flash_vrip.c revision 1.6 1 /* $NetBSD: flash_vrip.c,v 1.6 2008/04/28 20:23:22 martin Exp $ */
2
3 /*
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Naoto Shimazaki of YOKOGAWA Electric Corporation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Flash Memory Driver
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: flash_vrip.c,v 1.6 2008/04/28 20:23:22 martin Exp $");
38
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/systm.h>
46
47 #include <machine/bus.h>
48
49 #include <hpcmips/vr/vripif.h>
50 #include <hpcmips/vr/cfireg.h>
51 #include <hpcmips/vr/flashreg.h>
52 #include <hpcmips/vr/flashvar.h>
53
54 #ifdef FLASH_DEBUG
55 int flash_debug = 0;
56 #define DPRINTF(x) if (flash_debug) printf x
57 #else
58 #define DPRINTF(x)
59 #endif
60
61 static int flash_probe(struct device *, struct cfdata *, void *);
62 static void flash_attach(struct device *, struct device *, void *);
63
64 const static struct flashops * find_command_set(u_int8_t cmdset0,
65 u_int8_t cmdset1);
66 static int i28f128_probe(bus_space_tag_t, bus_space_handle_t);
67 static int mbm29160_probe(bus_space_tag_t, bus_space_handle_t);
68 static int is_block_same(struct flash_softc *, bus_size_t, const void *);
69 static int probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh);
70
71 static int intel_erase(struct flash_softc *, bus_size_t);
72 static int intel_write(struct flash_softc *, bus_size_t);
73 static int amd_erase(struct flash_softc *, bus_size_t);
74 static int amd_write(struct flash_softc *, bus_size_t);
75
76 extern struct cfdriver flash_cd;
77
78 CFATTACH_DECL(flash_vrip, sizeof(struct flash_softc),
79 flash_probe, flash_attach, NULL, NULL);
80
81 dev_type_open(flashopen);
82 dev_type_close(flashclose);
83 dev_type_read(flashread);
84 dev_type_write(flashwrite);
85
86 const struct cdevsw flash_cdevsw = {
87 flashopen, flashclose, flashread, flashwrite, noioctl,
88 nostop, notty, nopoll, nommap, nokqfilter,
89 };
90
91 static const struct flash_command_set {
92 u_int8_t fc_set0;
93 u_int8_t fc_set1;
94 struct flashops fc_ops;
95 } flash_cmd[] = {
96 {
97 .fc_set0 = CFI_COMMSET_INTEL0,
98 .fc_set1 = CFI_COMMSET_INTEL1,
99 .fc_ops = {
100 .fo_name = "Intel",
101 .fo_erase = intel_erase,
102 .fo_write = intel_write,
103 }
104 },
105 {
106 .fc_set0 = CFI_COMMSET_AMDFJITU0,
107 .fc_set1 = CFI_COMMSET_AMDFJITU1,
108 .fc_ops = {
109 .fo_name = "AMD/Fujitsu",
110 .fo_erase = amd_erase,
111 .fo_write = amd_write,
112 }
113 },
114 {
115 .fc_set0 = 0,
116 .fc_set1 = 0,
117 .fc_ops = {
118 .fo_name = NULL,
119 .fo_erase = NULL,
120 .fo_write = NULL,
121 }
122 }
123 };
124
125
126 const static struct flashops *
127 find_command_set(u_int8_t cmdset0, u_int8_t cmdset1)
128 {
129 const struct flash_command_set *fc;
130
131 for (fc = flash_cmd; fc->fc_ops.fo_name; fc++) {
132 if (cmdset0 == fc->fc_set0 && cmdset1 == fc->fc_set1)
133 return &fc->fc_ops;
134 }
135 return NULL;
136 }
137
138 static int
139 probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh)
140 {
141 const u_int8_t *idstr = CFI_QUERY_ID_STR;
142 int i;
143 u_int8_t cmdset0;
144 u_int8_t cmdset1;
145
146 /* start Common Flash Interface Query */
