vmem.c revision 1.3 1 1.2 uch /* $NetBSD: vmem.c,v 1.3 1999/09/26 02:42:52 takemura Exp $ */
2 1.1 takemura
3 1.1 takemura /*-
4 1.1 takemura * Copyright (c) 1999 Shin Takemura.
5 1.1 takemura * All rights reserved.
6 1.1 takemura *
7 1.1 takemura * This software is part of the PocketBSD.
8 1.1 takemura *
9 1.1 takemura * Redistribution and use in source and binary forms, with or without
10 1.1 takemura * modification, are permitted provided that the following conditions
11 1.1 takemura * are met:
12 1.1 takemura * 1. Redistributions of source code must retain the above copyright
13 1.1 takemura * notice, this list of conditions and the following disclaimer.
14 1.1 takemura * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 takemura * notice, this list of conditions and the following disclaimer in the
16 1.1 takemura * documentation and/or other materials provided with the distribution.
17 1.1 takemura * 3. All advertising materials mentioning features or use of this software
18 1.1 takemura * must display the following acknowledgement:
19 1.1 takemura * This product includes software developed by the PocketBSD project
20 1.1 takemura * and its contributors.
21 1.1 takemura * 4. Neither the name of the project nor the names of its contributors
22 1.1 takemura * may be used to endorse or promote products derived from this software
23 1.1 takemura * without specific prior written permission.
24 1.1 takemura *
25 1.1 takemura * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 1.1 takemura * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 1.1 takemura * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 1.1 takemura * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 1.1 takemura * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 1.1 takemura * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 1.1 takemura * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 1.1 takemura * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 1.1 takemura * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 1.1 takemura * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 1.1 takemura * SUCH DAMAGE.
36 1.1 takemura *
37 1.1 takemura */
38 1.1 takemura #include <pbsdboot.h>
39 1.1 takemura
40 1.1 takemura struct addr_s {
41 1.2 uch caddr_t addr;
42 1.2 uch int in_use;
43 1.1 takemura };
44 1.1 takemura
45 1.1 takemura struct page_header_s {
46 1.2 uch unsigned long magic0;
47 1.2 uch int pageno;
48 1.2 uch unsigned long magic1;
49 1.1 takemura };
50 1.1 takemura
51 1.1 takemura struct map_s *map = NULL;
52 1.1 takemura struct addr_s *phys_addrs = NULL;
53 1.1 takemura unsigned char* heap = NULL;
54 1.1 takemura int npages;
55 1.1 takemura caddr_t kernel_start;
56 1.1 takemura caddr_t kernel_end;
57 1.1 takemura
58 1.1 takemura int
59 1.1 takemura vmem_exec(caddr_t entry, int argc, char *argv[], struct bootinfo *bi)
60 1.1 takemura {
61 1.2 uch int i;
62 1.2 uch caddr_t p;
63 1.1 takemura
64 1.2 uch if (map == NULL) {
65 1.2 uch debug_printf(TEXT("vmem is not initialized.\n"));
66 1.2 uch msg_printf(MSG_ERROR, whoami, TEXT("vmem is not initialized.\n"));
67 1.2 uch return (-1);
68 1.2 uch }
69 1.2 uch
70 1.2 uch debug_printf(TEXT("entry point=0x%x\n"), entry);
71 1.2 uch
