Home | History | Annotate | Line # | Download | only in pbsdboot
vmem.c revision 1.2
      1  1.2       uch /*	$NetBSD: vmem.c,v 1.2 1999/09/22 12:49:50 uch Exp $	*/
      2  1.1  takemura 
      3  1.1  takemura /*-
      4  1.1  takemura  * Copyright (c) 1999 Shin Takemura.
      5  1.1  takemura  * All rights reserved.
      6  1.1  takemura  *
      7  1.1  takemura  * This software is part of the PocketBSD.
      8  1.1  takemura  *
      9  1.1  takemura  * Redistribution and use in source and binary forms, with or without
     10  1.1  takemura  * modification, are permitted provided that the following conditions
     11  1.1  takemura  * are met:
     12  1.1  takemura  * 1. Redistributions of source code must retain the above copyright
     13  1.1  takemura  *    notice, this list of conditions and the following disclaimer.
     14  1.1  takemura  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  takemura  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  takemura  *    documentation and/or other materials provided with the distribution.
     17  1.1  takemura  * 3. All advertising materials mentioning features or use of this software
     18  1.1  takemura  *    must display the following acknowledgement:
     19  1.1  takemura  *	This product includes software developed by the PocketBSD project
     20  1.1  takemura  *	and its contributors.
     21  1.1  takemura  * 4. Neither the name of the project nor the names of its contributors
     22  1.1  takemura  *    may be used to endorse or promote products derived from this software
     23  1.1  takemura  *    without specific prior written permission.
     24  1.1  takemura  *
     25  1.1  takemura  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     26  1.1  takemura  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  1.1  takemura  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  1.1  takemura  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     29  1.1  takemura  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  1.1  takemura  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  1.1  takemura  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  1.1  takemura  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  1.1  takemura  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  1.1  takemura  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  1.1  takemura  * SUCH DAMAGE.
     36  1.1  takemura  *
     37  1.1  takemura  */
     38  1.1  takemura #include <pbsdboot.h>
     39  1.1  takemura 
     40  1.1  takemura #define MAX_MEMORY (1024*1024*32)	/* 32 MB */
     41  1.1  takemura #define MEM_BLOCKS 8
     42  1.1  takemura #define MEM_BLOCK_SIZE (1024*1024*4)
     43  1.1  takemura 
     44  1.1  takemura struct addr_s {
     45  1.2       uch 	caddr_t addr;
     46  1.2       uch 	int in_use;
     47  1.1  takemura };
     48  1.1  takemura 
     49  1.1  takemura struct page_header_s {
     50  1.2       uch 	unsigned long magic0;
     51  1.2       uch 	int pageno;
     52  1.2       uch 	unsigned long magic1;
     53  1.1  takemura };
     54  1.1  takemura 
     55  1.1  takemura struct map_s *map = NULL;
     56  1.1  takemura struct addr_s *phys_addrs = NULL;
     57  1.1  takemura unsigned char* heap = NULL;
     58  1.1  takemura int npages;
     59  1.1  takemura caddr_t kernel_start;
     60  1.1  takemura caddr_t kernel_end;
     61  1.1  takemura 
     62  1.1  takemura int
     63  1.1  takemura vmem_exec(caddr_t entry, int argc, char *argv[], struct bootinfo *bi)
     64  1.1  takemura {
     65  1.2       uch 	int i;
     66  1.2       uch 	caddr_t p;
     67  1.1  takemura 
     68  1.2       uch 	if (map == NULL) {
     69  1.2       uch 		debug_printf(TEXT("vmem is not initialized.\n"));
     70  1.2       uch 		msg_printf(MSG_ERROR, whoami, TEXT("vmem is not initialized.\n"));
     71  1.2       uch 		return (-1);
     72  1.2       uch 	}
     73  1.2       uch 
     74  1.2       uch 	debug_printf(TEXT("entry point=0x%x\n"), entry);
     75  1.2       uch 
     76  1.2       uch 	map->entry = entry;
     77  1.2       uch 	map->base = kernel_start;
     78  1.2       uch 