147 bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
148
149 /* read CFI Query ID string */
150 i = CFI_QUERY_ID_STR_REG << 1;
151 do {
152 if (bus_space_read_2(iot, ioh, i) != *idstr) {
153 bus_space_write_2(iot, ioh, 0, FLASH_RESET);
154 return 1;
155 }
156 i += 2;
157 idstr++;
158 } while (*idstr);
159
160 cmdset0 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG0 << 1);
161 cmdset1 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG1 << 1);
162
163 /* switch flash to read mode */
164 bus_space_write_2(iot, ioh, 0, FLASH_RESET);
165
166 if (!find_command_set(cmdset0, cmdset1))
167 return 1;
168
169 return 0;
170 }
171
172 static int
173 flash_probe(struct device *parent, struct cfdata *match, void *aux)
174 {
175 struct vrip_attach_args *va = aux;
176 bus_space_handle_t ioh;
177
178 if (bus_space_map(va->va_iot, va->va_addr, va->va_size, 0, &ioh))
179 return 0;
180 if (!probe_cfi(va->va_iot, ioh)) {
181 DPRINTF("CFI ID str and command set recognized\n");
182 goto detect;
183 }
184 if (!i28f128_probe(va->va_iot, ioh)) {
185 DPRINTF("28F128 detected\n");
186 goto detect;
187 }
188 if (!mbm29160_probe(va->va_iot, ioh)) {
189 DPRINTF("29LV160 detected\n");
190 goto detect;
191 }
192 return 0;
193
194 detect:
195 bus_space_unmap(va->va_iot, ioh, va->va_size);
196 return 1;
197 }
198
199 static void
200 flash_attach(struct device *parent, struct device *self, void *aux)
201 {
202 struct flash_softc *sc = (void *) self;
203 struct vrip_attach_args *va = aux;
204 int i;
205 int fence;
206 bus_space_tag_t iot = va->va_iot;
207 bus_space_handle_t ioh;
208 size_t block_size;
209
210 if (bus_space_map(iot, va->va_addr, va->va_size, 0, &ioh)) {
211 printf(": can't map i/o space\n");
212 return;
213 }
214
215 sc->sc_iot = iot;
216 sc->sc_ioh = ioh;
217 sc->sc_size = va->va_size;
218 sc->sc_status = 0;
219
220 /*
221 * Read entire CFI structure
222 */
223 bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
224 for (i = 0; i < CFI_TOTAL_SIZE; i++) {
225 sc->sc_cfi_raw[i] = bus_space_read_2(iot, ioh, i << 1);
226 }
227 bus_space_write_2(iot, ioh, 0, FLASH_RESET);
228
229 sc->sc_ops = find_command_set(sc->sc_cfi_raw[CFI_PRIM_COMM_REG0],
230 sc->sc_cfi_raw[CFI_PRIM_COMM_REG1]);
231 if (sc->sc_ops) {
232 printf(": using %s command set", sc->sc_ops->fo_name);
233 } else {
234 printf("opps sc->sc_ops is NULL\n");
235 }
236
237 /*
238 * determine size of the largest block
239 */
240 sc->sc_block_size = 0;
241 i = CFI_EBLK1_INFO_REG;
242 fence = sc->sc_cfi_raw[CFI_NUM_ERASE_BLK_REG] * CFI_EBLK_INFO_SIZE
243 + i;
244 for (; i < fence; i += CFI_EBLK_INFO_SIZE) {
245 if (sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT0] == 0
246 && sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT1] == 0)
247 continue;
248 block_size
249 = (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE0] << 8)
250 + (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE1] << 16);
251 if (sc->sc_block_size < block_size)
252 sc->sc_block_size = block_size;
253 }
254
255 if ((sc->sc_buf = malloc(sc->sc_block_size, M_DEVBUF, M_NOWAIT))
256 == NULL) {
257 printf(": can't alloc buffer space\n");
258 return;
259 }
260
261 sc->sc_write_buffer_size
