rtc.c revision 1.7 1 1.7 uch /* $NetBSD: rtc.c,v 1.7 2001/09/16 05:32:21 uch Exp $ */
2 1.1 takemura
3 1.1 takemura /*-
4 1.1 takemura * Copyright (c) 1999 Shin Takemura. All rights reserved.
5 1.1 takemura * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6 1.1 takemura * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7 1.1 takemura *
8 1.1 takemura * Redistribution and use in source and binary forms, with or without
9 1.1 takemura * modification, are permitted provided that the following conditions
10 1.1 takemura * are met:
11 1.1 takemura * 1. Redistributions of source code must retain the above copyright
12 1.1 takemura * notice, this list of conditions and the following disclaimer.
13 1.1 takemura * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 takemura * notice, this list of conditions and the following disclaimer in the
15 1.1 takemura * documentation and/or other materials provided with the distribution.
16 1.1 takemura * 3. All advertising materials mentioning features or use of this software
17 1.1 takemura * must display the following acknowledgement:
18 1.1 takemura * This product includes software developed by the PocketBSD project
19 1.1 takemura * and its contributors.
20 1.1 takemura * 4. Neither the name of the project nor the names of its contributors
21 1.1 takemura * may be used to endorse or promote products derived from this software
22 1.1 takemura * without specific prior written permission.
23 1.1 takemura *
24 1.1 takemura * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 takemura * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 takemura * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 takemura * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 takemura * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 takemura * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 takemura * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 takemura * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 takemura * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 takemura * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 takemura * SUCH DAMAGE.
35 1.1 takemura *
36 1.1 takemura */
37 1.1 takemura
38 1.5 enami #include "opt_vr41xx.h"
39 1.5 enami
40 1.1 takemura #include <sys/param.h>
41 1.1 takemura #include <sys/systm.h>
42 1.1 takemura #include <sys/device.h>
43 1.1 takemura #include <sys/reboot.h>
44 1.1 takemura
45 1.1 takemura #include <machine/bus.h>
46 1.1 takemura #include <machine/clock_machdep.h>
47 1.1 takemura #include <machine/cpu.h>
48 1.1 takemura
49 1.1 takemura #include <hpcmips/vr/vr.h>
50 1.5 enami #include <hpcmips/vr/vrcpudef.h>
51 1.1 takemura #include <hpcmips/vr/vripvar.h>
52 1.1 takemura #include <hpcmips/vr/rtcreg.h>
53 1.1 takemura #include <dev/dec/clockvar.h>
54 1.1 takemura
55 1.3 sato /*
56 1.3 sato * for debugging definitions
57 1.6 toshii * VRRTCDEBUG print rtc debugging information
58 1.4 sato * VRRTC_HEARTBEAT print HEARTBEAT (too many print...)
59 1.3 sato */
60 1.4 sato #ifdef VRRTCDEBUG
61 1.4 sato #ifndef VRRTCDEBUG_CONF
62 1.4 sato #define VRRTCDEBUG_CONF 0
63 1.4 sato #endif
64 1.4 sato int vrrtc_debug = VRRTCDEBUG_CONF;
65 1.4 sato #define DPRINTF(arg) if (vrrtc_debug) printf arg;
66 1.4 sato #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
67 1.4 sato #else /* VRRTCDEBUG */
68 1.4 sato #define DPRINTF(arg)
69 1.4 sato #define DDUMP_REGS(arg)
70 1.4 sato #endif /* VRRTCDEBUG */
71 1.1 takemura
72 1.1 takemura struct vrrtc_softc {
73 1.1 takemura struct device sc_dev;
74 1.1 takemura bus_space_tag_t sc_iot;
75 1.1 takemura bus_space_handle_t sc_ioh;
76 1.1 takemura void *sc_ih;
77 1.1 takemura };
78 1.1 takemura
79 1.7 uch void clock_init(struct device *);