72 1.2 uch map->entry = entry;
73 1.2 uch map->base = kernel_start;
74 1.2 uch
75 1.2 uch for (i = 0; i < argc; i++) {
76 1.2 uch argv[i] = vtophysaddr(argv[i]);
77 1.2 uch }
78 1.2 uch map->arg0 = (caddr_t)argc;
79 1.2 uch map->arg1 = vtophysaddr((caddr_t)argv);
80 1.2 uch map->arg2 = vtophysaddr((caddr_t)bi);
81 1.2 uch map->arg3 = NULL;
82 1.2 uch
83 1.2 uch if (map->arg1 == NULL || map->arg2 == NULL) {
84 1.2 uch debug_printf(TEXT("arg, vtophysaddr() failed\n"));
85 1.2 uch msg_printf(MSG_ERROR, whoami,
86 1.2 uch TEXT("arg, vtophysaddr() failed\n"));
87 1.2 uch return (-1);
88 1.2 uch }
89 1.2 uch
90 1.2 uch for (i = 0; p = map->leaf[i / map->leafsize][i % map->leafsize]; i++) {
91 1.2 uch if ((p = vtophysaddr(p)) == NULL) {
92 1.2 uch debug_printf(TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
93 1.2 uch i, map->leaf[i / map->leafsize][i % map->leafsize]);
94 1.2 uch msg_printf(MSG_ERROR, whoami,
95 1.2 uch TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
96 1.2 uch i, map->leaf[i / map->leafsize][i % map->leafsize]);
97 1.2 uch return (-1);
98 1.2 uch }
99 1.2 uch map->leaf[i / map->leafsize][i % map->leafsize] = p;
100 1.2 uch }
101 1.2 uch
102 1.2 uch for (i = 0; i < map->nleaves; i++) {
103 1.2 uch if ((p = vtophysaddr((caddr_t)map->leaf[i])) == NULL) {
104 1.2 uch debug_printf(TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
105 1.2 uch i, map->leaf[i / map->leafsize][i % map->leafsize]);
106 1.2 uch msg_printf(MSG_ERROR, whoami,
107 1.2 uch TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
108 1.2 uch i, map->leaf[i / map->leafsize][i % map->leafsize]);
109 1.2 uch return (-1);
110 1.2 uch }
111 1.2 uch map->leaf[i] = (caddr_t*)p;
112 1.2 uch }
113 1.2 uch
114 1.2 uch debug_printf(TEXT("execute startprog()\n"));
115 1.2 uch //return (-1);
116 1.3 takemura return ((*system_info.si_boot)(vtophysaddr((caddr_t)map)));
117 1.1 takemura }
118 1.1 takemura
119 1.1 takemura caddr_t
120 1.1 takemura vmem_alloc()
121 1.1 takemura {
122 1.3 takemura int i, pagesize;
123 1.2 uch struct page_header_s *page;
124 1.3 takemura
125 1.3 takemura pagesize = system_info.si_pagesize;
126 1.2 uch for (i = 0; i < npages; i++) {
127 1.3 takemura page = (struct page_header_s*)&heap[pagesize * i];
128 1.2 uch if (!phys_addrs[i].in_use &&
129 1.2 uch !(kernel_start <= phys_addrs[i].addr &&
130 1.2 uch phys_addrs[i].addr < kernel_end)) {
131 1.2 uch phys_addrs[i].in_use = 1;
132 1.2 uch return ((caddr_t)page);
133 1.2 uch }
134 1.2 uch }
135 1.2 uch return (NULL);
136 1.1 takemura }
137 1.1 takemura
138 1.1 takemura static caddr_t
139 1.1 takemura alloc_kpage(caddr_t phys_addr)
140 1.1 takemura {
141 1.3 takemura int i, pagesize;
142 1.2 uch struct page_header_s *page;
143 1.3 takemura
144 1.3 takemura pagesize = system_info.si_pagesize;
145 1.2 uch for (i = 0; i < npages; i++) {
146 1.3 takemura page = (struct page_header_s*)&heap[pagesize * i];
147 1.2 uch if (phys_addrs[i].addr == phys_addr) {
148 1.2 uch if (phys_addrs[i].in_use) {
149 1.2 uch debug_printf(TEXT("page %d (phys addr=0x%x) is already in use\n"),
150 1.2 uch i, phys_addr);
151 1.2 uch msg_printf(MSG_ERROR, whoami,
152 1.2 uch TEXT("page %d (phys addr=0x%x) is already in use\n"),
153 1.2 uch i, phys_addr);
154 1.2 uch return (NULL);
