rtc.c revision 1.13 1 /* $NetBSD: rtc.c,v 1.13 2002/02/09 14:47:57 sato Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Shin Takemura. All rights reserved.
5 * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6 * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the PocketBSD project
19 * and its contributors.
20 * 4. Neither the name of the project nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 */
37
38 #include "opt_vr41xx.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42
43 #include <machine/sysconf.h>
44 #include <machine/bus.h>
45
46 #include <dev/clock_subr.h>
47
48 #include <hpcmips/vr/vr.h>
49 #include <hpcmips/vr/vrcpudef.h>
50 #include <hpcmips/vr/vripif.h>
51 #include <hpcmips/vr/rtcreg.h>
52
53 /*
54 * for debugging definitions
55 * VRRTCDEBUG print rtc debugging information
56 * VRRTC_HEARTBEAT print HEARTBEAT (too many print...)
57 */
58 #ifdef VRRTCDEBUG
59 #ifndef VRRTCDEBUG_CONF
60 #define VRRTCDEBUG_CONF 0
61 #endif
62 int vrrtc_debug = VRRTCDEBUG_CONF;
63 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
64 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
65 #else /* VRRTCDEBUG */
66 #define DPRINTF(arg)
67 #define DDUMP_REGS(arg)
68 #endif /* VRRTCDEBUG */
69
70 struct vrrtc_softc {
71 struct device sc_dev;
72 bus_space_tag_t sc_iot;
73 bus_space_handle_t sc_ioh;
74 void *sc_ih;
75 };
76
77 void clock_init(struct device *);
78 void clock_get(struct device *, time_t, struct clock_ymdhms *);
79 void clock_set(struct device *, struct clock_ymdhms *);
80
81 struct platform_clock vr_clock = {
82 #define CLOCK_RATE 128
83 CLOCK_RATE, clock_init, clock_get, clock_set,
84 };
85
86 int vrrtc_match(struct device *, struct cfdata *, void *);
87 void vrrtc_attach(struct device *, struct device *, void *);
88 int vrrtc_intr(void*, u_int32_t, u_int32_t);
89 void vrrtc_dump_regs(struct vrrtc_softc *);
90
91 struct cfattach vrrtc_ca = {
92 sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
93 };
94
95 static __inline__ void vrrtc_write(struct vrrtc_softc *, int, u_int16_t);
96 static __inline__ u_int16_t vrrtc_read(struct vrrtc_softc *, int);
97 void cvt_timehl_ymdhms(u_int32_t, u_int32_t, struct clock_ymdhms *);
98
99 extern int rtc_offset;
100 static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
101
102 static __inline__ void
103 vrrtc_write(struct vrrtc_softc *sc, int port, u_int16_t val)
104 {
105
106 bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
107 }
108
109 static __inline__ u_int16_t
110 vrrtc_read(struct vrrtc_softc *sc, int port)
111 {
112
113 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, port));
114 }
115
116 int
117 vrrtc_match(struct device *parent, struct cfdata *cf, void *aux)
118 {
119
120 return (1);
121 }
122
123 void
124 vrrtc_attach(struct device *parent, struct device *self, void *aux)
125 {
126 struct vrip_attach_args *va = aux;
127 struct vrrtc_softc *sc = (void *)self;
128
129 sc->sc_iot = va->va_iot;
130 if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
131 0 /* no flags */, &sc->sc_ioh)) {
132 printf("vrrtc_attach: can't map i/o space\n");
133 return;
134 }
135 /* RTC interrupt handler is directly dispatched from CPU intr */
136 vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
137 /* But need to set level 1 interupt mask register,
138 * so regsiter fake interrurpt handler
139 */
140 if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
141 IPL_CLOCK, 0, 0))) {
142 printf (":can't map interrupt.\n");
143 return;
144 }
145 /*
146 * Rtc is attached to call this routine
147 * before cpu_initclock() calls clock_init().
148 * So we must disable all interrupt for now.
149 */
150 /*
151 * Disable all rtc interrupts
152 */
153 /* Disable Elapse compare intr */
154 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
155 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
156 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
157 /* Disable RTC Long1 intr */
158 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
159 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
160 /* Disable RTC Long2 intr */
161 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
162 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
163 /* Disable RTC TCLK intr */
164 if (TCLK_H_REG_W != RTC_NO_REG_W) {
165 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
166 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
167 }
168 /*
169 * Clear all rtc intrrupts.
