rtc.c revision 1.28 1 /* $NetBSD: rtc.c,v 1.28 2011/03/16 14:23:19 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Shin Takemura. All rights reserved.
5 * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6 * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the PocketBSD project
19 * and its contributors.
20 * 4. Neither the name of the project nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: rtc.c,v 1.28 2011/03/16 14:23:19 tsutsui Exp $");
40
41 #include "opt_vr41xx.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/timetc.h>
46 #include <sys/device.h>
47 #include <sys/cpu.h>
48
49 #include <machine/sysconf.h>
50 #include <machine/bus.h>
51
52 #include <dev/clock_subr.h>
53
54 #include <hpcmips/vr/vr.h>
55 #include <hpcmips/vr/vrcpudef.h>
56 #include <hpcmips/vr/vripif.h>
57 #include <hpcmips/vr/vripreg.h>
58 #include <hpcmips/vr/rtcreg.h>
59
60 /*
61 * for debugging definitions
62 * VRRTCDEBUG print rtc debugging information
63 */
64 #ifdef VRRTCDEBUG
65 #ifndef VRRTCDEBUG_CONF
66 #define VRRTCDEBUG_CONF 0
67 #endif
68 int vrrtc_debug = VRRTCDEBUG_CONF;
69 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
70 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
71 #else /* VRRTCDEBUG */
72 #define DPRINTF(arg)
73 #define DDUMP_REGS(arg)
74 #endif /* VRRTCDEBUG */
75
76 struct vrrtc_softc {
77 struct device sc_dev;
78 bus_space_tag_t sc_iot;
79 bus_space_handle_t sc_ioh;
80 void *sc_ih;
81 #ifndef SINGLE_VRIP_BASE
82 int sc_rtcint_reg;
83 int sc_tclk_h_reg, sc_tclk_l_reg;
84 int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
85 #endif /* SINGLE_VRIP_BASE */
86 int64_t sc_epoch;
87 struct todr_chip_handle sc_todr;
88 struct timecounter sc_tc;
89 };
90
91 void vrrtc_init(struct device *);
92 int vrrtc_get(todr_chip_handle_t, struct timeval *);
93 int vrrtc_set(todr_chip_handle_t, struct timeval *);
94 uint32_t vrrtc_get_timecount(struct timecounter *);
95
96 struct platform_clock vr_clock = {
97 #define CLOCK_RATE 128
98 CLOCK_RATE, vrrtc_init,
99 };
100
101 int vrrtc_match(struct device *, struct cfdata *, void *);
102 void vrrtc_attach(struct device *, struct device *, void *);
103 int vrrtc_intr(void*, u_int32_t, u_int32_t);
104 void vrrtc_dump_regs(struct vrrtc_softc *);
105
106 CFATTACH_DECL(vrrtc, sizeof(struct vrrtc_softc),
107 vrrtc_match, vrrtc_attach, NULL, NULL);
108
109 int
110 vrrtc_match(struct device *parent, struct cfdata *cf, void *aux)
111 {
112
113 return (1);
114 }
115
116 #ifndef SINGLE_VRIP_BASE
117 #define RTCINT_REG_W (sc->sc_rtcint_reg)
118 #define TCLK_H_REG_W (sc->sc_tclk_h_reg)
119 #define TCLK_L_REG_W (sc->sc_tclk_l_reg)
120 #define TCLK_CNT_H_REG_W (sc->sc_tclk_cnt_h_reg)
121 #define TCLK_CNT_L_REG_W (sc->sc_tclk_cnt_l_reg)
122 #endif /* SINGLE_VRIP_BASE */
123
124 void
125 vrrtc_attach(struct device *parent, struct device *self, void *aux)
126 {
127 struct vrip_attach_args *va = aux;
128 struct vrrtc_softc *sc = (void *)self;
129 int year;
130
131 #ifndef SINGLE_VRIP_BASE
132 if (va->va_addr == VR4102_RTC_ADDR) {
133 sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
134 sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
135 sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
136 sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
137 sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
138 } else
139 if (va->va_addr == VR4122_RTC_ADDR) {
140 sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
141 sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
142 sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
143 sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
144 sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
145 } else
146 if (va->va_addr == VR4181_RTC_ADDR) {
147 sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
148 sc->sc_tclk_h_reg = RTC_NO_REG_W;
149 sc->sc_tclk_l_reg = RTC_NO_REG_W;
150 sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
151 sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
152 } else {
153 panic("%s: unknown base address 0x%lx",
154 sc->sc_dev.dv_xname, va->va_addr);
155 }
156 #endif /* SINGLE_VRIP_BASE */
157
158 sc->sc_iot = va->va_iot;
159 if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
160 0 /* no flags */, &sc->sc_ioh)) {
161 printf("vrrtc_attach: can't map i/o space\n");
162 return;
163 }
164 /* RTC interrupt handler is directly dispatched from CPU intr */
165 vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
166 /* But need to set level 1 interrupt mask register,
167 * so regsiter fake interrurpt handler
168 */
169 if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
170 IPL_CLOCK, 0, 0))) {
171 printf (":can't map interrupt.\n");
172 return;
173 }
174 /*
175 * Rtc is attached to call this routine
176 * before cpu_initclock() calls clock_init().
177 * So we must disable all interrupt for now.
