Home | History | Annotate | Line # | Download | only in vr
rtc.c revision 1.1
      1  1.1  takemura /*	$NetBSD: rtc.c,v 1.1 1999/09/16 12:23:32 takemura Exp $	*/
      2  1.1  takemura 
      3  1.1  takemura /*-
      4  1.1  takemura  * Copyright (c) 1999 Shin Takemura. All rights reserved.
      5  1.1  takemura  * Copyright (c) 1999 SATO Kazumi. All rights reserved.
      6  1.1  takemura  * Copyright (c) 1999 PocketBSD Project. All rights reserved.
      7  1.1  takemura  *
      8  1.1  takemura  * Redistribution and use in source and binary forms, with or without
      9  1.1  takemura  * modification, are permitted provided that the following conditions
     10  1.1  takemura  * are met:
     11  1.1  takemura  * 1. Redistributions of source code must retain the above copyright
     12  1.1  takemura  *    notice, this list of conditions and the following disclaimer.
     13  1.1  takemura  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1  takemura  *    notice, this list of conditions and the following disclaimer in the
     15  1.1  takemura  *    documentation and/or other materials provided with the distribution.
     16  1.1  takemura  * 3. All advertising materials mentioning features or use of this software
     17  1.1  takemura  *    must display the following acknowledgement:
     18  1.1  takemura  *	This product includes software developed by the PocketBSD project
     19  1.1  takemura  *	and its contributors.
     20  1.1  takemura  * 4. Neither the name of the project nor the names of its contributors
     21  1.1  takemura  *    may be used to endorse or promote products derived from this software
     22  1.1  takemura  *    without specific prior written permission.
     23  1.1  takemura  *
     24  1.1  takemura  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  1.1  takemura  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  1.1  takemura  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  1.1  takemura  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  1.1  takemura  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  1.1  takemura  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  1.1  takemura  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  1.1  takemura  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  1.1  takemura  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  1.1  takemura  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  1.1  takemura  * SUCH DAMAGE.
     35  1.1  takemura  *
     36  1.1  takemura  */
     37  1.1  takemura 
     38  1.1  takemura #include <sys/param.h>
     39  1.1  takemura #include <sys/systm.h>
     40  1.1  takemura #include <sys/device.h>
     41  1.1  takemura #include <sys/reboot.h>
     42  1.1  takemura 
     43  1.1  takemura #include <machine/bus.h>
     44  1.1  takemura #include <machine/clock_machdep.h>
     45  1.1  takemura #include <machine/cpu.h>
     46  1.1  takemura 
     47  1.1  takemura #include <hpcmips/vr/vr.h>
     48  1.1  takemura #include <hpcmips/vr/vripvar.h>
     49  1.1  takemura #include <hpcmips/vr/rtcreg.h>
     50  1.1  takemura #include <dev/dec/clockvar.h>
     51  1.1  takemura 
     52  1.1  takemura #if 0
     53  1.1  takemura #define RTCDEBUG	/* rtc debugging infomation */
     54  1.1  takemura #define RTC_HEARTBEAT	/* HEARTBEAT print */
     55  1.1  takemura #define RECALC_CPUSPEED	/* cpuspeed recalculaton */
     56  1.1  takemura #define RECALC_CPUSPEED_DEBUG	/* XXX */
     57  1.1  takemura #endif
     58  1.1  takemura 
     59  1.1  takemura 
     60  1.1  takemura struct vrrtc_softc {
     61  1.1  takemura 	struct device sc_dev;
     62  1.1  takemura 	bus_space_tag_t sc_iot;
     63  1.1  takemura 	bus_space_handle_t sc_ioh;
     64  1.1  takemura 	void *sc_ih;
     65  1.1  takemura };
     66  1.1  takemura 
