rtc.c revision 1.3 1 1.3 sato /* $NetBSD: rtc.c,v 1.3 2000/01/17 04:06:06 sato Exp $ */
2 1.1 takemura
3 1.1 takemura /*-
4 1.1 takemura * Copyright (c) 1999 Shin Takemura. All rights reserved.
5 1.1 takemura * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6 1.1 takemura * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7 1.1 takemura *
8 1.1 takemura * Redistribution and use in source and binary forms, with or without
9 1.1 takemura * modification, are permitted provided that the following conditions
10 1.1 takemura * are met:
11 1.1 takemura * 1. Redistributions of source code must retain the above copyright
12 1.1 takemura * notice, this list of conditions and the following disclaimer.
13 1.1 takemura * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 takemura * notice, this list of conditions and the following disclaimer in the
15 1.1 takemura * documentation and/or other materials provided with the distribution.
16 1.1 takemura * 3. All advertising materials mentioning features or use of this software
17 1.1 takemura * must display the following acknowledgement:
18 1.1 takemura * This product includes software developed by the PocketBSD project
19 1.1 takemura * and its contributors.
20 1.1 takemura * 4. Neither the name of the project nor the names of its contributors
21 1.1 takemura * may be used to endorse or promote products derived from this software
22 1.1 takemura * without specific prior written permission.
23 1.1 takemura *
24 1.1 takemura * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 takemura * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 takemura * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 takemura * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 takemura * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 takemura * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 takemura * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 takemura * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 takemura * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 takemura * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 takemura * SUCH DAMAGE.
35 1.1 takemura *
36 1.1 takemura */
37 1.1 takemura
38 1.1 takemura #include <sys/param.h>
39 1.1 takemura #include <sys/systm.h>
40 1.1 takemura #include <sys/device.h>
41 1.1 takemura #include <sys/reboot.h>
42 1.1 takemura
43 1.1 takemura #include <machine/bus.h>
44 1.1 takemura #include <machine/clock_machdep.h>
45 1.1 takemura #include <machine/cpu.h>
46 1.1 takemura
47 1.1 takemura #include <hpcmips/vr/vr.h>
48 1.1 takemura #include <hpcmips/vr/vripvar.h>
49 1.1 takemura #include <hpcmips/vr/rtcreg.h>
50 1.1 takemura #include <dev/dec/clockvar.h>
51 1.1 takemura
52 1.3 sato /*
53 1.3 sato * for debugging definitions
54 1.3 sato * RTCDEBUG print rtc debugging infomation
55 1.3 sato * RTC_HEARTBEAT print HEARTBEAT (too many print...)
56 1.3 sato */
57 1.1 takemura
58 1.1 takemura struct vrrtc_softc {
59 1.1 takemura struct device sc_dev;
60 1.1 takemura bus_space_tag_t sc_iot;
61 1.1 takemura bus_space_handle_t sc_ioh;
62 1.1 takemura void *sc_ih;
63 1.1 takemura };
64 1.1 takemura
65 1.1 takemura void clock_init __P((struct device *));
66 1.1 takemura void clock_get __P((struct device *, time_t, struct clocktime *));
67 1.1 takemura void clock_set __P((struct device *, struct clocktime *));
68 1.1 takemura
69 1.1 takemura static const struct clockfns clockfns = {
70 1.1 takemura clock_init, clock_get, clock_set,
71 1.1 takemura };
72 1.1 takemura
73 1.1 takemura int vrrtc_match __P((struct device *, struct cfdata *, void *));
74 1.1 takemura void vrrtc_attach __P((struct device *, struct device *, void *));
75 1.1 takemura int vrrtc_intr __P((void*, u_int32_t, u_int32_t));
76 1.1 takemura
77 1.1 takemura struct cfattach vrrtc_ca = {
78 1.1 takemura sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
79 1.1 takemura };
80 1.1 takemura
81 1.1 takemura void vrrtc_write __P((struct vrrtc_softc *, int, unsigned short));
82 1.1 takemura unsigned short vrrtc_read __P((struct vrrtc_softc *, int));
83 1.1 takemura void cvt_timehl_ct __P((u_long, u_long, struct clocktime *));
84 1.1 takemura
85 1.1 takemura extern int rtc_offset;
86 1.1 takemura
87 1.1 takemura int
88 1.1 takemura vrrtc_match(parent, cf, aux)
