rtc.c revision 1.18 1 /* $NetBSD: rtc.c,v 1.18 2002/10/02 05:26:53 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Shin Takemura. All rights reserved.
5 * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6 * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the PocketBSD project
19 * and its contributors.
20 * 4. Neither the name of the project nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 */
37
38 #include "opt_vr41xx.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42
43 #include <machine/sysconf.h>
44 #include <machine/bus.h>
45
46 #include <dev/clock_subr.h>
47
48 #include <hpcmips/vr/vr.h>
49 #include <hpcmips/vr/vrcpudef.h>
50 #include <hpcmips/vr/vripif.h>
51 #include <hpcmips/vr/vripreg.h>
52 #include <hpcmips/vr/rtcreg.h>
53
54 /*
55 * for debugging definitions
56 * VRRTCDEBUG print rtc debugging information
57 */
58 #ifdef VRRTCDEBUG
59 #ifndef VRRTCDEBUG_CONF
60 #define VRRTCDEBUG_CONF 0
61 #endif
62 int vrrtc_debug = VRRTCDEBUG_CONF;
63 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
64 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
65 #else /* VRRTCDEBUG */
66 #define DPRINTF(arg)
67 #define DDUMP_REGS(arg)
68 #endif /* VRRTCDEBUG */
69
70 struct vrrtc_softc {
71 struct device sc_dev;
72 bus_space_tag_t sc_iot;
73 bus_space_handle_t sc_ioh;
74 void *sc_ih;
75 #ifndef SINGLE_VRIP_BASE
76 int sc_rtcint_reg;
77 int sc_tclk_h_reg, sc_tclk_l_reg;
78 int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
79 #endif /* SINGLE_VRIP_BASE */
80 };
81
82 void clock_init(struct device *);
83 void clock_get(struct device *, time_t, struct clock_ymdhms *);
84 void clock_set(struct device *, struct clock_ymdhms *);
85
86 struct platform_clock vr_clock = {
87 #define CLOCK_RATE 128
88 CLOCK_RATE, clock_init, clock_get, clock_set,
89 };
90
91 int vrrtc_match(struct device *, struct cfdata *, void *);
92 void vrrtc_attach(struct device *, struct device *, void *);
93 int vrrtc_intr(void*, u_int32_t, u_int32_t);
94 void vrrtc_dump_regs(struct vrrtc_softc *);
95
96 CFATTACH_DECL(vrrtc, sizeof(struct vrrtc_softc),
97 vrrtc_match, vrrtc_attach, NULL, NULL);
98
99 static __inline__ void vrrtc_write(struct vrrtc_softc *, int, u_int16_t);
100 static __inline__ u_int16_t vrrtc_read(struct vrrtc_softc *, int);
101 void cvt_timehl_ymdhms(u_int32_t, u_int32_t, struct clock_ymdhms *);
102
103 extern int rtc_offset;
104 static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
105
106 static __inline__ void
107 vrrtc_write(struct vrrtc_softc *sc, int port, u_int16_t val)
108 {
109
110 bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
111 }
112
113 static __inline__ u_int16_t
114 vrrtc_read(struct vrrtc_softc *sc, int port)
115 {
116
117 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, port));
118 }
119
120 int
121 vrrtc_match(struct device *parent, struct cfdata *cf, void *aux)
122 {
123
124 return (1);
125 }
126
127 #ifndef SINGLE_VRIP_BASE
128 #define RTCINT_REG_W (sc->sc_rtcint_reg)
129 #define TCLK_H_REG_W (sc->sc_tclk_h_reg)
130 #define TCLK_L_REG_W (sc->sc_tclk_l_reg)
131 #define TCLK_CNT_H_REG_W (sc->sc_tclk_cnt_h_reg)
132 #define TCLK_CNT_L_REG_W (sc->sc_tclk_cnt_l_reg)
133 #endif /* SINGLE_VRIP_BASE */
134
135 void
136 vrrtc_attach(struct device *parent, struct device *self, void *aux)
137 {
138 struct vrip_attach_args *va = aux;
139 struct vrrtc_softc *sc = (void *)self;
140
141 #ifndef SINGLE_VRIP_BASE
142 if (va->va_addr == VR4102_RTC_ADDR) {
143 sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
144 sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
145 sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
146 sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
147 sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
148 } else
149 if (va->va_addr == VR4122_RTC_ADDR) {
150 sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
151 sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
152 sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
153 sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
154 sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
155 } else
156 if (va->va_addr == VR4181_RTC_ADDR) {
157 sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