80 1.7 uch void clock_get(struct device *, time_t, struct clocktime *);
81 1.7 uch void clock_set(struct device *, struct clocktime *);
82 1.1 takemura
83 1.1 takemura static const struct clockfns clockfns = {
84 1.1 takemura clock_init, clock_get, clock_set,
85 1.1 takemura };
86 1.1 takemura
87 1.7 uch int vrrtc_match(struct device *, struct cfdata *, void *);
88 1.7 uch void vrrtc_attach(struct device *, struct device *, void *);
89 1.7 uch int vrrtc_intr(void*, u_int32_t, u_int32_t);
90 1.7 uch void vrrtc_dump_regs(struct vrrtc_softc *);
91 1.1 takemura
92 1.1 takemura struct cfattach vrrtc_ca = {
93 1.1 takemura sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
94 1.1 takemura };
95 1.1 takemura
96 1.7 uch void vrrtc_write(struct vrrtc_softc *, int, unsigned short);
97 1.7 uch unsigned short vrrtc_read(struct vrrtc_softc *, int);
98 1.7 uch void cvt_timehl_ct(u_long, u_long, struct clocktime *);
99 1.1 takemura
100 1.1 takemura extern int rtc_offset;
101 1.1 takemura
102 1.1 takemura int
103 1.7 uch vrrtc_match(struct device *parent, struct cfdata *cf, void *aux)
104 1.1 takemura {
105 1.7 uch
106 1.1 takemura return(1);
107 1.1 takemura }
108 1.1 takemura
109 1.1 takemura inline void
110 1.7 uch vrrtc_write(struct vrrtc_softc *sc, int port, unsigned short val)
111 1.1 takemura {
112 1.7 uch
113 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
114 1.1 takemura }
115 1.1 takemura
116 1.1 takemura inline unsigned short
117 1.7 uch vrrtc_read(struct vrrtc_softc *sc, int port)
118 1.1 takemura {
119 1.7 uch
120 1.7 uch return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, port));
121 1.1 takemura }
122 1.1 takemura
123 1.1 takemura void
124 1.7 uch vrrtc_attach(struct device *parent, struct device *self, void *aux)
125 1.1 takemura {
126 1.1 takemura struct vrip_attach_args *va = aux;
127 1.1 takemura struct vrrtc_softc *sc = (void*)self;
128 1.1 takemura
129 1.1 takemura sc->sc_iot = va->va_iot;
130 1.1 takemura if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
131 1.7 uch 0 /* no flags */, &sc->sc_ioh)) {
132 1.1 takemura printf("vrrtc_attach: can't map i/o space\n");
133 1.1 takemura return;
134 1.1 takemura }
135 1.1 takemura /* RTC interrupt handler is directly dispatched from CPU intr */
136 1.1 takemura vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
137 1.1 takemura /* But need to set level 1 interupt mask register,
138 1.1 takemura * so regsiter fake interrurpt handler
139 1.1 takemura */
140 1.1 takemura if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_intr,
141 1.7 uch IPL_CLOCK, 0, 0))) {
142 1.1 takemura printf (":can't map interrupt.\n");
143 1.1 takemura return;
144 1.1 takemura }
145 1.1 takemura /*
146 1.1 takemura * Rtc is attached to call this routine
147 1.1 takemura * before cpu_initclock() calls clock_init().
148 1.1 takemura * So we must disable all interrupt for now.
149 1.1 takemura */
150 1.1 takemura /*
151 1.1 takemura * Disable all rtc interrupts
152 1.1 takemura */
153 1.1 takemura /* Disable Elapse compare intr */
154 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
155 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
156 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
157 1.1 takemura /* Disable RTC Long1 intr */
158 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
159 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
160 1.1 takemura /* Disable RTC Long2 intr */
161 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
162 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
163 1.1 takemura /* Disable RTC TCLK intr */
164 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
165 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
166 1.1 takemura /*
167 1.1 takemura * Clear all rtc intrrupts.
