rtc.c revision 1.5 1 1.5 enami /* $NetBSD: rtc.c,v 1.5 2001/05/17 05:25:32 enami Exp $ */
2 1.1 takemura
3 1.1 takemura /*-
4 1.1 takemura * Copyright (c) 1999 Shin Takemura. All rights reserved.
5 1.1 takemura * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6 1.1 takemura * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7 1.1 takemura *
8 1.1 takemura * Redistribution and use in source and binary forms, with or without
9 1.1 takemura * modification, are permitted provided that the following conditions
10 1.1 takemura * are met:
11 1.1 takemura * 1. Redistributions of source code must retain the above copyright
12 1.1 takemura * notice, this list of conditions and the following disclaimer.
13 1.1 takemura * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 takemura * notice, this list of conditions and the following disclaimer in the
15 1.1 takemura * documentation and/or other materials provided with the distribution.
16 1.1 takemura * 3. All advertising materials mentioning features or use of this software
17 1.1 takemura * must display the following acknowledgement:
18 1.1 takemura * This product includes software developed by the PocketBSD project
19 1.1 takemura * and its contributors.
20 1.1 takemura * 4. Neither the name of the project nor the names of its contributors
21 1.1 takemura * may be used to endorse or promote products derived from this software
22 1.1 takemura * without specific prior written permission.
23 1.1 takemura *
24 1.1 takemura * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 takemura * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 takemura * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 takemura * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 takemura * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 takemura * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 takemura * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 takemura * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 takemura * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 takemura * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 takemura * SUCH DAMAGE.
35 1.1 takemura *
36 1.1 takemura */
37 1.1 takemura
38 1.5 enami #include "opt_vr41xx.h"
39 1.5 enami
40 1.1 takemura #include <sys/param.h>
41 1.1 takemura #include <sys/systm.h>
42 1.1 takemura #include <sys/device.h>
43 1.1 takemura #include <sys/reboot.h>
44 1.1 takemura
45 1.1 takemura #include <machine/bus.h>
46 1.1 takemura #include <machine/clock_machdep.h>
47 1.1 takemura #include <machine/cpu.h>
48 1.1 takemura
49 1.1 takemura #include <hpcmips/vr/vr.h>
50 1.5 enami #include <hpcmips/vr/vrcpudef.h>
51 1.1 takemura #include <hpcmips/vr/vripvar.h>
52 1.1 takemura #include <hpcmips/vr/rtcreg.h>
53 1.1 takemura #include <dev/dec/clockvar.h>
54 1.1 takemura
55 1.3 sato /*
56 1.3 sato * for debugging definitions
57 1.4 sato * VRRTCDEBUG print rtc debugging infomation
58 1.4 sato * VRRTC_HEARTBEAT print HEARTBEAT (too many print...)
59 1.3 sato */
60 1.4 sato #ifdef VRRTCDEBUG
61 1.4 sato #ifndef VRRTCDEBUG_CONF
62 1.4 sato #define VRRTCDEBUG_CONF 0
63 1.4 sato #endif
64 1.4 sato int vrrtc_debug = VRRTCDEBUG_CONF;
65 1.4 sato #define DPRINTF(arg) if (vrrtc_debug) printf arg;
66 1.4 sato #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
67 1.4 sato #else /* VRRTCDEBUG */
68 1.4 sato #define DPRINTF(arg)
69 1.4 sato #define DDUMP_REGS(arg)
70 1.4 sato #endif /* VRRTCDEBUG */
71 1.1 takemura
72 1.1 takemura struct vrrtc_softc {
73 1.1 takemura struct device sc_dev;
74 1.1 takemura bus_space_tag_t sc_iot;
75 1.1 takemura bus_space_handle_t sc_ioh;
76 1.1 takemura void *sc_ih;
77 1.1 takemura };
78 1.1 takemura
79 1.1 takemura void clock_init __P((struct device *));
80 1.1 takemura void clock_get __P((struct device *, time_t, struct clocktime *));
81 1.1 takemura void clock_set __P((struct device *, struct clocktime *));
82 1.1 takemura