158 sc->sc_tclk_h_reg = RTC_NO_REG_W;
159 sc->sc_tclk_l_reg = RTC_NO_REG_W;
160 sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
161 sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
162 } else {
163 panic("%s: unknown base address 0x%lx",
164 sc->sc_dev.dv_xname, va->va_addr);
165 }
166 #endif /* SINGLE_VRIP_BASE */
167
168 sc->sc_iot = va->va_iot;
169 if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
170 0 /* no flags */, &sc->sc_ioh)) {
171 printf("vrrtc_attach: can't map i/o space\n");
172 return;
173 }
174 /* RTC interrupt handler is directly dispatched from CPU intr */
175 vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
176 /* But need to set level 1 interupt mask register,
177 * so regsiter fake interrurpt handler
178 */
179 if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
180 IPL_CLOCK, 0, 0))) {
181 printf (":can't map interrupt.\n");
182 return;
183 }
184 /*
185 * Rtc is attached to call this routine
186 * before cpu_initclock() calls clock_init().
187 * So we must disable all interrupt for now.
188 */
189 /*
190 * Disable all rtc interrupts
191 */
192 /* Disable Elapse compare intr */
193 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
194 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
195 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
196 /* Disable RTC Long1 intr */
197 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
198 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
199 /* Disable RTC Long2 intr */
200 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
201 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
202 /* Disable RTC TCLK intr */
203 if (TCLK_H_REG_W != RTC_NO_REG_W) {
204 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
205 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
206 }
207 /*
208 * Clear all rtc intrrupts.
209 */
210 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
211
212 platform_clock_attach(sc, &vr_clock);
213 }
214
215 int
216 vrrtc_intr(void *arg, u_int32_t pc, u_int32_t statusReg)
217 {
218 struct vrrtc_softc *sc = arg;
219 struct clockframe cf;
220
221 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
222 cf.pc = pc;
223 cf.sr = statusReg;
224 hardclock(&cf);
225
226 return 0;
227 }
228
229 void
230 clock_init(struct device *dev)
231 {
232 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
233
234 DDUMP_REGS(sc);
235 /*
236 * Set tick (CLOCK_RATE)
237 */
238 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
239 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W,
240 RTCL1_L_HZ/CLOCK_RATE);
241 }
242
243 void
244 clock_get(struct device *dev, time_t base, struct clock_ymdhms *dt)
245 {
246
247 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
248 bus_space_tag_t iot = sc->sc_iot;
249 bus_space_handle_t ioh = sc->sc_ioh;
250 u_int32_t timeh; /* elapse time (2*timeh sec) */
251 u_int32_t timel; /* timel/32768 sec */
252
253 timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
254 timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
255 timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
256
257 DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
258
259 cvt_timehl_ymdhms(timeh, timel, dt);
260
261 DPRINTF(("clock_get: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
262 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
263 }
264
265 void
266 clock_set(struct device *dev, struct clock_ymdhms *dt)
267 {
268 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
269 bus_space_tag_t iot = sc->sc_iot;
270 bus_space_handle_t ioh = sc->sc_ioh;
271 u_int32_t timeh; /* elapse time (2*timeh sec) */
272 u_int32_t timel; /* timel/32768 sec */
273 int year, month, sec2;
274
275 timeh = 0;
276 timel = 0;
277
278 DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
279 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
280
281 dt->dt_year += YBASE;
282
283 DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
284 dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
285
286 year = EPOCHYEAR;
287 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
288 while (year < dt->dt_year) {
289 year++;
290 timeh += sec2;
291 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