262 = 1 << (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG0]
263 + (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG1] << 8));
264 sc->sc_typ_word_prog_timo
265 = 1 << sc->sc_cfi_raw[CFI_TYP_WORD_PROG_REG];
266 sc->sc_max_word_prog_timo
267 = 1 << sc->sc_cfi_raw[CFI_MAX_WORD_PROG_REG];
268 sc->sc_typ_buffer_write_timo
269 = 1 << sc->sc_cfi_raw[CFI_TYP_BUF_WRITE_REG];
270 sc->sc_max_buffer_write_timo
271 = 1 << sc->sc_cfi_raw[CFI_MAX_BUF_WRITE_REG];
272 sc->sc_typ_block_erase_timo
273 = 1 << sc->sc_cfi_raw[CFI_TYP_BLOCK_ERASE_REG];
274 sc->sc_max_block_erase_timo
275 = 1 << sc->sc_cfi_raw[CFI_MAX_BLOCK_ERASE_REG];
276
277 printf("\n");
278
279 #ifdef FLASH_DEBUG
280 printf("read_cfi: extract cfi\n");
281 printf("max block size: %dbyte\n", sc->sc_block_size);
282 printf("write buffer size: %dbyte\n", sc->sc_write_buffer_size);
283 printf("typical word program timeout: %dusec\n",
284 sc->sc_typ_word_prog_timo);
285 printf("maximam word program timeout: %dusec (%d time of typ)\n",
286 sc->sc_typ_word_prog_timo * sc->sc_max_word_prog_timo,
287 sc->sc_max_word_prog_timo);
288 printf("typical buffer write timeout: %dusec\n",
289 sc->sc_typ_buffer_write_timo);
290 printf("maximam buffer write timeout: %dusec (%d time of typ)\n",
291 sc->sc_typ_buffer_write_timo * sc->sc_max_buffer_write_timo,
292 sc->sc_max_buffer_write_timo);
293 printf("typical block erase timeout: %dmsec\n",
294 sc->sc_typ_block_erase_timo);
295 printf("maximam block erase timeout: %dmsec (%d time of typ)\n",
296 sc->sc_typ_block_erase_timo * sc->sc_max_block_erase_timo,
297 sc->sc_max_block_erase_timo);
298
299 printf("read_cfi: dump cfi\n");
300 for (i = 0; i < CFI_TOTAL_SIZE;) {
301 int j;
302 for (j = 0; j < 16; j++) {
303 printf("%02x ", sc->sc_cfi_raw[i++]);
304 }
305 printf("\n");
306 }
307 #endif
308 }
309
310 int
311 flashopen(dev_t dev, int flag, int mode, struct lwp *l)
312 {
313 struct flash_softc *sc;
314
315 if ((sc = device_lookup(&flash_cd, minor(dev))) == NULL)
316 return ENXIO;
317 if (sc->sc_status & FLASH_ST_BUSY)
318 return EBUSY;
319 sc->sc_status |= FLASH_ST_BUSY;
320 return 0;
321 }
322
323 int
324 flashclose(dev_t dev, int flag, int mode, struct lwp *l)
325 {
326 struct flash_softc *sc;
327
328 sc = device_lookup(&flash_cd, minor(dev));
329 sc->sc_status &= ~FLASH_ST_BUSY;
330 return 0;
331 }
332
333 int
334 flashread(dev_t dev, struct uio *uio, int flag)
335 {
336 struct flash_softc *sc;
337 bus_space_tag_t iot;
338 bus_space_handle_t ioh;
339 bus_size_t off;
340 int total;
341 int count;
342 int error;
343
344 sc = device_lookup(&flash_cd, minor(dev));
345 iot = sc->sc_iot;
346 ioh = sc->sc_ioh;
347
348 off = uio->uio_offset;
349 total = min(sc->sc_size - off, uio->uio_resid);
350
351 while (total > 0) {
352 count = min(sc->sc_block_size, uio->uio_resid);
353 bus_space_read_region_1(iot, ioh, off, sc->sc_buf, count);
354 if ((error = uiomove(sc->sc_buf, count, uio)) != 0)
355 return error;
356 off += count;
357 total -= count;
358 }
359 return 0;
360 }
361
362
363 int
364 flashwrite(dev_t dev, struct uio *uio, int flag)
365 {
366 struct flash_softc *sc;
367 bus_space_tag_t iot;
368 bus_space_handle_t ioh;
369 bus_size_t off;