168 1.1 takemura */
169 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
170 1.1 takemura
171 1.1 takemura clockattach(&sc->sc_dev, &clockfns);
172 1.1 takemura }
173 1.1 takemura
174 1.1 takemura int
175 1.7 uch vrrtc_intr(void *arg, u_int32_t pc, u_int32_t statusReg)
176 1.1 takemura {
177 1.1 takemura struct vrrtc_softc *sc = arg;
178 1.1 takemura struct clockframe cf;
179 1.1 takemura
180 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
181 1.1 takemura cf.pc = pc;
182 1.1 takemura cf.sr = statusReg;
183 1.1 takemura hardclock(&cf);
184 1.1 takemura intrcnt[HARDCLOCK]++;
185 1.1 takemura
186 1.4 sato #ifdef VRRTC_HEARTBEAT
187 1.1 takemura if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
188 1.1 takemura struct clocktime ct;
189 1.1 takemura clock_get((struct device *)sc, NULL, &ct);
190 1.1 takemura printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
191 1.7 uch __FILE__, __LINE__,
192 1.7 uch ct.year, ct.mon, ct.day,
193 1.7 uch ct.hour, ct.min, ct.sec);
194 1.1 takemura }
195 1.1 takemura #endif
196 1.1 takemura return 0;
197 1.1 takemura }
198 1.1 takemura
199 1.1 takemura void
200 1.7 uch vrrtc_dump_regs(struct vrrtc_softc *sc)
201 1.1 takemura {
202 1.1 takemura int timeh;
203 1.1 takemura int timel;
204 1.1 takemura
205 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
206 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
207 1.1 takemura timel = (timel << 16)
208 1.7 uch | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
209 1.1 takemura printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
210 1.1 takemura
211 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
212 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
213 1.1 takemura timel = (timel << 16)
214 1.7 uch | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
215 1.1 takemura printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
216 1.1 takemura
217 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
218 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
219 1.1 takemura printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
220 1.1 takemura
221 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
222 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
223 1.1 takemura printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
224 1.1 takemura
225 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
226 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
227 1.1 takemura printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
228 1.1 takemura
229 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
230 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
231 1.1 takemura printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
232 1.1 takemura
233 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
234 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
235 1.1 takemura printf("clock_init() TCLK %04x%04x\n", timeh, timel);
236 1.1 takemura
237 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
238 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
239 1.1 takemura printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
240 1.4 sato }
241 1.4 sato
242 1.4 sato void
243 1.7 uch clock_init(struct device *dev)
244 1.4 sato {
245 1.4 sato struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
246 1.4 sato
247 1.4 sato DDUMP_REGS(sc);
248 1.1 takemura /*
249 1.1 takemura * Set tick (CLOCK_RATE)
250 1.1 takemura */
251 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
252 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh,
253 1.7 uch RTCL1_L_REG_W, RTCL1_L_HZ/CLOCK_RATE);
254 1.1 takemura }
255 1.1 takemura
256 1.1 takemura static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
257 1.1 takemura
258 1.1 takemura void
259 1.7 uch cvt_timehl_ct(
260 1.7 uch u_long timeh, /* 2 sec */
261 1.7 uch u_long timel, /* 1/32768 sec */
262 1.7 uch struct clocktime *ct)
263 1.1 takemura {
264 1.1 takemura u_long year, month, date, hour, min, sec, sec2;
265 1.1 takemura
266 1.1 takemura timeh -= EPOCHOFF;
267 1.1 takemura
268 1.2 sato timeh += (rtc_offset*SEC2MIN);
269 1.1 takemura
270 1.1 takemura year = EPOCHYEAR;
271 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
272 1.1 takemura while (timeh > sec2) {
273 1.1 takemura year++;
274 1.1 takemura timeh -= sec2;
275 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
276 1.1 takemura }
277 1.1 takemura
278 1.4 sato DPRINTF(("cvt_timehl_ct: timeh %08lx year %ld yrref %ld\n",
279 1.7 uch timeh, year, sec2));
280 1.1 takemura
281 1.1 takemura month = 0; /* now month is 0..11 */
282 1.2 sato sec2 = SEC2DAY * m2d[month];