292 }
293 month = 1; /* now month is 1..12 */
294 sec2 = SEC2DAY * m2d[month-1];
295 while (month < dt->dt_mon) {
296 month++;
297 timeh += sec2;
298 sec2 = SEC2DAY * m2d[month-1];
299 if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
300 sec2 += SEC2DAY;
301 }
302
303 timeh += (dt->dt_day - 1)*SEC2DAY;
304
305 timeh += dt->dt_hour*SEC2HOUR;
306
307 timeh += dt->dt_min*SEC2MIN;
308
309 timeh += dt->dt_sec/2;
310 timel += (dt->dt_sec%2)*ETIME_L_HZ;
311
312 timeh += EPOCHOFF;
313 timeh -= (rtc_offset*SEC2MIN);
314
315 #ifdef VRRTCDEBUG
316 cvt_timehl_ymdhms(timeh, timel, NULL);
317 #endif /* RTCDEBUG */
318
319 bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
320 bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
321 bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
322 }
323
324 void
325 cvt_timehl_ymdhms(
326 u_int32_t timeh, /* 2 sec */
327 u_int32_t timel, /* 1/32768 sec */
328 struct clock_ymdhms *dt)
329 {
330 u_int32_t year, month, date, hour, min, sec, sec2;
331
332 timeh -= EPOCHOFF;
333
334 timeh += (rtc_offset*SEC2MIN);
335
336 year = EPOCHYEAR;
337 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
338 while (timeh > sec2) {
339 year++;
340 timeh -= sec2;
341 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
342 }
343
344 DPRINTF(("cvt_timehl_ymdhms: timeh %08x year %d yrref %d\n",
345 timeh, year, sec2));
346
347 month = 0; /* now month is 0..11 */
348 sec2 = SEC2DAY * m2d[month];
349 while (timeh > sec2) {
350 timeh -= sec2;
351 month++;
352 sec2 = SEC2DAY * m2d[month];
353 if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
354 sec2 += SEC2DAY;
355 }
356 month +=1; /* now month is 1..12 */
357
358 DPRINTF(("cvt_timehl_ymdhms: timeh %08x month %d mref %d\n",
359 timeh, month, sec2));
360
361 sec2 = SEC2DAY;
362 date = timeh/sec2+1; /* date is 1..31 */
363 timeh -= (date-1)*sec2;
364
365 DPRINTF(("cvt_timehl_ymdhms: timeh %08x date %d dref %d\n",
366 timeh, date, sec2));
367
368 sec2 = SEC2HOUR;
369 hour = timeh/sec2;
370 timeh -= hour*sec2;
371
372 sec2 = SEC2MIN;
373 min = timeh/sec2;
374 timeh -= min*sec2;
375
376 sec = timeh*2 + timel/ETIME_L_HZ;
377
378 DPRINTF(("cvt_timehl_ymdhms: hour %d min %d sec %d\n", hour, min, sec));
379
380 if (dt) {
381 dt->dt_year = year - YBASE; /* base 1900 */
382 dt->dt_mon = month;
383 dt->dt_day = date;
384 dt->dt_hour = hour;
385 dt->dt_min = min;
386 dt->dt_sec = sec;
387 }
388 }
389
390 void
391 vrrtc_dump_regs(struct vrrtc_softc *sc)
392 {
393 int timeh;
394 int timel;
395
396 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
397 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
398 timel = (timel << 16)
399 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
400 printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
401
402 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
403 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
404 timel = (timel << 16)
405 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
406 printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
407
408 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
409 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
410 printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
411
412 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
413 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
414 printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
415
416 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
417 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
418 printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
419
420 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
421 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
422 printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
423
424 if (TCLK_H_REG_W != RTC_NO_REG_W) {
425 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
426 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
427 printf("clock_init() TCLK %04x%04x\n", timeh, timel);
428
429 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
430 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
431 printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
432 }
433 }
434