83 1.1 takemura static const struct clockfns clockfns = {
84 1.1 takemura clock_init, clock_get, clock_set,
85 1.1 takemura };
86 1.1 takemura
87 1.1 takemura int vrrtc_match __P((struct device *, struct cfdata *, void *));
88 1.1 takemura void vrrtc_attach __P((struct device *, struct device *, void *));
89 1.1 takemura int vrrtc_intr __P((void*, u_int32_t, u_int32_t));
90 1.4 sato void vrrtc_dump_regs __P((struct vrrtc_softc *));
91 1.1 takemura
92 1.1 takemura struct cfattach vrrtc_ca = {
93 1.1 takemura sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
94 1.1 takemura };
95 1.1 takemura
96 1.1 takemura void vrrtc_write __P((struct vrrtc_softc *, int, unsigned short));
97 1.1 takemura unsigned short vrrtc_read __P((struct vrrtc_softc *, int));
98 1.1 takemura void cvt_timehl_ct __P((u_long, u_long, struct clocktime *));
99 1.1 takemura
100 1.1 takemura extern int rtc_offset;
101 1.1 takemura
102 1.1 takemura int
103 1.1 takemura vrrtc_match(parent, cf, aux)
104 1.1 takemura struct device *parent;
105 1.1 takemura struct cfdata *cf;
106 1.1 takemura void *aux;
107 1.1 takemura {
108 1.1 takemura return(1);
109 1.1 takemura }
110 1.1 takemura
111 1.1 takemura inline void
112 1.1 takemura vrrtc_write(sc, port, val)
113 1.1 takemura struct vrrtc_softc *sc;
114 1.1 takemura int port;
115 1.1 takemura unsigned short val;
116 1.1 takemura {
117 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
118 1.1 takemura }
119 1.1 takemura
120 1.1 takemura inline unsigned short
121 1.1 takemura vrrtc_read(sc, port)
122 1.1 takemura struct vrrtc_softc *sc;
123 1.1 takemura int port;
124 1.1 takemura {
125 1.1 takemura return bus_space_read_2(sc->sc_iot, sc->sc_ioh, port);
126 1.1 takemura }
127 1.1 takemura
128 1.1 takemura void
129 1.1 takemura vrrtc_attach(parent, self, aux)
130 1.1 takemura struct device *parent;
131 1.1 takemura struct device *self;
132 1.1 takemura void *aux;
133 1.1 takemura {
134 1.1 takemura struct vrip_attach_args *va = aux;
135 1.1 takemura struct vrrtc_softc *sc = (void*)self;
136 1.1 takemura
137 1.1 takemura sc->sc_iot = va->va_iot;
138 1.1 takemura if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
139 1.1 takemura 0 /* no flags */, &sc->sc_ioh)) {
140 1.1 takemura printf("vrrtc_attach: can't map i/o space\n");
141 1.1 takemura return;
142 1.1 takemura }
143 1.1 takemura /* RTC interrupt handler is directly dispatched from CPU intr */
144 1.1 takemura vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
145 1.1 takemura /* But need to set level 1 interupt mask register,
146 1.1 takemura * so regsiter fake interrurpt handler
147 1.1 takemura */
148 1.1 takemura if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_intr,
149 1.1 takemura IPL_CLOCK, 0, 0))) {
150 1.1 takemura printf (":can't map interrupt.\n");
151 1.1 takemura return;
152 1.1 takemura }
153 1.1 takemura /*
154 1.1 takemura * Rtc is attached to call this routine
155 1.1 takemura * before cpu_initclock() calls clock_init().
156 1.1 takemura * So we must disable all interrupt for now.
157 1.1 takemura */
158 1.1 takemura /*
159 1.1 takemura * Disable all rtc interrupts
160 1.1 takemura */
161 1.1 takemura /* Disable Elapse compare intr */
162 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
163 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
164 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
165 1.1 takemura /* Disable RTC Long1 intr */
166 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
167 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
168 1.1 takemura /* Disable RTC Long2 intr */
169 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
170 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
171 1.1 takemura /* Disable RTC TCLK intr */
172 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
173 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
174 1.1 takemura /*
175 1.1 takemura * Clear all rtc intrrupts.