     79  1.2       uch 	for (i = 0; i < argc; i++) {
     80  1.2       uch 		argv[i] = vtophysaddr(argv[i]);
     81  1.2       uch 	}
     82  1.2       uch 	map->arg0 = (caddr_t)argc;
     83  1.2       uch 	map->arg1 = vtophysaddr((caddr_t)argv);
     84  1.2       uch 	map->arg2 = vtophysaddr((caddr_t)bi);
     85  1.2       uch 	map->arg3 = NULL;
     86  1.2       uch 
     87  1.2       uch 	if (map->arg1 == NULL || map->arg2 == NULL) {
     88  1.2       uch 		debug_printf(TEXT("arg, vtophysaddr() failed\n"));
     89  1.2       uch 		msg_printf(MSG_ERROR, whoami,
     90  1.2       uch 			   TEXT("arg, vtophysaddr() failed\n"));
     91  1.2       uch 		return (-1);
     92  1.2       uch 	}
     93  1.2       uch 
     94  1.2       uch 	for (i = 0; p = map->leaf[i / map->leafsize][i % map->leafsize]; i++)  {
     95  1.2       uch 		if ((p = vtophysaddr(p)) == NULL) {
     96  1.2       uch 			debug_printf(TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
     97  1.2       uch 				     i, map->leaf[i / map->leafsize][i % map->leafsize]);
     98  1.2       uch 			msg_printf(MSG_ERROR, whoami,
     99  1.2       uch 				   TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
    100  1.2       uch 				   i, map->leaf[i / map->leafsize][i % map->leafsize]);
    101  1.2       uch 			return (-1);
    102  1.2       uch 		}
    103  1.2       uch 		map->leaf[i / map->leafsize][i % map->leafsize] = p;
    104  1.2       uch 	}
    105  1.2       uch 
    106  1.2       uch 	for (i = 0; i < map->nleaves; i++) {
    107  1.2       uch 		if ((p = vtophysaddr((caddr_t)map->leaf[i])) == NULL) {
    108  1.2       uch 			debug_printf(TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
    109  1.2       uch 				     i, map->leaf[i / map->leafsize][i % map->leafsize]);
    110  1.2       uch 			msg_printf(MSG_ERROR, whoami,
    111  1.2       uch 				   TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
    112  1.2       uch 				   i, map->leaf[i / map->leafsize][i % map->leafsize]);
    113  1.2       uch 			return (-1);
    114  1.2       uch 		}
    115  1.2       uch 		map->leaf[i] = (caddr_t*)p;
    116  1.2       uch 	}
    117  1.2       uch 
    118  1.2       uch 	debug_printf(TEXT("execute startprog()\n"));
    119  1.2       uch 	//return (-1);
    120  1.2       uch 	return (startprog(vtophysaddr((caddr_t)map)));
    121  1.1  takemura }
    122  1.1  takemura 
    123  1.1  takemura DWORD
    124  1.1  takemura getpagesize()
    125  1.1  takemura {
    126  1.2       uch 	static int init = 0;
    127  1.2       uch 	static SYSTEM_INFO info;
    128  1.1  takemura 
    129  1.2       uch 	if (!init) {
    130  1.2       uch 		GetSystemInfo(&info);
    131  1.2       uch 		init = 1;
    132  1.2       uch 	}
    133  1.1  takemura 
    134  1.2       uch 	return (info.dwPageSize);
    135  1.1  takemura }
    136  1.1  takemura 
    137  1.1  takemura caddr_t
    138  1.1  takemura vmem_alloc()
    139  1.1  takemura {
    140  1.2       uch 	int i;
    141  1.2       uch 	struct page_header_s *page;
    142  1.2       uch 	for (i = 0; i < npages; i++) {
    143  1.2       uch 		page = (struct page_header_s*)&heap[getpagesize() * i];
    144  1.2       uch 		if (!phys_addrs[i].in_use &&
    145  1.2       uch 		    !(kernel_start <= phys_addrs[i].addr &&
    146  1.2       uch 		      phys_addrs[i].addr < kernel_end)) {
    147  1.2       uch 			phys_addrs[i].in_use = 1;
    148  1.2       uch 			return ((caddr_t)page);
    149  1.2       uch 		}
    150  1.2       uch 	}
    151  1.2       uch 	return (NULL);
    152  1.1  takemura }
    153  1.1  takemura 
    154  1.1  takemura static caddr_t
    155  1.1  takemura alloc_kpage(caddr_t phys_addr)
    156  1.1  takemura {
    157  1.2       uch 	int i;
    158  1.2       uch 	struct page_header_s *page;
    159  1.2       uch 	for (i = 0; i < npages; i++) {
    160  1.2       uch 		page = (struct page_header_s*)&heap[getpagesize() * i];
    161  1.2       uch 		if (phys_addrs[i].addr == phys_addr) {
    162  1.2       uch 			if (phys_addrs[i].in_use) {
    163  1.2       uch 				debug_printf(TEXT("page %d (phys addr=0x%x) is already in use\n"),