     67  1.1  takemura void	clock_init __P((struct device *));
     68  1.1  takemura void	clock_get __P((struct device *, time_t, struct clocktime *));
     69  1.1  takemura void	clock_set __P((struct device *, struct clocktime *));
     70  1.1  takemura 
     71  1.1  takemura static const struct clockfns clockfns = {
     72  1.1  takemura 	clock_init, clock_get, clock_set,
     73  1.1  takemura };
     74  1.1  takemura 
     75  1.1  takemura int	vrrtc_match __P((struct device *, struct cfdata *, void *));
     76  1.1  takemura void	vrrtc_attach __P((struct device *, struct device *, void *));
     77  1.1  takemura int	vrrtc_intr __P((void*, u_int32_t, u_int32_t));
     78  1.1  takemura 
     79  1.1  takemura struct cfattach vrrtc_ca = {
     80  1.1  takemura 	sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
     81  1.1  takemura };
     82  1.1  takemura 
     83  1.1  takemura void	vrrtc_write __P((struct vrrtc_softc *, int, unsigned short));
     84  1.1  takemura unsigned short	vrrtc_read __P((struct vrrtc_softc *, int));
     85  1.1  takemura void	cvt_timehl_ct __P((u_long, u_long, struct clocktime *));
     86  1.1  takemura int	vrrtc_recalc_cpuspeed __P((struct device *));
     87  1.1  takemura 
     88  1.1  takemura 
     89  1.1  takemura extern int rtc_offset;
     90  1.1  takemura 
     91  1.1  takemura int
     92  1.1  takemura vrrtc_match(parent, cf, aux)
     93  1.1  takemura 	struct device *parent;
     94  1.1  takemura 	struct cfdata *cf;
     95  1.1  takemura 	void *aux;
     96  1.1  takemura {
     97  1.1  takemura 	return(1);
     98  1.1  takemura }
     99  1.1  takemura 
    100  1.1  takemura inline void
    101  1.1  takemura vrrtc_write(sc, port, val)
    102  1.1  takemura 	struct vrrtc_softc *sc;
    103  1.1  takemura 	int port;
    104  1.1  takemura 	unsigned short val;
    105  1.1  takemura {
    106  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
    107  1.1  takemura }
    108  1.1  takemura 
    109  1.1  takemura inline unsigned short
    110  1.1  takemura vrrtc_read(sc, port)
    111  1.1  takemura 	struct vrrtc_softc *sc;
    112  1.1  takemura 	int port;
    113  1.1  takemura {
    114  1.1  takemura 	return bus_space_read_2(sc->sc_iot, sc->sc_ioh, port);
    115  1.1  takemura }
    116  1.1  takemura 
    117  1.1  takemura void
    118  1.1  takemura vrrtc_attach(parent, self, aux)
    119  1.1  takemura 	struct device *parent;
    120  1.1  takemura 	struct device *self;
    121  1.1  takemura 	void *aux;
    122  1.1  takemura {
    123  1.1  takemura 	struct vrip_attach_args *va = aux;
    124  1.1  takemura 	struct vrrtc_softc *sc = (void*)self;
    125  1.1  takemura 
    126  1.1  takemura 	sc->sc_iot = va->va_iot;
    127  1.1  takemura 	if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
    128  1.1  takemura 			  0 /* no flags */, &sc->sc_ioh)) {
    129  1.1  takemura 		printf("vrrtc_attach: can't map i/o space\n");
    130  1.1  takemura 		return;
    131  1.1  takemura 	}
    132  1.1  takemura 	/* RTC interrupt handler is directly dispatched from CPU intr */
    133  1.1  takemura 	vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
    134  1.1  takemura 	/* But need to set level 1 interupt mask register,
    135  1.1  takemura 	 * so regsiter fake interrurpt handler
    136  1.1  takemura 	 */
    137  1.1  takemura 	if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_intr,
    138  1.1  takemura 						IPL_CLOCK, 0, 0))) {
    139  1.1  takemura 		printf (":can't map interrupt.\n");
    140  1.1  takemura 		return;
    141  1.1  takemura 	}
    142  1.1  takemura 	/*
    143  1.1  takemura 	 *  Rtc is attached to call this routine
    144  1.1  takemura 	 *  before cpu_initclock() calls clock_init().
    145  1.1  takemura 	 *  So we must disable all interrupt for now.