370 int stat;
371 int error;
372
373 sc = device_lookup(&flash_cd, minor(dev));
374
375 if (sc->sc_size < uio->uio_offset + uio->uio_resid)
376 return ENOSPC;
377 if (uio->uio_offset % sc->sc_block_size)
378 return EINVAL;
379 if (uio->uio_resid % sc->sc_block_size)
380 return EINVAL;
381
382 iot = sc->sc_iot;
383 ioh = sc->sc_ioh;
384
385 for (off = uio->uio_offset;
386 uio->uio_resid > 0;
387 off += sc->sc_block_size) {
388 if ((error = uiomove(sc->sc_buf, sc->sc_block_size, uio)) != 0)
389 return error;
390 if (is_block_same(sc, off, sc->sc_buf))
391 continue;
392 if ((stat = flash_block_erase(sc, off)) != 0) {
393 printf("block erase failed status = 0x%x\n", stat);
394 return EIO;
395 }
396 if ((stat = flash_block_write(sc, off)) != 0) {
397 printf("block write failed status = 0x%x\n", stat);
398 return EIO;
399 }
400 }
401 return 0;
402 }
403
404 /*
405 * XXX
406 * this function is too much specific for the device.
407 */
408 static int
409 i28f128_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
410 {
411 static const u_int8_t vendor_code[] = {
412 0x89, /* manufacturer code: intel */
413 0x18, /* device code: 28F128 */
414 };
415
416 static const u_int8_t idstr[] = {
417 'Q', 'R', 'Y',
418 0x01, 0x00,
419 0x31, 0x00,
420 0xff
421 };
422
423 int i;
424
425 /* start Common Flash Interface Query */
426 bus_space_write_2(iot, ioh, 0, CFI_READ_CFI_QUERY);
427 /* read CFI Query ID string */
428 for (i = 0; idstr[i] != 0xff; i++) {
429 if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
430 return 1;
431 }
432
433 /* read manufacturer code and device code */
434 if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
435 return 1;
436 if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
437 return 1;
438
439 bus_space_write_2(iot, ioh, 0, I28F128_RESET);
440 return 0;
441 }
442
443 /*
444 * XXX
445 * this function is too much specific for the device.
446 */
447 static int
448 mbm29160_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
449 {
450 static const u_int16_t vendor_code[] = {
451 0x0004, /* manufacturer code: intel */
452 0x2249, /* device code: 29LV160BE */
453 };
454
455 static const u_int8_t idstr[] = {
456 'Q', 'R', 'Y',
457 0x02, 0x00,
458 0x40, 0x00,
459 0xff
460 };
461
462 int i;
463
464 /* start Common Flash Interface Query */
465 bus_space_write_2(iot, ioh, 0xaa, CFI_READ_CFI_QUERY);
466 /* read CFI Query ID string */
467 for (i = 0; idstr[i] != 0xff; i++) {
468 if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
469 return 1;
470 }
471
472 bus_space_write_2(iot, ioh, 0, 0xff);
473
474 /* read manufacturer code and device code */
475 bus_space_write_2(iot, ioh, 0x555 << 1, 0xaa);
476 bus_space_write_2(iot, ioh, 0x2aa << 1, 0x55);
477 bus_space_write_2(iot, ioh, 0x555 << 1, 0x90);
478 if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
479 return 1;
480 if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
481 return 1;
482
483 bus_space_write_2(iot, ioh, 0, 0xff);
484 return 0;
485 }
486
487 static int
488 is_block_same(struct flash_softc *sc, bus_size_t offset, const void *bufp)
489 {
490 bus_space_tag_t iot = sc->sc_iot;
491 bus_space_handle_t ioh = sc->sc_ioh;
492 const u_int8_t *p = bufp;