    164  1.2       uch 					     i, phys_addr);
    165  1.2       uch 				msg_printf(MSG_ERROR, whoami,
    166  1.2       uch 					   TEXT("page %d (phys addr=0x%x) is already in use\n"),
    167  1.2       uch 					   i, phys_addr);
    168  1.2       uch 				return (NULL);
    169  1.2       uch 			}
    170  1.2       uch 			phys_addrs[i].in_use = 1;
    171  1.2       uch 			return ((caddr_t)page);
    172  1.2       uch 		}
    173  1.2       uch 	}
    174  1.2       uch 	return (vmem_alloc());
    175  1.1  takemura }
    176  1.1  takemura 
    177  1.1  takemura caddr_t
    178  1.1  takemura vmem_get(caddr_t phys_addr, int *length)
    179  1.1  takemura {
    180  1.2       uch 	int pageno = (phys_addr - kernel_start) / getpagesize();
    181  1.2       uch 	int offset = (phys_addr - kernel_start) % getpagesize();
    182  1.1  takemura 
    183  1.2       uch 	if (map == NULL || pageno < 0 || npages <= pageno) {
    184  1.2       uch 		return (NULL);
    185  1.2       uch 	}
    186  1.2       uch 	if (length) {
    187  1.2       uch 		*length = getpagesize() - offset;
    188  1.2       uch 	}
    189  1.2       uch 	return (map->leaf[pageno / map->leafsize][pageno % map->leafsize] + offset);
    190  1.1  takemura }
    191  1.1  takemura 
    192  1.1  takemura caddr_t
    193  1.1  takemura vtophysaddr(caddr_t page)
    194  1.1  takemura {
    195  1.2       uch 	int pageno = (page - heap) / getpagesize();
    196  1.2       uch 	int offset = (page - heap) % getpagesize();
    197  1.1  takemura 
    198  1.2       uch 	if (map == NULL || pageno < 0 || npages <= pageno) {
    199  1.2       uch 		return (NULL);
    200  1.2       uch 	}
    201  1.2       uch 	return (phys_addrs[pageno].addr + offset);
    202  1.1  takemura }
    203  1.1  takemura 
    204  1.1  takemura int
    205  1.1  takemura vmem_init(caddr_t start, caddr_t end)
    206  1.1  takemura {
    207  1.2       uch 	int i, N, pageno;
    208  1.2       uch 	unsigned long magic0;
    209  1.2       uch 	unsigned long magic1;
    210  1.2       uch 	int nfounds;
    211  1.2       uch 	struct page_header_s *page;
    212  1.2       uch 	long size;
    213  1.2       uch 	int nleaves;
    214  1.2       uch 
    215  1.2       uch 	/* align with page size */
    216  1.2       uch 	start = (caddr_t)(((long)start / getpagesize()) * getpagesize());
    217  1.2       uch 	end = (caddr_t)((((long)end + getpagesize() - 1) / getpagesize()) * getpagesize());
    218  1.2       uch 
    219  1.2       uch 	kernel_start = start;
    220  1.2       uch 	kernel_end = end;
    221  1.2       uch 	size = end - start;
    222  1.2       uch 
    223  1.2       uch 	/*
    224  1.2       uch 	 *  program image pages.
    225  1.2       uch 	 */
    226  1.2       uch 	npages = (size + getpagesize() - 1) / getpagesize();
    227  1.2       uch 
    228  1.2       uch 	/*
    229  1.2       uch 	 *  map leaf pages.
    230  1.2       uch 	 *  npages plus one for end mark.
    231  1.2       uch 	 */
    232  1.2       uch 	npages += (nleaves = ((npages * sizeof(caddr_t) + getpagesize()) / getpagesize()));
    233  1.2       uch 
    234  1.2       uch 	/*
    235  1.2       uch 	 *  map root page, startprg code page, argument page and bootinfo page.
    236  1.2       uch 	 */
    237  1.2       uch 	npages += 4;
    238  1.2       uch 
    239  1.2       uch 	/*
    240  1.2       uch 	 *  allocate pages
    241  1.2       uch 	 */
    242  1.2       uch 	debug_printf(TEXT("allocate %d pages\n"), npages);
    243  1.2       uch 	heap = (unsigned char*)
    244  1.2       uch 		VirtualAlloc(0,
    245  1.2       uch 			     npages * getpagesize(),
    246  1.2       uch 			     MEM_COMMIT,
    247  1.2       uch 			     PAGE_READWRITE | PAGE_NOCACHE);
    248  1.2       uch 	if (heap == NULL) {
    249  1.2       uch 		debug_printf(TEXT("can't allocate heap\n"));
    250  1.2       uch 		msg_printf(MSG_ERROR, whoami, TEXT("can't allocate heap\n"));
    251  1.2       uch 		goto error_cleanup;
    252  1.2       uch 	}
    253  1.2       uch 
    254  1.2       uch 	/*
    255  1.2       uch 	 *  allocate address table.