    146  1.1  takemura 	 */
    147  1.1  takemura 	/*
    148  1.1  takemura 	 * Disable all rtc interrupts
    149  1.1  takemura 	 */
    150  1.1  takemura 	/* Disable Elapse compare intr */
    151  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
    152  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
    153  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
    154  1.1  takemura 	/* Disable RTC Long1 intr */
    155  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
    156  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
    157  1.1  takemura 	/* Disable RTC Long2 intr */
    158  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
    159  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
    160  1.1  takemura 	/* Disable RTC TCLK intr */
    161  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
    162  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
    163  1.1  takemura 	/*
    164  1.1  takemura 	 * Clear all rtc intrrupts.
    165  1.1  takemura 	 */
    166  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
    167  1.1  takemura 
    168  1.1  takemura 	clockattach(&sc->sc_dev, &clockfns);
    169  1.1  takemura }
    170  1.1  takemura 
    171  1.1  takemura int
    172  1.1  takemura vrrtc_intr(arg, pc, statusReg)
    173  1.1  takemura         void *arg;
    174  1.1  takemura 	u_int32_t pc;
    175  1.1  takemura 	u_int32_t statusReg;
    176  1.1  takemura {
    177  1.1  takemura 	struct vrrtc_softc *sc = arg;
    178  1.1  takemura 	struct clockframe cf;
    179  1.1  takemura 
    180  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
    181  1.1  takemura 	cf.pc = pc;
    182  1.1  takemura 	cf.sr = statusReg;
    183  1.1  takemura 	hardclock(&cf);
    184  1.1  takemura 	intrcnt[HARDCLOCK]++;
    185  1.1  takemura 
    186  1.1  takemura #ifdef RTC_HEARTBEAT
    187  1.1  takemura 	if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
    188  1.1  takemura 		struct clocktime ct;
    189  1.1  takemura 		clock_get((struct device *)sc, NULL, &ct);
    190  1.1  takemura 		printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
    191  1.1  takemura 		       __FILE__, __LINE__,
    192  1.1  takemura 		       ct.year, ct.mon, ct.day,
    193  1.1  takemura 		       ct.hour, ct.min, ct.sec);
    194  1.1  takemura 	}
    195  1.1  takemura #endif
    196  1.1  takemura 	return 0;
    197  1.1  takemura }
    198  1.1  takemura 
    199  1.1  takemura 
    200  1.1  takemura int
    201  1.1  takemura vrrtc_recalc_cpuspeed(dev)
    202  1.1  takemura 	struct device *dev;
    203  1.1  takemura {
    204  1.1  takemura 	struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
    205  1.1  takemura 	u_long otimeh;
    206  1.1  takemura 	u_long otimel;
    207  1.1  takemura 	u_long timeh;
    208  1.1  takemura 	u_long timel;
    209  1.1  takemura 
    210  1.1  takemura 	otimeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
    211  1.1  takemura 	otimel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
    212  1.1  takemura 	otimel = (otimel << 16)
    213  1.1  takemura 		| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
    214  1.1  takemura 
    215  1.1  takemura #define MSEC 1000
    216  1.1  takemura 	/* wait 1msec */
    217  1.1  takemura 	DELAY(MSEC);
    218  1.1  takemura 
    219  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
    220  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
    221  1.1  takemura 	timel = (timel << 16)
    222  1.1  takemura 		| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
    223  1.1  takemura 
    224  1.1  takemura 	if (timeh-otimeh > 0){
    225  1.1  takemura 		/* cpuspeed is too large (> 2 sec)*/
    226  1.1  takemura 		cpuspeed = cpuspeed/((timeh-otimeh)*2*MSEC);
    227  1.1  takemura 		cpuspeed +=1;
    228  1.1  takemura 		return 0;
    229  1.1  takemura 	}
