rtc.c revision 1.14 1 /* $NetBSD: rtc.c,v 1.14 2002/02/10 14:15:32 takemura Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Shin Takemura. All rights reserved.
5 * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6 * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the PocketBSD project
19 * and its contributors.
20 * 4. Neither the name of the project nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 */
37
38 #include "opt_vr41xx.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42
43 #include <machine/sysconf.h>
44 #include <machine/bus.h>
45
46 #include <dev/clock_subr.h>
47
48 #include <hpcmips/vr/vr.h>
49 #include <hpcmips/vr/vrcpudef.h>
50 #include <hpcmips/vr/vripif.h>
51 #include <hpcmips/vr/vripreg.h>
52 #include <hpcmips/vr/rtcreg.h>
53
54 /*
55 * for debugging definitions
56 * VRRTCDEBUG print rtc debugging information
57 * VRRTC_HEARTBEAT print HEARTBEAT (too many print...)
58 */
59 #ifdef VRRTCDEBUG
60 #ifndef VRRTCDEBUG_CONF
61 #define VRRTCDEBUG_CONF 0
62 #endif
63 int vrrtc_debug = VRRTCDEBUG_CONF;
64 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
65 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
66 #else /* VRRTCDEBUG */
67 #define DPRINTF(arg)
68 #define DDUMP_REGS(arg)
69 #endif /* VRRTCDEBUG */
70
71 struct vrrtc_softc {
72 struct device sc_dev;
73 bus_space_tag_t sc_iot;
74 bus_space_handle_t sc_ioh;
75 void *sc_ih;
76 #ifndef SINGLE_VRIP_BASE
77 int sc_rtcint_reg;
78 int sc_tclk_h_reg, sc_tclk_l_reg;
79 int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
80 #endif /* SINGLE_VRIP_BASE */
81 };
82
83 void clock_init(struct device *);
84 void clock_get(struct device *, time_t, struct clock_ymdhms *);
85 void clock_set(struct device *, struct clock_ymdhms *);
86
87 struct platform_clock vr_clock = {
88 #define CLOCK_RATE 128
89 CLOCK_RATE, clock_init, clock_get, clock_set,
90 };
91
92 int vrrtc_match(struct device *, struct cfdata *, void *);
93 void vrrtc_attach(struct device *, struct device *, void *);
94 int vrrtc_intr(void*, u_int32_t, u_int32_t);
95 void vrrtc_dump_regs(struct vrrtc_softc *);
96
97 struct cfattach vrrtc_ca = {
98 sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
99 };
100
101 static __inline__ void vrrtc_write(struct vrrtc_softc *, int, u_int16_t);
102 static __inline__ u_int16_t vrrtc_read(struct vrrtc_softc *, int);
103 void cvt_timehl_ymdhms(u_int32_t, u_int32_t, struct clock_ymdhms *);
104
105 extern int rtc_offset;
106 static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
107
108 static __inline__ void
109 vrrtc_write(struct vrrtc_softc *sc, int port, u_int16_t val)
110 {
111
112 bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
113 }
114
115 static __inline__ u_int16_t
116 vrrtc_read(struct vrrtc_softc *sc, int port)
117 {
118
119 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, port));
120 }
121
122 int
123 vrrtc_match(struct device *parent, struct cfdata *cf, void *aux)
124 {
125
126 return (1);
127 }
128
129 #ifndef SINGLE_VRIP_BASE
130 #define RTCINT_REG_W (sc->sc_rtcint_reg)
131 #define TCLK_H_REG_W (sc->sc_tclk_h_reg)
132 #define TCLK_L_REG_W (sc->sc_tclk_l_reg)
133 #define TCLK_CNT_H_REG_W (sc->sc_tclk_cnt_h_reg)
134 #define TCLK_CNT_L_REG_W (sc->sc_tclk_cnt_l_reg)
135 #endif /* SINGLE_VRIP_BASE */
136
137 void
138 vrrtc_attach(struct device *parent, struct device *self, void *aux)
139 {
140 struct vrip_attach_args *va = aux;
141 struct vrrtc_softc *sc = (void *)self;
142
143 #ifndef SINGLE_VRIP_BASE
144 if (va->va_addr == VR4102_RTC_ADDR) {
145 sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
146 sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
147 sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
148 sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
149 sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
150 } else
151 if (va->va_addr == VR4122_RTC_ADDR) {
152 sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
153 sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
154 sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
155 sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
156 sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
157 } else
158 if (va->va_addr == VR4181_RTC_ADDR) {
159 sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
160 sc->sc_tclk_h_reg = RTC_NO_REG_W;
161 sc->sc_tclk_l_reg = RTC_NO_REG_W;