176 1.1 takemura */
177 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
178 1.1 takemura
179 1.1 takemura clockattach(&sc->sc_dev, &clockfns);
180 1.1 takemura }
181 1.1 takemura
182 1.1 takemura int
183 1.1 takemura vrrtc_intr(arg, pc, statusReg)
184 1.1 takemura void *arg;
185 1.1 takemura u_int32_t pc;
186 1.1 takemura u_int32_t statusReg;
187 1.1 takemura {
188 1.1 takemura struct vrrtc_softc *sc = arg;
189 1.1 takemura struct clockframe cf;
190 1.1 takemura
191 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
192 1.1 takemura cf.pc = pc;
193 1.1 takemura cf.sr = statusReg;
194 1.1 takemura hardclock(&cf);
195 1.1 takemura intrcnt[HARDCLOCK]++;
196 1.1 takemura
197 1.4 sato #ifdef VRRTC_HEARTBEAT
198 1.1 takemura if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
199 1.1 takemura struct clocktime ct;
200 1.1 takemura clock_get((struct device *)sc, NULL, &ct);
201 1.1 takemura printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
202 1.1 takemura __FILE__, __LINE__,
203 1.1 takemura ct.year, ct.mon, ct.day,
204 1.1 takemura ct.hour, ct.min, ct.sec);
205 1.1 takemura }
206 1.1 takemura #endif
207 1.1 takemura return 0;
208 1.1 takemura }
209 1.1 takemura
210 1.1 takemura void
211 1.4 sato vrrtc_dump_regs(sc)
212 1.4 sato struct vrrtc_softc *sc;
213 1.1 takemura {
214 1.1 takemura int timeh;
215 1.1 takemura int timel;
216 1.1 takemura
217 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
218 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
219 1.1 takemura timel = (timel << 16)
220 1.1 takemura | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
221 1.1 takemura printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
222 1.1 takemura
223 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
224 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
225 1.1 takemura timel = (timel << 16)
226 1.1 takemura | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
227 1.1 takemura printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
228 1.1 takemura
229 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
230 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
231 1.1 takemura printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
232 1.1 takemura
233 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
234 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
235 1.1 takemura printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
236 1.1 takemura
237 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
238 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
239 1.1 takemura printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
240 1.1 takemura
241 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
242 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
243 1.1 takemura printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
244 1.1 takemura
245 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
246 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
247 1.1 takemura printf("clock_init() TCLK %04x%04x\n", timeh, timel);
248 1.1 takemura
249 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
250 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
251 1.1 takemura printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
252 1.4 sato }
253 1.4 sato
254 1.4 sato void
255 1.4 sato clock_init(dev)
256 1.4 sato struct device *dev;
257 1.4 sato {
258 1.4 sato struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
259 1.4 sato
260 1.4 sato DDUMP_REGS(sc);
261 1.1 takemura /*
262 1.1 takemura * Set tick (CLOCK_RATE)
263 1.1 takemura */
264 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
265 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh,
266 1.1 takemura RTCL1_L_REG_W, RTCL1_L_HZ/CLOCK_RATE);
267 1.1 takemura }
268 1.1 takemura
269 1.1 takemura static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
270 1.1 takemura
271 1.1 takemura void
272 1.1 takemura cvt_timehl_ct(timeh, timel, ct)
273 1.1 takemura u_long timeh; /* 2 sec */
274 1.1 takemura u_long timel; /* 1/32768 sec */
275 1.1 takemura struct clocktime *ct;
276 1.1 takemura {
277 1.1 takemura u_long year, month, date, hour, min, sec, sec2;
278 1.1 takemura
279 1.1 takemura timeh -= EPOCHOFF;
280 1.1 takemura
281 1.2 sato timeh += (rtc_offset*SEC2MIN);
282 1.1 takemura
283 1.1 takemura year = EPOCHYEAR;
284 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
285 1.1 takemura while (timeh > sec2) {
286 1.1 takemura year++;
287 1.1 takemura timeh -= sec2;
288 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
289 1.1 takemura }
290 1.1 takemura
291 1.4 sato DPRINTF(("cvt_timehl_ct: timeh %08lx year %ld yrref %ld\n",
292 1.4 sato timeh, year, sec2));
293 1.1 takemura
294 1.1 takemura month = 0; /* now month is 0..11 */
