vmem.c revision 1.2 1 /* $NetBSD: vmem.c,v 1.2 1999/09/22 12:49:50 uch Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Shin Takemura.
5 * All rights reserved.
6 *
7 * This software is part of the PocketBSD.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the PocketBSD project
20 * and its contributors.
21 * 4. Neither the name of the project nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 */
38 #include <pbsdboot.h>
39
40 #define MAX_MEMORY (1024*1024*32) /* 32 MB */
41 #define MEM_BLOCKS 8
42 #define MEM_BLOCK_SIZE (1024*1024*4)
43
44 struct addr_s {
45 caddr_t addr;
46 int in_use;
47 };
48
49 struct page_header_s {
50 unsigned long magic0;
51 int pageno;
52 unsigned long magic1;
53 };
54
55 struct map_s *map = NULL;
56 struct addr_s *phys_addrs = NULL;
57 unsigned char* heap = NULL;
58 int npages;
59 caddr_t kernel_start;
60 caddr_t kernel_end;
61
62 int
63 vmem_exec(caddr_t entry, int argc, char *argv[], struct bootinfo *bi)
64 {
65 int i;
66 caddr_t p;
67
68 if (map == NULL) {
69 debug_printf(TEXT("vmem is not initialized.\n"));
70 msg_printf(MSG_ERROR, whoami, TEXT("vmem is not initialized.\n"));
71 return (-1);
72 }
73
74 debug_printf(TEXT("entry point=0x%x\n"), entry);
75
76 map->entry = entry;
77 map->base = kernel_start;
78
79 for (i = 0; i < argc; i++) {
80 argv[i] = vtophysaddr(argv[i]);
81 }
82 map->arg0 = (caddr_t)argc;
83 map->arg1 = vtophysaddr((caddr_t)argv);
84 map->arg2 = vtophysaddr((caddr_t)bi);
85 map->arg3 = NULL;
86
87 if (map->arg1 == NULL || map->arg2 == NULL) {
88 debug_printf(TEXT("arg, vtophysaddr() failed\n"));
89 msg_printf(MSG_ERROR, whoami,
90 TEXT("arg, vtophysaddr() failed\n"));
91 return (-1);
92 }
93
94 for (i = 0; p = map->leaf[i / map->leafsize][i % map->leafsize]; i++) {
95 if ((p = vtophysaddr(p)) == NULL) {
96 debug_printf(TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
97 i, map->leaf[i / map->leafsize][i % map->leafsize]);
98 msg_printf(MSG_ERROR, whoami,
99 TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
100 i, map->leaf[i / map->leafsize][i % map->leafsize]);
101 return (-1);
102 }
103 map->leaf[i / map->leafsize][i % map->leafsize] = p;
104 }
105
106 for (i = 0; i < map->nleaves; i++) {
107 if ((p = vtophysaddr((caddr_t)map->leaf[i])) == NULL) {
108 debug_printf(TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
109 i, map->leaf[i / map->leafsize][i % map->leafsize]);
110 msg_printf(MSG_ERROR, whoami,
111 TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
112 i, map->leaf[i / map->leafsize][i % map->leafsize]);
113 return (-1);
114 }
115 map->leaf[i] = (caddr_t*)p;
116 }
117
118 debug_printf(TEXT("execute startprog()\n"));
119 //return (-1);
120 return (startprog(vtophysaddr((caddr_t)map)));
121 }
122
123 DWORD
124 getpagesize()
125 {
126 static int init = 0;
127 static SYSTEM_INFO info;
128
129 if (!init) {
130 GetSystemInfo(&info);
131 init = 1;
132 }
133
134 return (info.dwPageSize);
135 }
136
137 caddr_t
138 vmem_alloc()
139 {
140 int i;
141 struct page_header_s *page;
142 for (i = 0; i < npages; i++) {
143 page = (struct page_header_s*)&heap[getpagesize() * i];
144 if (!phys_addrs[i].in_use &&
145 !(kernel_start <= phys_addrs[i].addr &&
146 phys_addrs[i].addr < kernel_end)) {
147 phys_addrs[i].in_use = 1;
148 return ((caddr_t)page);
149 }
150 }
151 return (NULL);
152 }
153
154 static caddr_t