170 */
171 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
172
173 platform_clock_attach(sc, &vr_clock);
174 }
175
176 int
177 vrrtc_intr(void *arg, u_int32_t pc, u_int32_t statusReg)
178 {
179 struct vrrtc_softc *sc = arg;
180 struct clockframe cf;
181
182 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
183 cf.pc = pc;
184 cf.sr = statusReg;
185 hardclock(&cf);
186 intrcnt[HARDCLOCK]++;
187
188 #ifdef VRRTC_HEARTBEAT
189 if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
190 struct clocktime ct;
191 clock_get((struct device *)sc, NULL, &ct);
192 printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
193 __FILE__, __LINE__,
194 ct.year, ct.mon, ct.day,
195 ct.hour, ct.min, ct.sec);
196 }
197 #endif
198 return 0;
199 }
200
201 void
202 clock_init(struct device *dev)
203 {
204 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
205
206 DDUMP_REGS(sc);
207 /*
208 * Set tick (CLOCK_RATE)
209 */
210 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
211 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W,
212 RTCL1_L_HZ/CLOCK_RATE);
213 }
214
215 void
216 clock_get(struct device *dev, time_t base, struct clock_ymdhms *dt)
217 {
218
219 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
220 bus_space_tag_t iot = sc->sc_iot;
221 bus_space_handle_t ioh = sc->sc_ioh;
222 u_int32_t timeh; /* elapse time (2*timeh sec) */
223 u_int32_t timel; /* timel/32768 sec */
224
225 timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
226 timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
227 timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
228
229 DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
230
231 cvt_timehl_ymdhms(timeh, timel, dt);
232
233 DPRINTF(("clock_get: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
234 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
235 }
236
237 void
238 clock_set(struct device *dev, struct clock_ymdhms *dt)
239 {
240 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
241 bus_space_tag_t iot = sc->sc_iot;
242 bus_space_handle_t ioh = sc->sc_ioh;
243 u_int32_t timeh; /* elapse time (2*timeh sec) */
244 u_int32_t timel; /* timel/32768 sec */
245 int year, month, sec2;
246
247 timeh = 0;
248 timel = 0;
249
250 DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
251 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
252
253 dt->dt_year += YBASE;
254
255 DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
256 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
257
258 year = EPOCHYEAR;
259 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
260 while (year < dt->dt_year) {
261 year++;
262 timeh += sec2;
263 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
264 }
265 month = 1; /* now month is 1..12 */
266 sec2 = SEC2DAY * m2d[month-1];
267 while (month < dt->dt_mon) {
268 month++;
269 timeh += sec2;
270 sec2 = SEC2DAY * m2d[month-1];
271 if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
272 sec2 += SEC2DAY;
273 }
274
275 timeh += (dt->dt_day - 1)*SEC2DAY;
276
277 timeh += dt->dt_hour*SEC2HOUR;
278
279 timeh += dt->dt_min*SEC2MIN;
280
281 timeh += dt->dt_sec/2;
282 timel += (dt->dt_sec%2)*ETIME_L_HZ;
283
284 timeh += EPOCHOFF;
285 timeh -= (rtc_offset*SEC2MIN);
286
287 #ifdef VRRTCDEBUG
288 cvt_timehl_ymdhms(timeh, timel, NULL);
289 #endif /* RTCDEBUG */
290
291 bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
292 bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
293 bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
294 }
295
296 void
297 cvt_timehl_ymdhms(
298 u_int32_t timeh, /* 2 sec */
299 u_int32_t timel, /* 1/32768 sec */
300 struct clock_ymdhms *dt)
301 {
302 u_int32_t year, month, date, hour, min, sec, sec2;
303
304 timeh -= EPOCHOFF;
305
306 timeh += (rtc_offset*SEC2MIN);
307
308 year = EPOCHYEAR;
309 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
310 while (timeh > sec2) {
311 year++;
312 timeh -= sec2;
313 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
314 }
315
316 DPRINTF(("cvt_timehl_ymdhms: timeh %08x year %d yrref %d\n",
317 timeh, year, sec2));
318
319 month = 0; /* now month is 0..11 */
320 sec2 = SEC2DAY * m2d[month];
321 while (timeh > sec2) {
322 timeh -= sec2;
323 month++;
324 sec2 = SEC2DAY * m2d[month];
325 if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
326 sec2 += SEC2DAY;
327 }
328 month +=1; /* now month is 1..12 */
329
330 DPRINTF(("cvt_timehl_ymdhms: timeh %08x month %d mref %d\n",
331 timeh, month, sec2));
332
333 sec2 = SEC2DAY;
334 date = timeh/sec2+1; /* date is 1..31 */
335 timeh -= (date-1)*sec2;
336
337 DPRINTF(("cvt_timehl_ymdhms: timeh %08x date %d dref %d\n",
338 timeh, date, sec2));
339
340 sec2 = SEC2HOUR;
341 hour = timeh/sec2;
342 timeh -= hour*sec2;
343
344 sec2 = SEC2MIN;
345 min = timeh/sec2;
346 timeh -= min*sec2;
347
348 sec = timeh*2 + timel/ETIME_L_HZ;
349
350 DPRINTF(("cvt_timehl_ymdhms: hour %d min %d sec %d\n", hour, min, sec));
351
352 if (dt) {
353 dt->dt_year = year - YBASE; /* base 1900 */
354 dt->dt_mon = month;
355 dt->dt_day = date;
356 dt->dt_hour = hour;
357 dt->dt_min = min;
358 dt->dt_sec = sec;
359 }
360 }
361
362 void
363 vrrtc_dump_regs(struct vrrtc_softc *sc)
364 {
365 int timeh;
366 int timel;
367
368 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
369 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
370 timel = (timel << 16)
371 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
372 printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
373
374 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
375 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
376 timel = (timel << 16)
377 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
378 printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
379
380 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
381 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
382 printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
383
384 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
385 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
386 printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
387
388 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
389 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
390 printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
391
392 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
393 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
394 printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
395
396 if (TCLK_H_REG_W != RTC_NO_REG_W) {
397 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
398 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
399 printf("clock_init() TCLK %04x%04x\n", timeh, timel);
400
401 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
402 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
403 printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
404 }
405 }
406