89 1.1 takemura struct device *parent;
90 1.1 takemura struct cfdata *cf;
91 1.1 takemura void *aux;
92 1.1 takemura {
93 1.1 takemura return(1);
94 1.1 takemura }
95 1.1 takemura
96 1.1 takemura inline void
97 1.1 takemura vrrtc_write(sc, port, val)
98 1.1 takemura struct vrrtc_softc *sc;
99 1.1 takemura int port;
100 1.1 takemura unsigned short val;
101 1.1 takemura {
102 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
103 1.1 takemura }
104 1.1 takemura
105 1.1 takemura inline unsigned short
106 1.1 takemura vrrtc_read(sc, port)
107 1.1 takemura struct vrrtc_softc *sc;
108 1.1 takemura int port;
109 1.1 takemura {
110 1.1 takemura return bus_space_read_2(sc->sc_iot, sc->sc_ioh, port);
111 1.1 takemura }
112 1.1 takemura
113 1.1 takemura void
114 1.1 takemura vrrtc_attach(parent, self, aux)
115 1.1 takemura struct device *parent;
116 1.1 takemura struct device *self;
117 1.1 takemura void *aux;
118 1.1 takemura {
119 1.1 takemura struct vrip_attach_args *va = aux;
120 1.1 takemura struct vrrtc_softc *sc = (void*)self;
121 1.1 takemura
122 1.1 takemura sc->sc_iot = va->va_iot;
123 1.1 takemura if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
124 1.1 takemura 0 /* no flags */, &sc->sc_ioh)) {
125 1.1 takemura printf("vrrtc_attach: can't map i/o space\n");
126 1.1 takemura return;
127 1.1 takemura }
128 1.1 takemura /* RTC interrupt handler is directly dispatched from CPU intr */
129 1.1 takemura vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
130 1.1 takemura /* But need to set level 1 interupt mask register,
131 1.1 takemura * so regsiter fake interrurpt handler
132 1.1 takemura */
133 1.1 takemura if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_intr,
134 1.1 takemura IPL_CLOCK, 0, 0))) {
135 1.1 takemura printf (":can't map interrupt.\n");
136 1.1 takemura return;
137 1.1 takemura }
138 1.1 takemura /*
139 1.1 takemura * Rtc is attached to call this routine
140 1.1 takemura * before cpu_initclock() calls clock_init().
141 1.1 takemura * So we must disable all interrupt for now.
142 1.1 takemura */
143 1.1 takemura /*
144 1.1 takemura * Disable all rtc interrupts
145 1.1 takemura */
146 1.1 takemura /* Disable Elapse compare intr */
147 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
148 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
149 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
150 1.1 takemura /* Disable RTC Long1 intr */
151 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
152 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
153 1.1 takemura /* Disable RTC Long2 intr */
154 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
155 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
156 1.1 takemura /* Disable RTC TCLK intr */
157 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
158 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
159 1.1 takemura /*
160 1.1 takemura * Clear all rtc intrrupts.
161 1.1 takemura */
162 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
163 1.1 takemura
164 1.1 takemura clockattach(&sc->sc_dev, &clockfns);
165 1.1 takemura }
166 1.1 takemura
167 1.1 takemura int
168 1.1 takemura vrrtc_intr(arg, pc, statusReg)
169 1.1 takemura void *arg;
170 1.1 takemura u_int32_t pc;
171 1.1 takemura u_int32_t statusReg;
172 1.1 takemura {
173 1.1 takemura struct vrrtc_softc *sc = arg;
174 1.1 takemura struct clockframe cf;
175 1.1 takemura
176 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
177 1.1 takemura cf.pc = pc;
178 1.1 takemura cf.sr = statusReg;
179 1.1 takemura hardclock(&cf);
180 1.1 takemura intrcnt[HARDCLOCK]++;
181 1.1 takemura
182 1.1 takemura #ifdef RTC_HEARTBEAT
183 1.1 takemura if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
184 1.1 takemura struct clocktime ct;
185 1.1 takemura clock_get((struct device *)sc, NULL, &ct);
186 1.1 takemura printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
187 1.1 takemura __FILE__, __LINE__,
188 1.1 takemura ct.year, ct.mon, ct.day,
189 1.1 takemura ct.hour, ct.min, ct.sec);
190 1.1 takemura }
191 1.1 takemura #endif
192 1.1 takemura return 0;
193 1.1 takemura }
194 1.1 takemura
195 1.1 takemura void
196 1.1 takemura clock_init(dev)
197 1.1 takemura struct device *dev;
198 1.1 takemura {
199 1.1 takemura struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