155 alloc_kpage(caddr_t phys_addr)
156 {
157 int i;
158 struct page_header_s *page;
159 for (i = 0; i < npages; i++) {
160 page = (struct page_header_s*)&heap[getpagesize() * i];
161 if (phys_addrs[i].addr == phys_addr) {
162 if (phys_addrs[i].in_use) {
163 debug_printf(TEXT("page %d (phys addr=0x%x) is already in use\n"),
164 i, phys_addr);
165 msg_printf(MSG_ERROR, whoami,
166 TEXT("page %d (phys addr=0x%x) is already in use\n"),
167 i, phys_addr);
168 return (NULL);
169 }
170 phys_addrs[i].in_use = 1;
171 return ((caddr_t)page);
172 }
173 }
174 return (vmem_alloc());
175 }
176
177 caddr_t
178 vmem_get(caddr_t phys_addr, int *length)
179 {
180 int pageno = (phys_addr - kernel_start) / getpagesize();
181 int offset = (phys_addr - kernel_start) % getpagesize();
182
183 if (map == NULL || pageno < 0 || npages <= pageno) {
184 return (NULL);
185 }
186 if (length) {
187 *length = getpagesize() - offset;
188 }
189 return (map->leaf[pageno / map->leafsize][pageno % map->leafsize] + offset);
190 }
191
192 caddr_t
193 vtophysaddr(caddr_t page)
194 {
195 int pageno = (page - heap) / getpagesize();
196 int offset = (page - heap) % getpagesize();
197
198 if (map == NULL || pageno < 0 || npages <= pageno) {
199 return (NULL);
200 }
201 return (phys_addrs[pageno].addr + offset);
202 }
203
204 int
205 vmem_init(caddr_t start, caddr_t end)
206 {
207 int i, N, pageno;
208 unsigned long magic0;
209 unsigned long magic1;
210 int nfounds;
211 struct page_header_s *page;
212 long size;
213 int nleaves;
214
215 /* align with page size */
216 start = (caddr_t)(((long)start / getpagesize()) * getpagesize());
217 end = (caddr_t)((((long)end + getpagesize() - 1) / getpagesize()) * getpagesize());
218
219 kernel_start = start;
220 kernel_end = end;
221 size = end - start;
222
223 /*
224 * program image pages.
225 */
226 npages = (size + getpagesize() - 1) / getpagesize();
227
228 /*
229 * map leaf pages.
230 * npages plus one for end mark.
231 */
232 npages += (nleaves = ((npages * sizeof(caddr_t) + getpagesize()) / getpagesize()));
233
234 /*
235 * map root page, startprg code page, argument page and bootinfo page.
236 */
237 npages += 4;
238
239 /*
240 * allocate pages
241 */
242 debug_printf(TEXT("allocate %d pages\n"), npages);
243 heap = (unsigned char*)
244 VirtualAlloc(0,
245 npages * getpagesize(),
246 MEM_COMMIT,
247 PAGE_READWRITE | PAGE_NOCACHE);
248 if (heap == NULL) {
249 debug_printf(TEXT("can't allocate heap\n"));
250 msg_printf(MSG_ERROR, whoami, TEXT("can't allocate heap\n"));
251 goto error_cleanup;
252 }
253
254 /*
255 * allocate address table.
256 */
257 phys_addrs = (struct addr_s *)
258 VirtualAlloc(0,
259 npages * sizeof(struct addr_s),
260 MEM_COMMIT,
261 PAGE_READWRITE);
262 if (phys_addrs == NULL) {
263 debug_printf(TEXT("can't allocate address table\n"));
264 msg_printf(MSG_ERROR, whoami, TEXT("can't allocate address table\n"));
265 goto error_cleanup;
266 }
267
268 /*
269 * set magic number for each page in buffer.
270 */
271 magic0 = Random();
272 magic1 = Random();
273 debug_printf(TEXT("magic=%08x%08x\n"), magic0, magic1);
274
275 for (i = 0; i < npages; i++) {
276 page = (struct page_header_s*)&heap[getpagesize() * i];
277 page->magic0 = magic0;
278 page->pageno = i;
279 page->magic1 = magic1;
280 phys_addrs[i].addr = 0;
281 phys_addrs[i].in_use = 0;
282 }
283
284 /*
285 * Scan whole physical memory.