155 1.2 uch }
156 1.2 uch phys_addrs[i].in_use = 1;
157 1.2 uch return ((caddr_t)page);
158 1.2 uch }
159 1.2 uch }
160 1.2 uch return (vmem_alloc());
161 1.1 takemura }
162 1.1 takemura
163 1.1 takemura caddr_t
164 1.1 takemura vmem_get(caddr_t phys_addr, int *length)
165 1.1 takemura {
166 1.3 takemura int pagesize = system_info.si_pagesize;
167 1.3 takemura int pageno = (phys_addr - kernel_start) / pagesize;
168 1.3 takemura int offset = (phys_addr - kernel_start) % pagesize;
169 1.1 takemura
170 1.2 uch if (map == NULL || pageno < 0 || npages <= pageno) {
171 1.2 uch return (NULL);
172 1.2 uch }
173 1.2 uch if (length) {
174 1.3 takemura *length = pagesize - offset;
175 1.2 uch }
176 1.2 uch return (map->leaf[pageno / map->leafsize][pageno % map->leafsize] + offset);
177 1.1 takemura }
178 1.1 takemura
179 1.1 takemura caddr_t
180 1.1 takemura vtophysaddr(caddr_t page)
181 1.1 takemura {
182 1.3 takemura int pageno = (page - heap) / system_info.si_pagesize;
183 1.3 takemura int offset = (page - heap) % system_info.si_pagesize;
184 1.1 takemura
185 1.2 uch if (map == NULL || pageno < 0 || npages <= pageno) {
186 1.2 uch return (NULL);
187 1.2 uch }
188 1.2 uch return (phys_addrs[pageno].addr + offset);
189 1.1 takemura }
190 1.1 takemura
191 1.1 takemura int
192 1.1 takemura vmem_init(caddr_t start, caddr_t end)
193 1.1 takemura {
194 1.3 takemura #define MEM_BLOCK_SIZE (1024*1024*4) /* must be greater than page size */
195 1.3 takemura int i, m, pageno;
196 1.2 uch unsigned long magic0;
197 1.2 uch unsigned long magic1;
198 1.2 uch int nfounds;
199 1.2 uch struct page_header_s *page;
200 1.2 uch long size;
201 1.2 uch int nleaves;
202 1.3 takemura int pagesize, memblocks;
203 1.3 takemura
204 1.3 takemura pagesize = system_info.si_pagesize;
205 1.3 takemura memblocks = (system_info.si_drammaxsize) / MEM_BLOCK_SIZE;
206 1.2 uch
207 1.2 uch /* align with page size */
208 1.3 takemura start = (caddr_t)(((long)start / pagesize) * pagesize);
209 1.3 takemura end = (caddr_t)((((long)end + pagesize - 1) / pagesize) * pagesize);
210 1.2 uch
211 1.2 uch kernel_start = start;
212 1.2 uch kernel_end = end;
213 1.2 uch size = end - start;
214 1.2 uch
215 1.2 uch /*
216 1.2 uch * program image pages.
217 1.2 uch */
218 1.3 takemura npages = (size + pagesize - 1) / pagesize;
219 1.2 uch
220 1.2 uch /*
221 1.2 uch * map leaf pages.
222 1.2 uch * npages plus one for end mark.
223 1.2 uch */
224 1.3 takemura npages += (nleaves = ((npages * sizeof(caddr_t) + pagesize) / pagesize));
225 1.2 uch
226 1.2 uch /*
227 1.2 uch * map root page, startprg code page, argument page and bootinfo page.
228 1.2 uch */
229 1.2 uch npages += 4;
230 1.2 uch
231 1.2 uch /*
232 1.2 uch * allocate pages
233 1.2 uch */
234 1.2 uch debug_printf(TEXT("allocate %d pages\n"), npages);
235 1.2 uch heap = (unsigned char*)
236 1.2 uch VirtualAlloc(0,
237 1.3 takemura npages * pagesize,
238 1.2 uch MEM_COMMIT,
239 1.2 uch PAGE_READWRITE | PAGE_NOCACHE);
240 1.2 uch if (heap == NULL) {
241 1.2 uch debug_printf(TEXT("can't allocate heap\n"));
242 1.2 uch msg_printf(MSG_ERROR, whoami, TEXT("can't allocate heap\n"));
243 1.2 uch goto error_cleanup;
244 1.2 uch }
245 1.2 uch
246 1.2 uch /*
247 1.2 uch * allocate address table.