    230  1.1  takemura 	if (timel-otimel < (ETIME_L_HZ/MSEC/10)) {
    231  1.1  takemura 		/* cpuspeed is too small (< 0.1msec) */
    232  1.1  takemura 		cpuspeed *=10;
    233  1.1  takemura 		return -1;
    234  1.1  takemura 	}
    235  1.1  takemura 	cpuspeed = cpuspeed * (ETIME_L_HZ/MSEC) / (timel-otimel);
    236  1.1  takemura 	return 0;
    237  1.1  takemura }
    238  1.1  takemura 
    239  1.1  takemura void
    240  1.1  takemura clock_init(dev)
    241  1.1  takemura 	struct device *dev;
    242  1.1  takemura {
    243  1.1  takemura 	struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
    244  1.1  takemura #ifdef RTCDEBUG
    245  1.1  takemura 	int timeh;
    246  1.1  takemura 	int timel;
    247  1.1  takemura #endif /* RTCDEBUG */
    248  1.1  takemura #ifdef RECALC_CPUSPEED
    249  1.1  takemura 	int maxrecalc = 3;
    250  1.1  takemura #endif /* RECALC_CPUSPEED */
    251  1.1  takemura 
    252  1.1  takemura #ifdef RTCDEBUG
    253  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
    254  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
    255  1.1  takemura 	timel = (timel << 16)
    256  1.1  takemura 		| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
    257  1.1  takemura 	printf("clock_init()  Elapse Time %04x%04x\n", timeh, timel);
    258  1.1  takemura 
    259  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
    260  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
    261  1.1  takemura 	timel = (timel << 16)
    262  1.1  takemura 		| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
    263  1.1  takemura 	printf("clock_init()  Elapse Compare %04x%04x\n", timeh, timel);
    264  1.1  takemura 
    265  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
    266  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
    267  1.1  takemura 	printf("clock_init()  LONG1 %04x%04x\n", timeh, timel);
    268  1.1  takemura 
    269  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
    270  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
    271  1.1  takemura 	printf("clock_init()  LONG1 CNTL %04x%04x\n", timeh, timel);
    272  1.1  takemura 
    273  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
    274  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
    275  1.1  takemura 	printf("clock_init()  LONG2 %04x%04x\n", timeh, timel);
    276  1.1  takemura 
    277  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
    278  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
    279  1.1  takemura 	printf("clock_init()  LONG2 CNTL %04x%04x\n", timeh, timel);
    280  1.1  takemura 
    281  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
    282  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
    283  1.1  takemura 	printf("clock_init()  TCLK %04x%04x\n", timeh, timel);
    284  1.1  takemura 
    285  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
    286  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
    287  1.1  takemura 	printf("clock_init()  TCLK CNTL %04x%04x\n", timeh, timel);
    288  1.1  takemura #endif /* RTCDEBUG */
    289  1.1  takemura 	/*
    290  1.1  takemura 	 * Set tick (CLOCK_RATE)
    291  1.1  takemura 	 */
    292  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
    293  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
    294  1.1  takemura 			  RTCL1_L_REG_W, RTCL1_L_HZ/CLOCK_RATE);
    295  1.1  takemura 
    296  1.1  takemura #ifdef RECALC_CPUSPEED
    297  1.1  takemura 	/* calcurate cpu speed */
    298  1.1  takemura 	while (maxrecalc-- > 0 && vrrtc_recalc_cpuspeed(dev))
    299  1.1  takemura 		;
    300  1.1  takemura #ifdef RECALC_CPUSPEED_DEBUG
    301  1.1  takemura 	printf("clock_init() cpuspeed = %d\n", cpuspeed);
    302  1.1  takemura #endif /* RECALC_CPUSPEED_DEBUG */
    303  1.1  takemura #endif /* RECALC_CPUSPEED */
    304  1.1  takemura }
    305  1.1  takemura 