    256  1.2       uch 	 */
    257  1.2       uch 	phys_addrs = (struct addr_s *)
    258  1.2       uch 		VirtualAlloc(0,
    259  1.2       uch 			     npages * sizeof(struct addr_s),
    260  1.2       uch 			     MEM_COMMIT,
    261  1.2       uch 			     PAGE_READWRITE);
    262  1.2       uch 	if (phys_addrs == NULL) {
    263  1.2       uch 		debug_printf(TEXT("can't allocate address table\n"));
    264  1.2       uch 		msg_printf(MSG_ERROR, whoami, TEXT("can't allocate address table\n"));
    265  1.2       uch 		goto error_cleanup;
    266  1.2       uch 	}
    267  1.2       uch 
    268  1.2       uch 	/*
    269  1.2       uch 	 *  set magic number for each page in buffer.
    270  1.2       uch 	 */
    271  1.2       uch 	magic0 = Random();
    272  1.2       uch 	magic1 = Random();
    273  1.2       uch 	debug_printf(TEXT("magic=%08x%08x\n"), magic0, magic1);
    274  1.2       uch 
    275  1.2       uch 	for (i = 0; i < npages; i++) {
    276  1.2       uch 		page = (struct page_header_s*)&heap[getpagesize() * i];
    277  1.2       uch 		page->magic0 = magic0;
    278  1.2       uch 		page->pageno = i;
    279  1.2       uch 		page->magic1 = magic1;
    280  1.2       uch 		phys_addrs[i].addr = 0;
    281  1.2       uch 		phys_addrs[i].in_use = 0;
    282  1.2       uch 	}
    283  1.2       uch 
    284  1.2       uch 	/*
    285  1.2       uch 	 *  Scan whole physical memory.
    286  1.2       uch 	 */
    287  1.2       uch 	nfounds = 0;
    288  1.2       uch 	for (N = 0; N < MEM_BLOCKS && nfounds < npages; N++) {
    289  1.2       uch 		unsigned char* mem;
    290  1.2       uch 		int res;
    291  1.2       uch 		mem = (unsigned char*)
    292  1.2       uch 			VirtualAlloc(0,
    293  1.2       uch 				     MEM_BLOCK_SIZE,
    294  1.2       uch 				     MEM_RESERVE,
    295  1.2       uch 				     PAGE_NOACCESS);
    296  1.2       uch 		res = VirtualCopy((LPVOID)mem,
    297  1.2       uch 				  //(LPVOID)((0xa0000000 + MEM_BLOCK_SIZE * N) >> 8),
    298  1.2       uch 				  (LPVOID)((0x80000000 + MEM_BLOCK_SIZE * N) >> 8),
    299  1.2       uch 				  MEM_BLOCK_SIZE,
    300  1.2       uch 				  PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL);
    301  1.2       uch 
    302  1.2       uch 		for (i = 0; i < (int)(MEM_BLOCK_SIZE/getpagesize()); i++) {
    303  1.2       uch 			page = (struct page_header_s*)&mem[getpagesize() * i];
    304  1.2       uch 			if (page->magic0 == magic0 &&
    305  1.2       uch 			    page->magic1 == magic1) {
    306  1.2       uch 				pageno = page->pageno;
    307  1.2       uch 				if (0 <= pageno && pageno < npages &&
    308  1.2       uch 				    phys_addrs[pageno].addr == 0) {
    309  1.2       uch 					phys_addrs[pageno].addr =
    310  1.2       uch 						(unsigned char*)(0x80000000 + MEM_BLOCK_SIZE * N +
    311  1.2       uch 								 getpagesize() * i);
    312  1.2       uch 					page->magic0 = 0;
    313  1.2       uch 					page->magic1 = 0;
    314  1.2       uch 					if (npages <= ++nfounds) {
    315  1.2       uch 						break;
    316  1.2       uch 					}
    317  1.2       uch 				} else {
    318  1.2       uch 					debug_printf(TEXT("invalid page header\n"));
    319  1.2       uch 					msg_printf(MSG_ERROR, whoami, TEXT("invalid page header\n"));
    320  1.2       uch 					goto error_cleanup;
    321  1.2       uch 				}
    322  1.2       uch 			}
    323  1.2       uch 		}
    324  1.2       uch 		VirtualFree(mem, 0, MEM_RELEASE);
    325  1.2       uch 	}
    326  1.2       uch 
    327  1.2       uch 	if (nfounds < npages) {
    328  1.2       uch 		debug_printf(TEXT("lost %d pages\n"), npages - nfounds);