248 1.2 uch */
249 1.2 uch phys_addrs = (struct addr_s *)
250 1.2 uch VirtualAlloc(0,
251 1.2 uch npages * sizeof(struct addr_s),
252 1.2 uch MEM_COMMIT,
253 1.2 uch PAGE_READWRITE);
254 1.2 uch if (phys_addrs == NULL) {
255 1.2 uch debug_printf(TEXT("can't allocate address table\n"));
256 1.2 uch msg_printf(MSG_ERROR, whoami, TEXT("can't allocate address table\n"));
257 1.2 uch goto error_cleanup;
258 1.2 uch }
259 1.2 uch
260 1.2 uch /*
261 1.2 uch * set magic number for each page in buffer.
262 1.2 uch */
263 1.2 uch magic0 = Random();
264 1.2 uch magic1 = Random();
265 1.2 uch debug_printf(TEXT("magic=%08x%08x\n"), magic0, magic1);
266 1.2 uch
267 1.2 uch for (i = 0; i < npages; i++) {
268 1.3 takemura page = (struct page_header_s*)&heap[pagesize * i];
269 1.2 uch page->magic0 = magic0;
270 1.2 uch page->pageno = i;
271 1.2 uch page->magic1 = magic1;
272 1.2 uch phys_addrs[i].addr = 0;
273 1.2 uch phys_addrs[i].in_use = 0;
274 1.2 uch }
275 1.2 uch
276 1.2 uch /*
277 1.2 uch * Scan whole physical memory.
278 1.2 uch */
279 1.2 uch nfounds = 0;
280 1.3 takemura for (m = 0; (m < memblocks) && (nfounds < npages); m++) {
281 1.2 uch unsigned char* mem;
282 1.3 takemura /* Map physical memory block */
283 1.3 takemura mem = (unsigned char*)VirtualAlloc(0, MEM_BLOCK_SIZE,
284 1.3 takemura MEM_RESERVE, PAGE_NOACCESS);
285 1.3 takemura if(!VirtualCopy((LPVOID)mem, (LPVOID)
286 1.3 takemura ((system_info.si_dramstart + MEM_BLOCK_SIZE * m) >> 8),
287 1.3 takemura MEM_BLOCK_SIZE,
288 1.3 takemura PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL)) {
289 1.3 takemura VirtualFree(mem, 0, MEM_RELEASE);
290 1.3 takemura continue;
291 1.3 takemura }
292 1.3 takemura /* Find preliminary allocated pages */
293 1.3 takemura for (i = 0; i < (int)(MEM_BLOCK_SIZE / pagesize); i++) {
294 1.3 takemura page = (struct page_header_s*)&mem[pagesize * i];
295 1.2 uch if (page->magic0 == magic0 &&
296 1.2 uch page->magic1 == magic1) {
297 1.2 uch pageno = page->pageno;
298 1.2 uch if (0 <= pageno && pageno < npages &&
299 1.2 uch phys_addrs[pageno].addr == 0) {
300 1.3 takemura /* Set kernel virtual addr. XXX mips dependent */
301 1.3 takemura phys_addrs[pageno].addr = (unsigned char*)
302 1.3 takemura ((0x80000000 |
303 1.3 takemura system_info.si_dramstart) +
304 1.3 takemura MEM_BLOCK_SIZE * m +
305 1.3 takemura pagesize * i);
306 1.2 uch page->magic0 = 0;
307 1.2 uch page->magic1 = 0;
308 1.2 uch if (npages <= ++nfounds) {
309 1.2 uch break;
310 1.2 uch }
311 1.2 uch } else {
312 1.2 uch debug_printf(TEXT("invalid page header\n"));
313 1.2 uch msg_printf(MSG_ERROR, whoami, TEXT("invalid page header\n"));
314 1.2 uch goto error_cleanup;
315 1.2 uch }
316 1.2 uch }
317 1.2 uch }
318 1.2 uch VirtualFree(mem, 0, MEM_RELEASE);
319 1.2 uch }
320 1.2 uch
321 1.2 uch if (nfounds < npages) {
322 1.2 uch debug_printf(TEXT("lost %d pages\n"), npages - nfounds);