162 sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
163 sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
164 } else {
165 panic("%s: unknown base address 0x%lx\n",
166 sc->sc_dev.dv_xname, va->va_addr);
167 }
168 #endif /* SINGLE_VRIP_BASE */
169
170 sc->sc_iot = va->va_iot;
171 if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
172 0 /* no flags */, &sc->sc_ioh)) {
173 printf("vrrtc_attach: can't map i/o space\n");
174 return;
175 }
176 /* RTC interrupt handler is directly dispatched from CPU intr */
177 vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
178 /* But need to set level 1 interupt mask register,
179 * so regsiter fake interrurpt handler
180 */
181 if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
182 IPL_CLOCK, 0, 0))) {
183 printf (":can't map interrupt.\n");
184 return;
185 }
186 /*
187 * Rtc is attached to call this routine
188 * before cpu_initclock() calls clock_init().
189 * So we must disable all interrupt for now.
190 */
191 /*
192 * Disable all rtc interrupts
193 */
194 /* Disable Elapse compare intr */
195 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
196 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
197 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
198 /* Disable RTC Long1 intr */
199 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
200 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
201 /* Disable RTC Long2 intr */
202 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
203 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
204 /* Disable RTC TCLK intr */
205 if (TCLK_H_REG_W != RTC_NO_REG_W) {
206 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
207 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
208 }
209 /*
210 * Clear all rtc intrrupts.
211 */
212 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
213
214 platform_clock_attach(sc, &vr_clock);
215 }
216
217 int
218 vrrtc_intr(void *arg, u_int32_t pc, u_int32_t statusReg)
219 {
220 struct vrrtc_softc *sc = arg;
221 struct clockframe cf;
222
223 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
224 cf.pc = pc;
225 cf.sr = statusReg;
226 hardclock(&cf);
227 intrcnt[HARDCLOCK]++;
228
229 #ifdef VRRTC_HEARTBEAT
230 if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
231 struct clock_ymdhms dt;
232 clock_get((struct device *)sc, NULL, &dt);
233 printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
234 __FILE__, __LINE__,
235 dt.dt_year, dt.dt_mon, dt.dt_day,
236 dt.dt_hour, dt.dt_min, dt.dt_sec);
237 }
238 #endif
239 return 0;
240 }
241
242 void
243 clock_init(struct device *dev)
244 {
245 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
246
247 DDUMP_REGS(sc);
248 /*
249 * Set tick (CLOCK_RATE)
250 */
251 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
252 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W,
253 RTCL1_L_HZ/CLOCK_RATE);
254 }
255
256 void
257 clock_get(struct device *dev, time_t base, struct clock_ymdhms *dt)
258 {
259
260 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
261 bus_space_tag_t iot = sc->sc_iot;
262 bus_space_handle_t ioh = sc->sc_ioh;
263 u_int32_t timeh; /* elapse time (2*timeh sec) */
264 u_int32_t timel; /* timel/32768 sec */
265
266 timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
267 timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
268 timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
269
270 DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
271
272 cvt_timehl_ymdhms(timeh, timel, dt);
273
274 DPRINTF(("clock_get: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
275 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
276 }
277
278 void
279 clock_set(struct device *dev, struct clock_ymdhms *dt)
280 {
281 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
282 bus_space_tag_t iot = sc->sc_iot;
283 bus_space_handle_t ioh = sc->sc_ioh;
284 u_int32_t timeh; /* elapse time (2*timeh sec) */
285 u_int32_t timel; /* timel/32768 sec */
286 int year, month, sec2;
287
288 timeh = 0;
289 timel = 0;
290
291 DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
292 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
293
294 dt->dt_year += YBASE;
295
296 DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
297 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
298
299 year = EPOCHYEAR;