200 1.1 takemura #ifdef RTCDEBUG
201 1.1 takemura int timeh;
202 1.1 takemura int timel;
203 1.1 takemura
204 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
205 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
206 1.1 takemura timel = (timel << 16)
207 1.1 takemura | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
208 1.1 takemura printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
209 1.1 takemura
210 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
211 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
212 1.1 takemura timel = (timel << 16)
213 1.1 takemura | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
214 1.1 takemura printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
215 1.1 takemura
216 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
217 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
218 1.1 takemura printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
219 1.1 takemura
220 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
221 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
222 1.1 takemura printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
223 1.1 takemura
224 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
225 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
226 1.1 takemura printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
227 1.1 takemura
228 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
229 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
230 1.1 takemura printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
231 1.1 takemura
232 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
233 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
234 1.1 takemura printf("clock_init() TCLK %04x%04x\n", timeh, timel);
235 1.1 takemura
236 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
237 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
238 1.1 takemura printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
239 1.1 takemura #endif /* RTCDEBUG */
240 1.1 takemura /*
241 1.1 takemura * Set tick (CLOCK_RATE)
242 1.1 takemura */
243 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
244 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh,
245 1.1 takemura RTCL1_L_REG_W, RTCL1_L_HZ/CLOCK_RATE);
246 1.1 takemura }
247 1.1 takemura
248 1.1 takemura static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
249 1.1 takemura
250 1.1 takemura void
251 1.1 takemura cvt_timehl_ct(timeh, timel, ct)
252 1.1 takemura u_long timeh; /* 2 sec */
253 1.1 takemura u_long timel; /* 1/32768 sec */
254 1.1 takemura struct clocktime *ct;
255 1.1 takemura {
256 1.1 takemura u_long year, month, date, hour, min, sec, sec2;
257 1.1 takemura
258 1.1 takemura timeh -= EPOCHOFF;
259 1.1 takemura
260 1.2 sato timeh += (rtc_offset*SEC2MIN);
261 1.1 takemura
262 1.1 takemura year = EPOCHYEAR;
263 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
264 1.1 takemura while (timeh > sec2) {
265 1.1 takemura year++;
266 1.1 takemura timeh -= sec2;
267 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
268 1.1 takemura }
269 1.1 takemura
270 1.1 takemura #ifdef RTCDEBUG
271 1.1 takemura printf("cvt_timehl_ct: timeh %08lx year %ld yrref %ld\n",
272 1.1 takemura timeh, year, sec2);
273 1.1 takemura #endif /* RTCDEBUG */
274 1.1 takemura
275 1.1 takemura month = 0; /* now month is 0..11 */
276 1.2 sato sec2 = SEC2DAY * m2d[month];
277 1.1 takemura while (timeh > sec2) {
278 1.1 takemura timeh -= sec2;
279 1.1 takemura month++;
280 1.2 sato sec2 = SEC2DAY * m2d[month];
281 1.1 takemura if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
282 1.2 sato sec2 += SEC2DAY;
283 1.1 takemura }
284 1.1 takemura month +=1; /* now month is 1..12 */
285 1.1 takemura
286 1.1 takemura #ifdef RTCDEBUG
287 1.1 takemura printf("cvt_timehl_ct: timeh %08lx month %ld mref %ld\n",
288 1.1 takemura timeh, month, sec2);
289 1.1 takemura #endif /* RTCDEBUG */
290 1.1 takemura
291 1.2 sato sec2 = SEC2DAY;
292 1.1 takemura date = timeh/sec2+1; /* date is 1..31 */
293 1.1 takemura timeh -= (date-1)*sec2;
294 1.1 takemura
295 1.1 takemura #ifdef RTCDEBUG
296 1.1 takemura printf("cvt_timehl_ct: timeh %08lx date %ld dref %ld\n",
297 1.1 takemura timeh, date, sec2);
298 1.1 takemura #endif /* RTCDEBUG */
299 1.1 takemura
300 1.2 sato sec2 = SEC2HOUR;