493 int count = sc->sc_block_size;
494
495 while (count-- > 0) {
496 if (bus_space_read_1(iot, ioh, offset++) != *p++)
497 return 0;
498 }
499 return 1;
500 }
501
502 static int
503 intel_erase(struct flash_softc *sc, bus_size_t offset)
504 {
505 bus_space_tag_t iot = sc->sc_iot;
506 bus_space_handle_t ioh = sc->sc_ioh;
507 int status;
508 int i;
509
510 bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_1ST);
511 bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_2ND);
512
513 status = 0;
514 for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
515 tsleep(sc, PRIBIO, "blockerase",
516 1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
517 if ((status = bus_space_read_2(iot, ioh, offset))
518 & I28F128_S_READY)
519 break;
520 }
521 if (i == 0)
522 status |= FLASH_TIMEOUT;
523
524 bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
525 bus_space_write_2(iot, ioh, offset, I28F128_RESET);
526
527 return status & (FLASH_TIMEOUT
528 | I28F128_S_ERASE_SUSPEND
529 | I28F128_S_COMSEQ_ERROR
530 | I28F128_S_ERASE_ERROR
531 | I28F128_S_BLOCK_LOCKED);
532 }
533
534 static int
535 intel_write(struct flash_softc *sc, bus_size_t offset)
536 {
537 bus_space_tag_t iot = sc->sc_iot;
538 bus_space_handle_t ioh = sc->sc_ioh;
539 int wbuf_size;
540 int timo;
541 int status;
542 bus_size_t fence;
543 int i;
544 const u_int16_t *p;
545
546 /* wbuf_size = size in u_int16_t */
547 wbuf_size = sc->sc_write_buffer_size >> 1;
548
549 p = (u_int16_t *) sc->sc_buf;
550 fence = offset + sc->sc_block_size;
551 do {
552 status = 0;
553 for (timo = sc->sc_max_buffer_write_timo; timo > 0; timo--) {
554 bus_space_write_2(iot, ioh, offset,
555 I28F128_WRITE_BUFFER);
556 status = bus_space_read_2(iot, ioh, offset);
557 if (status & I28F128_XS_BUF_AVAIL)
558 break;
559 DELAY(sc->sc_typ_buffer_write_timo);
560 }
561 if (timo == 0) {
562 status |= FLASH_TIMEOUT;
563 goto errout;
564 }
565
566 bus_space_write_2(iot, ioh, offset, wbuf_size - 1);
567
568 for (i = wbuf_size; i > 0; i--, p++, offset += 2)
569 bus_space_write_2(iot, ioh, offset, *p);
570
571 bus_space_write_2(iot, ioh, offset, I28F128_WBUF_CONFIRM);
572
573 do {
574 bus_space_write_2(iot, ioh, offset,
575 I28F128_READ_STATUS);
576 status = bus_space_read_2(iot, ioh, offset);
577 } while (!(status & I28F128_S_READY));
578
579 } while (offset < fence);
580
581 bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
582 bus_space_write_2(iot, ioh, offset, I28F128_RESET);
583
584 return 0;
585
586 errout:
587 bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
588 bus_space_write_2(iot, ioh, offset, I28F128_RESET);
589
590 status &= (FLASH_TIMEOUT
591 | I28F128_S_PROG_ERROR
592 | I28F128_S_COMSEQ_ERROR
593 | I28F128_S_LOW_VOLTAGE
594 | I28F128_S_PROG_SUSPEND
595 | I28F128_S_BLOCK_LOCKED);
596 return status;
597 }
598
599 static int
600 amd_erase_sector(struct flash_softc *sc, bus_size_t offset)
601 {
602 bus_space_tag_t iot = sc->sc_iot;
603 bus_space_handle_t ioh = sc->sc_ioh;
604 int i;
605
606 DPRINTF(("amd_erase_sector offset = %08lx\n", offset));
607
608 bus_space_write_2(iot, ioh,
609 MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
610 bus_space_write_2(iot, ioh,