295 1.2 sato sec2 = SEC2DAY * m2d[month];
296 1.1 takemura while (timeh > sec2) {
297 1.1 takemura timeh -= sec2;
298 1.1 takemura month++;
299 1.2 sato sec2 = SEC2DAY * m2d[month];
300 1.1 takemura if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
301 1.2 sato sec2 += SEC2DAY;
302 1.1 takemura }
303 1.1 takemura month +=1; /* now month is 1..12 */
304 1.1 takemura
305 1.4 sato DPRINTF(("cvt_timehl_ct: timeh %08lx month %ld mref %ld\n",
306 1.4 sato timeh, month, sec2));
307 1.1 takemura
308 1.2 sato sec2 = SEC2DAY;
309 1.1 takemura date = timeh/sec2+1; /* date is 1..31 */
310 1.1 takemura timeh -= (date-1)*sec2;
311 1.1 takemura
312 1.4 sato DPRINTF(("cvt_timehl_ct: timeh %08lx date %ld dref %ld\n",
313 1.4 sato timeh, date, sec2));
314 1.1 takemura
315 1.2 sato sec2 = SEC2HOUR;
316 1.1 takemura hour = timeh/sec2;
317 1.1 takemura timeh -= hour*sec2;
318 1.1 takemura
319 1.2 sato sec2 = SEC2MIN;
320 1.1 takemura min = timeh/sec2;
321 1.1 takemura timeh -= min*sec2;
322 1.1 takemura
323 1.1 takemura sec = timeh*2 + timel/ETIME_L_HZ;
324 1.1 takemura
325 1.4 sato DPRINTF(("cvt_timehl_ct: hour %ld min %ld sec %ld\n", hour, min, sec));
326 1.1 takemura
327 1.1 takemura if (ct) {
328 1.2 sato ct->year = year - YBASE; /* base 1900 */
329 1.1 takemura ct->mon = month;
330 1.1 takemura ct->day = date;
331 1.1 takemura ct->hour = hour;
332 1.1 takemura ct->min = min;
333 1.1 takemura ct->sec = sec;
334 1.1 takemura }
335 1.1 takemura }
336 1.1 takemura
337 1.1 takemura void
338 1.1 takemura clock_get(dev, base, ct)
339 1.1 takemura struct device *dev;
340 1.1 takemura time_t base;
341 1.1 takemura struct clocktime *ct;
342 1.1 takemura {
343 1.1 takemura
344 1.1 takemura struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
345 1.1 takemura u_long timeh; /* elapse time (2*timeh sec) */
346 1.1 takemura u_long timel; /* timel/32768 sec */
347 1.1 takemura
348 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
349 1.1 takemura timeh = (timeh << 16)
350 1.1 takemura | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
351 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
352 1.1 takemura
353 1.4 sato DPRINTF(("clock_get: timeh %08lx timel %08lx\n", timeh, timel));
354 1.1 takemura
355 1.1 takemura cvt_timehl_ct(timeh, timel, ct);
356 1.1 takemura
357 1.4 sato DPRINTF(("clock_get: %d/%d/%d/%d/%d/%d\n",
358 1.4 sato ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
359 1.1 takemura }
360 1.1 takemura
361 1.1 takemura
362 1.1 takemura void
363 1.1 takemura clock_set(dev, ct)
364 1.1 takemura struct device *dev;
365 1.1 takemura struct clocktime *ct;
366 1.1 takemura {
367 1.1 takemura struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
368 1.1 takemura u_long timeh; /* elapse time (2*timeh sec) */
369 1.1 takemura u_long timel; /* timel/32768 sec */
370 1.1 takemura int year, month, sec2;
371 1.1 takemura
372 1.1 takemura timeh = 0;
373 1.1 takemura timel = 0;
374 1.1 takemura
375 1.4 sato DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n",
376 1.4 sato ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
377 1.4 sato
378 1.2 sato ct->year += YBASE;
379 1.4 sato
380 1.4 sato DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n",
381 1.4 sato ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
382 1.4 sato
383 1.1 takemura year = EPOCHYEAR;
384 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
385 1.1 takemura while (year < ct->year) {
386 1.1 takemura year++;
387 1.1 takemura timeh += sec2;
388 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
389 1.1 takemura }
390 1.1 takemura month = 1; /* now month is 1..12 */
391 1.2 sato sec2 = SEC2DAY * m2d[month-1];
392 1.1 takemura while (month < ct->mon) {
393 1.1 takemura month++;
394 1.1 takemura timeh += sec2;
395 1.2 sato sec2 = SEC2DAY * m2d[month-1];
396 1.1 takemura if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
397 1.2 sato sec2 += SEC2DAY;
398 1.1 takemura }
399 1.1 takemura
400 1.2 sato timeh += (ct->day - 1)*SEC2DAY;
401 1.1 takemura
402 1.2 sato timeh += ct->hour*SEC2HOUR;
403 1.1 takemura
404 1.2 sato timeh += ct->min*SEC2MIN;
405 1.1 takemura
406 1.1 takemura timeh += ct->sec/2;
407 1.1 takemura timel += (ct->sec%2)*ETIME_L_HZ;
408 1.1 takemura
409 1.1 takemura timeh += EPOCHOFF;
410 1.2 sato timeh -= (rtc_offset*SEC2MIN);
411 1.1 takemura
412 1.4 sato #ifdef VRRTCDEBUG
413 1.1 takemura cvt_timehl_ct(timeh, timel, NULL);
414 1.1 takemura #endif /* RTCDEBUG */
415 1.1 takemura
416 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh,
417 1.1 takemura ETIME_H_REG_W, (timeh>>16)&0xffff);
418 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W, timeh&0xffff);
419 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W, timel);
420 1.1 takemura
421 1.1 takemura }
422 1.1 takemura
423