    306  1.1  takemura static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    307  1.1  takemura 
    308  1.1  takemura void
    309  1.1  takemura cvt_timehl_ct(timeh, timel, ct)
    310  1.1  takemura 	u_long timeh; /* 2 sec */
    311  1.1  takemura 	u_long timel; /* 1/32768 sec */
    312  1.1  takemura 	struct clocktime *ct;
    313  1.1  takemura {
    314  1.1  takemura #define	EPOCHOFF	0
    315  1.1  takemura #define EPOCHYEAR	1850	/* XXXX */
    316  1.1  takemura #define	EPOCHMONTH	0
    317  1.1  takemura #define	EPOCHDATE	0
    318  1.1  takemura 
    319  1.1  takemura 	u_long year, month, date, hour, min, sec, sec2;
    320  1.1  takemura 
    321  1.1  takemura 	timeh -= EPOCHOFF;
    322  1.1  takemura 
    323  1.1  takemura 	timeh += (rtc_offset*(SECMIN/2));
    324  1.1  takemura 
    325  1.1  takemura 	year = EPOCHYEAR;
    326  1.1  takemura 	sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2;
    327  1.1  takemura 	while (timeh > sec2) {
    328  1.1  takemura 		year++;
    329  1.1  takemura 		timeh -= sec2;
    330  1.1  takemura 		sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2;
    331  1.1  takemura 	}
    332  1.1  takemura 
    333  1.1  takemura #ifdef RTCDEBUG
    334  1.1  takemura 	printf("cvt_timehl_ct: timeh %08lx year %ld yrref %ld\n",
    335  1.1  takemura 		timeh, year, sec2);
    336  1.1  takemura #endif /* RTCDEBUG */
    337  1.1  takemura 
    338  1.1  takemura 	month = 0; /* now month is 0..11 */
    339  1.1  takemura 	sec2 = (SECDAY * m2d[month])/2;
    340  1.1  takemura 	while (timeh > sec2) {
    341  1.1  takemura 		timeh -= sec2;
    342  1.1  takemura 		month++;
    343  1.1  takemura 		sec2 = (SECDAY * m2d[month])/2;
    344  1.1  takemura 		if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
    345  1.1  takemura 			sec2 += SECDAY/2;
    346  1.1  takemura 	}
    347  1.1  takemura 	month +=1; /* now month is 1..12 */
    348  1.1  takemura 
    349  1.1  takemura #ifdef RTCDEBUG
    350  1.1  takemura 	printf("cvt_timehl_ct: timeh %08lx month %ld mref %ld\n",
    351  1.1  takemura 		timeh, month, sec2);
    352  1.1  takemura #endif /* RTCDEBUG */
    353  1.1  takemura 
    354  1.1  takemura 	sec2 = SECDAY/2;
    355  1.1  takemura 	date = timeh/sec2+1; /* date is 1..31 */
    356  1.1  takemura 	timeh -= (date-1)*sec2;
    357  1.1  takemura 
    358  1.1  takemura #ifdef RTCDEBUG
    359  1.1  takemura 	printf("cvt_timehl_ct: timeh %08lx date %ld dref %ld\n",
    360  1.1  takemura 		timeh, date, sec2);
    361  1.1  takemura #endif /* RTCDEBUG */
    362  1.1  takemura 
    363  1.1  takemura 	sec2 = SECHOUR/2;
    364  1.1  takemura 	hour = timeh/sec2;
    365  1.1  takemura 	timeh -= hour*sec2;
    366  1.1  takemura 
    367  1.1  takemura 	sec2 = SECMIN/2;
    368  1.1  takemura 	min = timeh/sec2;
    369  1.1  takemura 	timeh -= min*sec2;
    370  1.1  takemura 
    371  1.1  takemura 	sec = timeh*2 + timel/ETIME_L_HZ;
    372  1.1  takemura 
    373  1.1  takemura #ifdef RTCDEBUG
    374  1.1  takemura 	printf("cvt_timehl_ct: hour %ld min %ld sec %ld\n", hour, min, sec);
    375  1.1  takemura #endif /* RTCDEBUG */
    376  1.1  takemura 
    377  1.1  takemura 	if (ct) {
    378  1.1  takemura 		ct->year = year - 1900; /* base 1900 */
    379  1.1  takemura 		ct->mon = month;
    380  1.1  takemura 		ct->day = date;
    381  1.1  takemura 		ct->hour = hour;
    382  1.1  takemura 		ct->min = min;
    383  1.1  takemura 		ct->sec = sec;
    384  1.1  takemura 	}
    385  1.1  takemura }
    386  1.1  takemura 
    387  1.1  takemura void
    388  1.1  takemura clock_get(dev, base, ct)
    389  1.1  takemura 	struct device *dev;
    390  1.1  takemura 	time_t base;
    391  1.1  takemura 	struct clocktime *ct;
    392  1.1  takemura {
    393  1.1  takemura 
    394  1.1  takemura 	struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