611 MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
612 bus_space_write_2(iot, ioh,
613 MBM29LV160_COMM_ADDR2, MBM29LV160_ESECT_CMD2);
614 bus_space_write_2(iot, ioh,
615 MBM29LV160_COMM_ADDR3, MBM29LV160_ESECT_CMD3);
616 bus_space_write_2(iot, ioh,
617 MBM29LV160_COMM_ADDR4, MBM29LV160_ESECT_CMD4);
618 bus_space_write_2(iot, ioh, offset, MBM29LV160_ESECT_CMD5);
619
620 for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
621 tsleep(sc, PRIBIO, "blockerase",
622 1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
623 if (bus_space_read_2(iot, ioh, offset) == 0xffff)
624 return 0;
625 }
626
627 return FLASH_TIMEOUT;
628 }
629
630 static int
631 amd_erase(struct flash_softc *sc, bus_size_t offset)
632 {
633 static const struct mbm29lv_subsect {
634 u_int16_t devcode;
635 u_int32_t subsect_mask;
636 u_int32_t subsect_addr;
637 } subsect[] = {
638 {
639 MBM29LV160TE_DEVCODE,
640 MBM29LV160_SUBSECT_MASK,
641 MBM29LV160TE_SUBSECT_ADDR
642 },
643 {
644 MBM29LV160BE_DEVCODE,
645 MBM29LV160_SUBSECT_MASK,
646 MBM29LV160BE_SUBSECT_ADDR
647 },
648 { 0, 0, 0 }
649 };
650
651 bus_space_tag_t iot = sc->sc_iot;
652 bus_space_handle_t ioh = sc->sc_ioh;
653 u_int16_t devcode;
654 const struct mbm29lv_subsect *ss;
655 bus_size_t fence;
656 int step;
657 int status;
658
659 bus_space_write_2(iot, ioh,
660 MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
661 bus_space_write_2(iot, ioh,
662 MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
663 bus_space_write_2(iot, ioh,
664 MBM29LV160_COMM_ADDR2, MBM29LV160_SIGN_CMD2);
665 devcode = bus_space_read_2(iot, ioh, MBM29LV160_DEVCODE_REG);
666
667 for (ss = subsect; ss->devcode; ss++) {
668 if (ss->devcode == devcode)
669 break;
670 }
671 if (ss->devcode == 0) {
672 printf("flash: amd_erase(): unknown device code %04x\n",
673 devcode);
674 return -1;
675 }
676
677 DPRINTF(("flash: amd_erase(): devcode = %04x subsect = %08x\n",
678 devcode, ss->subsect_addr));
679
680 fence = offset + sc->sc_block_size;
681 step = (offset & ss->subsect_mask) == ss->subsect_addr
682 ? MBM29LV160_SUBSECT_SIZE : MBM29LV160_SECT_SIZE;
683 do {
684 if ((status = amd_erase_sector(sc, offset)) != 0)
685 return status;
686 offset += step;
687 } while (offset < fence);
688
689 return 0;
690 }
691
692 static int
693 amd_write(struct flash_softc *sc, bus_size_t offset)
694 {
695 bus_space_tag_t iot = sc->sc_iot;
696 bus_space_handle_t ioh = sc->sc_ioh;
697 int timo;
698 bus_size_t fence;
699 const u_int16_t *p;
700
701 p = (u_int16_t *) sc->sc_buf;
702 fence = offset + sc->sc_block_size;
703 do {
704 bus_space_write_2(iot, ioh,
705 MBM29LV160_COMM_ADDR0,
706 MBM29LV160_COMM_CMD0);
707 bus_space_write_2(iot, ioh,
708 MBM29LV160_COMM_ADDR1,
709 MBM29LV160_COMM_CMD1);
710 bus_space_write_2(iot, ioh,
711 MBM29LV160_COMM_ADDR2,
712 MBM29LV160_PROG_CMD2);
713 bus_space_write_2(iot, ioh, offset, *p);
714
715 for (timo = sc->sc_max_word_prog_timo; timo > 0; timo--) {
716 if (bus_space_read_2(iot, ioh, offset) == *p)
717 break;
718 DELAY(sc->sc_typ_word_prog_timo);
719 }
720 if (timo == 0)
721 return FLASH_TIMEOUT;
722
723 p++;
724 offset += 2;
725 } while (offset < fence);
726
727 return 0;
728 }
729