286 */
287 nfounds = 0;
288 for (N = 0; N < MEM_BLOCKS && nfounds < npages; N++) {
289 unsigned char* mem;
290 int res;
291 mem = (unsigned char*)
292 VirtualAlloc(0,
293 MEM_BLOCK_SIZE,
294 MEM_RESERVE,
295 PAGE_NOACCESS);
296 res = VirtualCopy((LPVOID)mem,
297 //(LPVOID)((0xa0000000 + MEM_BLOCK_SIZE * N) >> 8),
298 (LPVOID)((0x80000000 + MEM_BLOCK_SIZE * N) >> 8),
299 MEM_BLOCK_SIZE,
300 PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL);
301
302 for (i = 0; i < (int)(MEM_BLOCK_SIZE/getpagesize()); i++) {
303 page = (struct page_header_s*)&mem[getpagesize() * i];
304 if (page->magic0 == magic0 &&
305 page->magic1 == magic1) {
306 pageno = page->pageno;
307 if (0 <= pageno && pageno < npages &&
308 phys_addrs[pageno].addr == 0) {
309 phys_addrs[pageno].addr =
310 (unsigned char*)(0x80000000 + MEM_BLOCK_SIZE * N +
311 getpagesize() * i);
312 page->magic0 = 0;
313 page->magic1 = 0;
314 if (npages <= ++nfounds) {
315 break;
316 }
317 } else {
318 debug_printf(TEXT("invalid page header\n"));
319 msg_printf(MSG_ERROR, whoami, TEXT("invalid page header\n"));
320 goto error_cleanup;
321 }
322 }
323 }
324 VirtualFree(mem, 0, MEM_RELEASE);
325 }
326
327 if (nfounds < npages) {
328 debug_printf(TEXT("lost %d pages\n"), npages - nfounds);
329 msg_printf(MSG_ERROR, whoami, TEXT("lost %d pages\n"), npages - nfounds);
330 goto error_cleanup;
331 }
332
333 /*
334 * allocate root page
335 */
336 if ((map = (struct map_s*)vmem_alloc()) == NULL) {
337 debug_printf(TEXT("can't allocate root page.\n"));
338 msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
339 goto error_cleanup;
340 }
341 map->nleaves = nleaves;
342 map->leafsize = getpagesize() / sizeof(caddr_t);
343 map->pagesize = getpagesize();
344
345 /*
346 * allocate leaf pages
347 */
348 for (i = 0; i < nleaves; i++) {
349 if ((map->leaf[i] = (caddr_t*)vmem_alloc()) == NULL) {
350 debug_printf(TEXT("can't allocate leaf page.\n"));
351 msg_printf(MSG_ERROR, whoami, TEXT("can't allocate leaf page.\n"));
352 goto error_cleanup;
353 }
354 }
355
356 /*
357 * allocate kernel pages
358 */
359 for (i = 0; start < kernel_end; start += getpagesize(), i++) {
360 caddr_t *leaf = map->leaf[i / map->leafsize];
361 if ((leaf[i % map->leafsize] = alloc_kpage(start)) == NULL) {
362 debug_printf(TEXT("can't allocate page 0x%x.\n"), start);
363 msg_printf(MSG_ERROR, whoami, TEXT("can't allocate page 0x%x.\n"), start);
364 goto error_cleanup;
365 }
366 }
367 map->leaf[i / map->leafsize][i % map->leafsize] = NULL; /* END MARK */
368
369 return (0);
370
371 error_cleanup:
372 vmem_free();
373
374 return (-1);
375 }
376
377 void
378 vmem_free()
379 {
380 map = NULL;
381 if (heap) {
382 VirtualFree(heap, 0, MEM_RELEASE);
383 heap = NULL;
384 }
385 if (phys_addrs) {
386 VirtualFree(phys_addrs, 0, MEM_RELEASE);
387 phys_addrs = NULL;
388 }
389 }
390
391 void
392 vmem_dump_map()
393 {
394 caddr_t addr, page, paddr;
395
396 if (map == NULL) {
397 debug_printf(TEXT("no page map\n"));
398 return;
399 }
400
401 for (addr = kernel_start; addr < kernel_end; addr += getpagesize()) {
402 page = vmem_get(addr, NULL);
403 paddr = vtophysaddr(page);
404 debug_printf(TEXT("%08X: vaddr=%08X paddr=%08X %s\n"),
405 addr, page, paddr, addr == paddr ? TEXT("*") : TEXT("reloc"));
406
407 }
408 }
409