300 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
301 while (year < dt->dt_year) {
302 year++;
303 timeh += sec2;
304 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
305 }
306 month = 1; /* now month is 1..12 */
307 sec2 = SEC2DAY * m2d[month-1];
308 while (month < dt->dt_mon) {
309 month++;
310 timeh += sec2;
311 sec2 = SEC2DAY * m2d[month-1];
312 if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
313 sec2 += SEC2DAY;
314 }
315
316 timeh += (dt->dt_day - 1)*SEC2DAY;
317
318 timeh += dt->dt_hour*SEC2HOUR;
319
320 timeh += dt->dt_min*SEC2MIN;
321
322 timeh += dt->dt_sec/2;
323 timel += (dt->dt_sec%2)*ETIME_L_HZ;
324
325 timeh += EPOCHOFF;
326 timeh -= (rtc_offset*SEC2MIN);
327
328 #ifdef VRRTCDEBUG
329 cvt_timehl_ymdhms(timeh, timel, NULL);
330 #endif /* RTCDEBUG */
331
332 bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
333 bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
334 bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
335 }
336
337 void
338 cvt_timehl_ymdhms(
339 u_int32_t timeh, /* 2 sec */
340 u_int32_t timel, /* 1/32768 sec */
341 struct clock_ymdhms *dt)
342 {
343 u_int32_t year, month, date, hour, min, sec, sec2;
344
345 timeh -= EPOCHOFF;
346
347 timeh += (rtc_offset*SEC2MIN);
348
349 year = EPOCHYEAR;
350 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
351 while (timeh > sec2) {
352 year++;
353 timeh -= sec2;
354 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
355 }
356
357 DPRINTF(("cvt_timehl_ymdhms: timeh %08x year %d yrref %d\n",
358 timeh, year, sec2));
359
360 month = 0; /* now month is 0..11 */
361 sec2 = SEC2DAY * m2d[month];
362 while (timeh > sec2) {
363 timeh -= sec2;
364 month++;
365 sec2 = SEC2DAY * m2d[month];
366 if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
367 sec2 += SEC2DAY;
368 }
369 month +=1; /* now month is 1..12 */
370
371 DPRINTF(("cvt_timehl_ymdhms: timeh %08x month %d mref %d\n",
372 timeh, month, sec2));
373
374 sec2 = SEC2DAY;
375 date = timeh/sec2+1; /* date is 1..31 */
376 timeh -= (date-1)*sec2;
377
378 DPRINTF(("cvt_timehl_ymdhms: timeh %08x date %d dref %d\n",
379 timeh, date, sec2));
380
381 sec2 = SEC2HOUR;
382 hour = timeh/sec2;
383 timeh -= hour*sec2;
384
385 sec2 = SEC2MIN;
386 min = timeh/sec2;
387 timeh -= min*sec2;
388
389 sec = timeh*2 + timel/ETIME_L_HZ;
390
391 DPRINTF(("cvt_timehl_ymdhms: hour %d min %d sec %d\n", hour, min, sec));
392
393 if (dt) {
394 dt->dt_year = year - YBASE; /* base 1900 */
395 dt->dt_mon = month;
396 dt->dt_day = date;
397 dt->dt_hour = hour;
398 dt->dt_min = min;
399 dt->dt_sec = sec;
400 }
401 }
402
403 void
404 vrrtc_dump_regs(struct vrrtc_softc *sc)
405 {
406 int timeh;
407 int timel;
408
409 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
410 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
411 timel = (timel << 16)
412 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
413 printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
414
415 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
416 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
417 timel = (timel << 16)
418 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
419 printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
420
421 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
422 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
423 printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
424
425 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
426 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
427 printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
428
429 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
430 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
431 printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
432
433 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
434 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
435 printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
436
437 if (TCLK_H_REG_W != RTC_NO_REG_W) {
438 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
439 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
440 printf("clock_init() TCLK %04x%04x\n", timeh, timel);
441
442 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
443 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
444 printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
445 }
446 }
447