323 1.3 takemura msg_printf(MSG_ERROR, whoami,
324 1.3 takemura TEXT("lost %d pages (allocated %d pages)\n"),
325 1.3 takemura npages - nfounds, npages);
326 1.2 uch goto error_cleanup;
327 1.2 uch }
328 1.1 takemura
329 1.2 uch /*
330 1.2 uch * allocate root page
331 1.2 uch */
332 1.2 uch if ((map = (struct map_s*)vmem_alloc()) == NULL) {
333 1.2 uch debug_printf(TEXT("can't allocate root page.\n"));
334 1.2 uch msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
335 1.2 uch goto error_cleanup;
336 1.2 uch }
337 1.2 uch map->nleaves = nleaves;
338 1.3 takemura map->leafsize = pagesize / sizeof(caddr_t);
339 1.3 takemura map->pagesize = pagesize;
340 1.2 uch
341 1.2 uch /*
342 1.2 uch * allocate leaf pages
343 1.2 uch */
344 1.2 uch for (i = 0; i < nleaves; i++) {
345 1.2 uch if ((map->leaf[i] = (caddr_t*)vmem_alloc()) == NULL) {
346 1.2 uch debug_printf(TEXT("can't allocate leaf page.\n"));
347 1.2 uch msg_printf(MSG_ERROR, whoami, TEXT("can't allocate leaf page.\n"));
348 1.2 uch goto error_cleanup;
349 1.2 uch }
350 1.2 uch }
351 1.2 uch
352 1.2 uch /*
353 1.2 uch * allocate kernel pages
354 1.2 uch */
355 1.3 takemura for (i = 0; start < kernel_end; start += pagesize, i++) {
356 1.2 uch caddr_t *leaf = map->leaf[i / map->leafsize];
357 1.2 uch if ((leaf[i % map->leafsize] = alloc_kpage(start)) == NULL) {
358 1.2 uch debug_printf(TEXT("can't allocate page 0x%x.\n"), start);
359 1.2 uch msg_printf(MSG_ERROR, whoami, TEXT("can't allocate page 0x%x.\n"), start);
360 1.2 uch goto error_cleanup;
361 1.2 uch }
362 1.2 uch }
363 1.2 uch map->leaf[i / map->leafsize][i % map->leafsize] = NULL; /* END MARK */
364 1.2 uch
365 1.2 uch return (0);
366 1.1 takemura
367 1.1 takemura error_cleanup:
368 1.2 uch vmem_free();
369 1.1 takemura
370 1.2 uch return (-1);
371 1.1 takemura }
372 1.1 takemura
373 1.1 takemura void
374 1.1 takemura vmem_free()
375 1.1 takemura {
376 1.1 takemura map = NULL;
377 1.1 takemura if (heap) {
378 1.1 takemura VirtualFree(heap, 0, MEM_RELEASE);
379 1.1 takemura heap = NULL;
380 1.1 takemura }
381 1.1 takemura if (phys_addrs) {
382 1.1 takemura VirtualFree(phys_addrs, 0, MEM_RELEASE);
383 1.1 takemura phys_addrs = NULL;
384 1.1 takemura }
385 1.1 takemura }
386 1.1 takemura
387 1.1 takemura void
388 1.1 takemura vmem_dump_map()
389 1.1 takemura {
390 1.2 uch caddr_t addr, page, paddr;
391 1.2 uch
392 1.2 uch if (map == NULL) {
393 1.2 uch debug_printf(TEXT("no page map\n"));
394 1.2 uch return;
395 1.2 uch }
396 1.1 takemura
397 1.3 takemura for (addr = kernel_start; addr < kernel_end; addr += system_info.si_pagesize) {
398 1.2 uch page = vmem_get(addr, NULL);
399 1.2 uch paddr = vtophysaddr(page);
400 1.2 uch debug_printf(TEXT("%08X: vaddr=%08X paddr=%08X %s\n"),
401 1.2 uch addr, page, paddr, addr == paddr ? TEXT("*") : TEXT("reloc"));
402 1.1 takemura
403 1.2 uch }
404 1.1 takemura }
405