 }
1123 /* dump parameters in range? */
1124 if (dumplo < 0 || dumplo >= rs->sc_info->sizes[part].nblocks)
1125 return (EINVAL);
1126 if (dumplo + ctod(pages) > rs->sc_info->sizes[part].nblocks)
1127 pages = dtoc(rs->sc_info->sizes[part].nblocks - dumplo);
1128 maddr = lowram;
1129 baddr = dumplo + rs->sc_info->nbpc * rs->sc_info->sizes[part].cyloff;
1130 #ifdef DEBUG
1131 if (rddebug & RDB_DUMP)
1132 printf("rddump: dumping %d pages from %x to disk block %d\n",
1133 pages, maddr, baddr);
1134 #endif
1135 for (i = 0; i < pages; i++) {
1136 #ifdef DEBUG
1137 #define NPGMB (1024*1024/NBPG)
1138 /* print out how many Mbs we have dumped */
1139 if (i && (i % NPGMB) == 0)
1140 printf("%d ", i / NPGMB);
1141 #undef NPBMG
1142 #endif
1143 rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
1144 rs->sc_ioc.c_volume = C_SVOL(0);
1145 rs->sc_ioc.c_saddr = C_SADDR;
1146 rs->sc_ioc.c_hiaddr = 0;
1147 rs->sc_ioc.c_addr = RDBTOS(baddr);
1148 rs->sc_ioc.c_nop2 = C_NOP;
1149 rs->sc_ioc.c_slen = C_SLEN;
1150 rs->sc_ioc.c_len = NBPG;
1151 rs->sc_ioc.c_cmd = C_WRITE;
1152 hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD,
1153 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
1154 if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1155 #ifdef DEBUG
1156 if (rddebug & RDB_DUMP)
1157 printf("rddump: IOC wait timeout\n");
1158 #endif
1159 return (EIO);
1160 }
1161 pmap_enter(pmap_kernel(), vmmap, maddr, VM_PROT_READ, TRUE);
1162 hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG);
1163 if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1164 #ifdef DEBUG
1165 if (rddebug & RDB_DUMP)
1166 printf("rddump: write wait timeout\n");
1167 #endif
1168 }
1169 hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
1170 if (stat) {
1171 #ifdef DEBUG
1172 if (rddebug & RDB_DUMP)
1173 printf("rddump: write failed, status %x\n",
1174 stat);
1175 #endif
1176 return (EIO);
1177 }
1178 maddr += NBPG;
1179 baddr += ctod(1);
1180 }
1181 return (0);
1182 }
1183 #endif
1184