    329  1.2       uch 		msg_printf(MSG_ERROR, whoami, TEXT("lost %d pages\n"), npages - nfounds);
    330  1.2       uch 		goto error_cleanup;
    331  1.2       uch 	}
    332  1.1  takemura 
    333  1.2       uch 	/*
    334  1.2       uch 	 *  allocate root page
    335  1.2       uch 	 */
    336  1.2       uch 	if ((map = (struct map_s*)vmem_alloc()) == NULL) {
    337  1.2       uch 		debug_printf(TEXT("can't allocate root page.\n"));
    338  1.2       uch 		msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
    339  1.2       uch 		goto error_cleanup;
    340  1.2       uch 	}
    341  1.2       uch 	map->nleaves = nleaves;
    342  1.2       uch 	map->leafsize = getpagesize() / sizeof(caddr_t);
    343  1.2       uch 	map->pagesize = getpagesize();
    344  1.2       uch 
    345  1.2       uch 	/*
    346  1.2       uch 	 *  allocate leaf pages
    347  1.2       uch 	 */
    348  1.2       uch 	for (i = 0; i < nleaves; i++) {
    349  1.2       uch 		if ((map->leaf[i] = (caddr_t*)vmem_alloc()) == NULL) {
    350  1.2       uch 			debug_printf(TEXT("can't allocate leaf page.\n"));
    351  1.2       uch 			msg_printf(MSG_ERROR, whoami, TEXT("can't allocate leaf page.\n"));
    352  1.2       uch 			goto error_cleanup;
    353  1.2       uch 		}
    354  1.2       uch 	}
    355  1.2       uch 
    356  1.2       uch 	/*
    357  1.2       uch 	 *  allocate kernel pages
    358  1.2       uch 	 */
    359  1.2       uch 	for (i = 0; start < kernel_end; start += getpagesize(), i++) {
    360  1.2       uch 		caddr_t *leaf = map->leaf[i / map->leafsize];
    361  1.2       uch 		if ((leaf[i % map->leafsize] = alloc_kpage(start)) == NULL) {
    362  1.2       uch 			debug_printf(TEXT("can't allocate page 0x%x.\n"), start);
    363  1.2       uch 			msg_printf(MSG_ERROR, whoami, TEXT("can't allocate page 0x%x.\n"), start);
    364  1.2       uch 			goto error_cleanup;
    365  1.2       uch 		}
    366  1.2       uch 	}
    367  1.2       uch 	map->leaf[i / map->leafsize][i % map->leafsize] = NULL; /* END MARK */
    368  1.2       uch 
    369  1.2       uch 	return (0);
    370  1.1  takemura 
    371  1.1  takemura  error_cleanup:
    372  1.2       uch 	vmem_free();
    373  1.1  takemura 
    374  1.2       uch 	return (-1);
    375  1.1  takemura }
    376  1.1  takemura 
    377  1.1  takemura void
    378  1.1  takemura vmem_free()
    379  1.1  takemura {
    380  1.1  takemura 	map = NULL;
    381  1.1  takemura 	if (heap) {
    382  1.1  takemura 		VirtualFree(heap, 0, MEM_RELEASE);
    383  1.1  takemura 		heap = NULL;
    384  1.1  takemura 	}
    385  1.1  takemura 	if (phys_addrs) {
    386  1.1  takemura 		VirtualFree(phys_addrs, 0, MEM_RELEASE);
    387  1.1  takemura 		phys_addrs = NULL;
    388  1.1  takemura 	}
    389  1.1  takemura }
    390  1.1  takemura 
    391  1.1  takemura void
    392  1.1  takemura vmem_dump_map()
    393  1.1  takemura {
    394  1.2       uch 	caddr_t addr, page, paddr;
    395  1.2       uch 
    396  1.2       uch 	if (map == NULL) {
    397  1.2       uch 		debug_printf(TEXT("no page map\n"));
    398  1.2       uch 		return;
    399  1.2       uch 	}
    400  1.1  takemura 
    401  1.2       uch 	for (addr = kernel_start; addr < kernel_end; addr += getpagesize()) {
    402  1.2       uch 		page = vmem_get(addr, NULL);
    403  1.2       uch 		paddr = vtophysaddr(page);
    404  1.2       uch 		debug_printf(TEXT("%08X: vaddr=%08X paddr=%08X %s\n"),
    405  1.2       uch 			     addr, page, paddr, addr == paddr ? TEXT("*") : TEXT("reloc"));
    406  1.1  takemura 
    407  1.2       uch 	}
    408  1.1  takemura }
    409