301 1.1 takemura hour = timeh/sec2;
302 1.1 takemura timeh -= hour*sec2;
303 1.1 takemura
304 1.2 sato sec2 = SEC2MIN;
305 1.1 takemura min = timeh/sec2;
306 1.1 takemura timeh -= min*sec2;
307 1.1 takemura
308 1.1 takemura sec = timeh*2 + timel/ETIME_L_HZ;
309 1.1 takemura
310 1.1 takemura #ifdef RTCDEBUG
311 1.1 takemura printf("cvt_timehl_ct: hour %ld min %ld sec %ld\n", hour, min, sec);
312 1.1 takemura #endif /* RTCDEBUG */
313 1.1 takemura
314 1.1 takemura if (ct) {
315 1.2 sato ct->year = year - YBASE; /* base 1900 */
316 1.1 takemura ct->mon = month;
317 1.1 takemura ct->day = date;
318 1.1 takemura ct->hour = hour;
319 1.1 takemura ct->min = min;
320 1.1 takemura ct->sec = sec;
321 1.1 takemura }
322 1.1 takemura }
323 1.1 takemura
324 1.1 takemura void
325 1.1 takemura clock_get(dev, base, ct)
326 1.1 takemura struct device *dev;
327 1.1 takemura time_t base;
328 1.1 takemura struct clocktime *ct;
329 1.1 takemura {
330 1.1 takemura
331 1.1 takemura struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
332 1.1 takemura u_long timeh; /* elapse time (2*timeh sec) */
333 1.1 takemura u_long timel; /* timel/32768 sec */
334 1.1 takemura
335 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
336 1.1 takemura timeh = (timeh << 16)
337 1.1 takemura | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
338 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
339 1.1 takemura
340 1.1 takemura #ifdef RTCDEBUG
341 1.1 takemura printf("clock_get: timeh %08lx timel %08lx\n", timeh, timel);
342 1.1 takemura #endif /* RTCDEBUG */
343 1.1 takemura
344 1.1 takemura cvt_timehl_ct(timeh, timel, ct);
345 1.1 takemura
346 1.1 takemura #ifdef RTCDEBUG
347 1.1 takemura printf("clock_get: %d/%d/%d/%d/%d/%d\n",
348 1.1 takemura ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
349 1.1 takemura #endif /* RTCDEBUG */
350 1.1 takemura }
351 1.1 takemura
352 1.1 takemura
353 1.1 takemura void
354 1.1 takemura clock_set(dev, ct)
355 1.1 takemura struct device *dev;
356 1.1 takemura struct clocktime *ct;
357 1.1 takemura {
358 1.1 takemura struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
359 1.1 takemura u_long timeh; /* elapse time (2*timeh sec) */
360 1.1 takemura u_long timel; /* timel/32768 sec */
361 1.1 takemura int year, month, sec2;
362 1.1 takemura
363 1.1 takemura timeh = 0;
364 1.1 takemura timel = 0;
365 1.1 takemura
366 1.1 takemura #ifdef RTCDEBUG
367 1.1 takemura printf("clock_set: %d/%d/%d/%d/%d/%d\n",
368 1.1 takemura ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
369 1.1 takemura #endif /* RTCDEBUG */
370 1.2 sato ct->year += YBASE;
371 1.1 takemura #ifdef RTCDEBUG
372 1.1 takemura printf("clock_set: %d/%d/%d/%d/%d/%d\n",
373 1.1 takemura ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
374 1.1 takemura #endif /* RTCDEBUG */
375 1.1 takemura year = EPOCHYEAR;
376 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
377 1.1 takemura while (year < ct->year) {
378 1.1 takemura year++;
379 1.1 takemura timeh += sec2;
380 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
381 1.1 takemura }
382 1.1 takemura month = 1; /* now month is 1..12 */
383 1.2 sato sec2 = SEC2DAY * m2d[month-1];
384 1.1 takemura while (month < ct->mon) {
385 1.1 takemura month++;
386 1.1 takemura timeh += sec2;
387 1.2 sato sec2 = SEC2DAY * m2d[month-1];
388 1.1 takemura if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
389 1.2 sato sec2 += SEC2DAY;
390 1.1 takemura }
391 1.1 takemura
392 1.2 sato timeh += (ct->day - 1)*SEC2DAY;
393 1.1 takemura
394 1.2 sato timeh += ct->hour*SEC2HOUR;
395 1.1 takemura
396 1.2 sato timeh += ct->min*SEC2MIN;
397 1.1 takemura
398 1.1 takemura timeh += ct->sec/2;
399 1.1 takemura timel += (ct->sec%2)*ETIME_L_HZ;
400 1.1 takemura
401 1.1 takemura timeh += EPOCHOFF;
402 1.2 sato timeh -= (rtc_offset*SEC2MIN);
403 1.1 takemura
404 1.1 takemura #ifdef RTCDEBUG
405 1.1 takemura cvt_timehl_ct(timeh, timel, NULL);
406 1.1 takemura #endif /* RTCDEBUG */
407 1.1 takemura
408 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh,
409 1.1 takemura ETIME_H_REG_W, (timeh>>16)&0xffff);
410 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W, timeh&0xffff);
411 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W, timel);
412 1.1 takemura
413 1.1 takemura }
414 1.1 takemura
415