283 1.1 takemura while (timeh > sec2) {
284 1.1 takemura timeh -= sec2;
285 1.1 takemura month++;
286 1.2 sato sec2 = SEC2DAY * m2d[month];
287 1.1 takemura if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
288 1.2 sato sec2 += SEC2DAY;
289 1.1 takemura }
290 1.1 takemura month +=1; /* now month is 1..12 */
291 1.1 takemura
292 1.4 sato DPRINTF(("cvt_timehl_ct: timeh %08lx month %ld mref %ld\n",
293 1.7 uch timeh, month, sec2));
294 1.1 takemura
295 1.2 sato sec2 = SEC2DAY;
296 1.1 takemura date = timeh/sec2+1; /* date is 1..31 */
297 1.1 takemura timeh -= (date-1)*sec2;
298 1.1 takemura
299 1.4 sato DPRINTF(("cvt_timehl_ct: timeh %08lx date %ld dref %ld\n",
300 1.7 uch timeh, date, sec2));
301 1.1 takemura
302 1.2 sato sec2 = SEC2HOUR;
303 1.1 takemura hour = timeh/sec2;
304 1.1 takemura timeh -= hour*sec2;
305 1.1 takemura
306 1.2 sato sec2 = SEC2MIN;
307 1.1 takemura min = timeh/sec2;
308 1.1 takemura timeh -= min*sec2;
309 1.1 takemura
310 1.1 takemura sec = timeh*2 + timel/ETIME_L_HZ;
311 1.1 takemura
312 1.4 sato DPRINTF(("cvt_timehl_ct: hour %ld min %ld sec %ld\n", hour, min, sec));
313 1.1 takemura
314 1.1 takemura if (ct) {
315 1.2 sato ct->year = year - YBASE; /* base 1900 */
316 1.1 takemura ct->mon = month;
317 1.1 takemura ct->day = date;
318 1.1 takemura ct->hour = hour;
319 1.1 takemura ct->min = min;
320 1.1 takemura ct->sec = sec;
321 1.1 takemura }
322 1.1 takemura }
323 1.1 takemura
324 1.1 takemura void
325 1.7 uch clock_get(struct device *dev, time_t base, struct clocktime *ct)
326 1.1 takemura {
327 1.1 takemura
328 1.1 takemura struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
329 1.1 takemura u_long timeh; /* elapse time (2*timeh sec) */
330 1.1 takemura u_long timel; /* timel/32768 sec */
331 1.1 takemura
332 1.1 takemura timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
333 1.1 takemura timeh = (timeh << 16)
334 1.7 uch | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
335 1.1 takemura timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
336 1.1 takemura
337 1.4 sato DPRINTF(("clock_get: timeh %08lx timel %08lx\n", timeh, timel));
338 1.1 takemura
339 1.1 takemura cvt_timehl_ct(timeh, timel, ct);
340 1.1 takemura
341 1.4 sato DPRINTF(("clock_get: %d/%d/%d/%d/%d/%d\n",
342 1.7 uch ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
343 1.1 takemura }
344 1.1 takemura
345 1.1 takemura
346 1.1 takemura void
347 1.7 uch clock_set(struct device *dev, struct clocktime *ct)
348 1.1 takemura {
349 1.1 takemura struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
350 1.1 takemura u_long timeh; /* elapse time (2*timeh sec) */
351 1.1 takemura u_long timel; /* timel/32768 sec */
352 1.1 takemura int year, month, sec2;
353 1.1 takemura
354 1.1 takemura timeh = 0;
355 1.1 takemura timel = 0;
356 1.1 takemura
357 1.4 sato DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n",
358 1.7 uch ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
359 1.4 sato
360 1.2 sato ct->year += YBASE;
361 1.4 sato
362 1.4 sato DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n",
363 1.7 uch ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
364 1.4 sato
365 1.1 takemura year = EPOCHYEAR;
366 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
367 1.1 takemura while (year < ct->year) {
368 1.1 takemura year++;
369 1.1 takemura timeh += sec2;
370 1.2 sato sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
371 1.1 takemura }
372 1.1 takemura month = 1; /* now month is 1..12 */
373 1.2 sato sec2 = SEC2DAY * m2d[month-1];
374 1.1 takemura while (month < ct->mon) {
375 1.1 takemura month++;
376 1.1 takemura timeh += sec2;
377 1.2 sato sec2 = SEC2DAY * m2d[month-1];
378 1.1 takemura if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
379 1.2 sato sec2 += SEC2DAY;
380 1.1 takemura }
381 1.1 takemura
382 1.2 sato timeh += (ct->day - 1)*SEC2DAY;
383 1.1 takemura
384 1.2 sato timeh += ct->hour*SEC2HOUR;
385 1.1 takemura
386 1.2 sato timeh += ct->min*SEC2MIN;
387 1.1 takemura
388 1.1 takemura timeh += ct->sec/2;
389 1.1 takemura timel += (ct->sec%2)*ETIME_L_HZ;
390 1.1 takemura
391 1.1 takemura timeh += EPOCHOFF;
392 1.2 sato timeh -= (rtc_offset*SEC2MIN);
393 1.1 takemura
394 1.4 sato #ifdef VRRTCDEBUG
395 1.1 takemura cvt_timehl_ct(timeh, timel, NULL);
396 1.1 takemura #endif /* RTCDEBUG */
397 1.1 takemura
398 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh,
399 1.7 uch ETIME_H_REG_W, (timeh>>16)&0xffff);
400 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W, timeh&0xffff);
401 1.1 takemura bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W, timel);
402 1.1 takemura
403 1.1 takemura }
404