    395  1.1  takemura 	u_long timeh;	/* elapse time (2*timeh sec) */
    396  1.1  takemura 	u_long timel;	/* timel/32768 sec */
    397  1.1  takemura 
    398  1.1  takemura 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
    399  1.1  takemura 	timeh = (timeh << 16)
    400  1.1  takemura 		| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
    401  1.1  takemura 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
    402  1.1  takemura 
    403  1.1  takemura #ifdef RTCDEBUG
    404  1.1  takemura 	printf("clock_get: timeh %08lx timel %08lx\n", timeh, timel);
    405  1.1  takemura #endif /* RTCDEBUG */
    406  1.1  takemura 
    407  1.1  takemura 	cvt_timehl_ct(timeh, timel, ct);
    408  1.1  takemura 
    409  1.1  takemura #ifdef RTCDEBUG
    410  1.1  takemura 	printf("clock_get: %d/%d/%d/%d/%d/%d\n",
    411  1.1  takemura 		 ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
    412  1.1  takemura #endif /* RTCDEBUG */
    413  1.1  takemura }
    414  1.1  takemura 
    415  1.1  takemura 
    416  1.1  takemura void
    417  1.1  takemura clock_set(dev, ct)
    418  1.1  takemura 	struct device *dev;
    419  1.1  takemura 	struct clocktime *ct;
    420  1.1  takemura {
    421  1.1  takemura 	struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
    422  1.1  takemura 	u_long timeh;	/* elapse time (2*timeh sec) */
    423  1.1  takemura 	u_long timel;	/* timel/32768 sec */
    424  1.1  takemura 	int year, month, sec2;
    425  1.1  takemura 
    426  1.1  takemura 	timeh = 0;
    427  1.1  takemura 	timel = 0;
    428  1.1  takemura 
    429  1.1  takemura #ifdef RTCDEBUG
    430  1.1  takemura 	printf("clock_set: %d/%d/%d/%d/%d/%d\n",
    431  1.1  takemura 		ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
    432  1.1  takemura #endif /* RTCDEBUG */
    433  1.1  takemura 	ct->year += 1900;
    434  1.1  takemura #ifdef RTCDEBUG
    435  1.1  takemura 	printf("clock_set: %d/%d/%d/%d/%d/%d\n",
    436  1.1  takemura 		ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
    437  1.1  takemura #endif /* RTCDEBUG */
    438  1.1  takemura 	year = EPOCHYEAR;
    439  1.1  takemura 	sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2;
    440  1.1  takemura 	while (year < ct->year) {
    441  1.1  takemura 		year++;
    442  1.1  takemura 		timeh += sec2;
    443  1.1  takemura 		sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2;
    444  1.1  takemura 	}
    445  1.1  takemura 	month = 1; /* now month is 1..12 */
    446  1.1  takemura 	sec2 = (SECDAY * m2d[month-1])/2;
    447  1.1  takemura 	while (month < ct->mon) {
    448  1.1  takemura 		month++;
    449  1.1  takemura 		timeh += sec2;
    450  1.1  takemura 		sec2 = (SECDAY * m2d[month-1])/2;
    451  1.1  takemura 		if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
    452  1.1  takemura 			sec2 += SECDAY/2;
    453  1.1  takemura 	}
    454  1.1  takemura 
    455  1.1  takemura 	timeh += (ct->day - 1)*(SECDAY/2);
    456  1.1  takemura 
    457  1.1  takemura 	timeh += ct->hour*(SECHOUR/2);
    458  1.1  takemura 
    459  1.1  takemura 	timeh += ct->min*(SECMIN/2);
    460  1.1  takemura 
    461  1.1  takemura 	timeh += ct->sec/2;
    462  1.1  takemura 	timel += (ct->sec%2)*ETIME_L_HZ;
    463  1.1  takemura 
    464  1.1  takemura 	timeh += EPOCHOFF;
    465  1.1  takemura 	timeh -= (rtc_offset*(SECMIN/2));
    466  1.1  takemura 
    467  1.1  takemura #ifdef RTCDEBUG
    468  1.1  takemura 	cvt_timehl_ct(timeh, timel, NULL);
    469  1.1  takemura #endif /* RTCDEBUG */
    470  1.1  takemura 
    471  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
    472  1.1  takemura 			  ETIME_H_REG_W, (timeh>>16)&0xffff);
    473  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W, timeh&0xffff);
    474  1.1  takemura 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W, timel);
    475  1.1  takemura 
    476  1.1  takemura }
    477  1.1  takemura 
    478