178 */
179 /*
180 * Disable all rtc interrupts
181 */
182 /* Disable Elapse compare intr */
183 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
184 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
185 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
186 /* Disable RTC Long1 intr */
187 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
188 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
189 /* Disable RTC Long2 intr */
190 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
191 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
192 /* Disable RTC TCLK intr */
193 if (TCLK_H_REG_W != RTC_NO_REG_W) {
194 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
195 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
196 }
197 /*
198 * Clear all rtc intrrupts.
199 */
200 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
201
202 /*
203 * Figure out the epoch, which could be either forward or
204 * backwards in time. We assume that the start date will always
205 * be on Jan 1.
206 */
207 for (year = EPOCHYEAR; year < POSIX_BASE_YEAR; year++) {
208 sc->sc_epoch += LEAPYEAR4(year) ? SECYR + SECDAY : SECYR;
209 }
210 for (year = POSIX_BASE_YEAR; year < EPOCHYEAR; year++) {
211 sc->sc_epoch -= LEAPYEAR4(year) ? SECYR + SECDAY : SECYR;
212 }
213
214 /*
215 * Initialize MI todr(9)
216 */
217 sc->sc_todr.todr_settime = vrrtc_set;
218 sc->sc_todr.todr_gettime = vrrtc_get;
219 sc->sc_todr.cookie = sc;
220 todr_attach(&sc->sc_todr);
221
222 platform_clock_attach(sc, &vr_clock);
223 }
224
225 int
226 vrrtc_intr(void *arg, u_int32_t pc, u_int32_t statusReg)
227 {
228 struct vrrtc_softc *sc = arg;
229 struct clockframe cf;
230
231 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
232 cf.pc = pc;
233 cf.sr = statusReg;
234 cf.intr = (curcpu()->ci_idepth > 1);
235 hardclock(&cf);
236
237 return 0;
238 }
239
240 void
241 vrrtc_init(struct device *dev)
242 {
243 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
244
245 DDUMP_REGS(sc);
246 /*
247 * Set tick (CLOCK_RATE)
248 */
249 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
250 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W,
251 RTCL1_L_HZ/CLOCK_RATE);
252
253 /*
254 * Initialize timecounter.
255 */
256 sc->sc_tc.tc_get_timecount = vrrtc_get_timecount;
257 sc->sc_tc.tc_name = "vrrtc";
258 sc->sc_tc.tc_counter_mask = 0xffff;
259 sc->sc_tc.tc_frequency = ETIME_L_HZ;
260 sc->sc_tc.tc_priv = sc;
261 sc->sc_tc.tc_quality = 100;
262 tc_init(&sc->sc_tc);
263 }
264
265 uint32_t
266 vrrtc_get_timecount(struct timecounter *tc)
267 {
268 struct vrrtc_softc *sc = (struct vrrtc_softc *)tc->tc_priv;
269 bus_space_tag_t iot = sc->sc_iot;
270 bus_space_handle_t ioh = sc->sc_ioh;
271
272 return (bus_space_read_2(iot, ioh, ETIME_L_REG_W));
273 }
274
275 int
276 vrrtc_get(todr_chip_handle_t tch, struct timeval *tvp)
277 {
278
279 struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
280 bus_space_tag_t iot = sc->sc_iot;
281 bus_space_handle_t ioh = sc->sc_ioh;
282 u_int32_t timeh; /* elapse time (2*timeh sec) */
283 u_int32_t timel; /* timel/32768 sec */
284 u_int64_t sec, usec;
285
286 timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
287 timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
288 timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
289
290 DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
291
292 timeh -= EPOCHOFF;
293 sec = (uint64_t)timeh * 2;
294 sec -= sc->sc_epoch;
295 tvp->tv_sec = sec;
296 tvp->tv_sec += timel / ETIME_L_HZ;
297
298 /* scale from 32kHz to 1MHz */
299 usec = (timel % ETIME_L_HZ);
300 usec *= 1000000;
301 usec /= ETIME_L_HZ;
302 tvp->tv_usec = usec;
303
304 return 0;
305 }
306
307 int
308 vrrtc_set(todr_chip_handle_t tch, struct timeval *tvp)
309 {
310 struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
311 bus_space_tag_t iot = sc->sc_iot;
312 bus_space_handle_t ioh = sc->sc_ioh;
313 u_int32_t timeh; /* elapse time (2*timeh sec) */
314 u_int32_t timel; /* timel/32768 sec */
315 int64_t sec, cnt;
316
317 sec = tvp->tv_sec + sc->sc_epoch;
318 sec += sc->sc_epoch;
319 timeh = EPOCHOFF + (sec / 2);
320 timel = sec % 2;
321
322 cnt = tvp->tv_usec;
323 /* scale from 1MHz to 32kHz */
324 cnt *= ETIME_L_HZ;
325 cnt /= 1000000;
326 timel += (uint32_t)cnt;
327
328 bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
329 bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
330 bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
331
332 return 0;
333 }
334
335 void
336 vrrtc_dump_regs(struct vrrtc_softc *sc)
337 {
338 int timeh;
339 int timel;
340
341 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
342 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
343 timel = (timel << 16)
344 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
345 printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
346
347 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
348 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
349 timel = (timel << 16)
350 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
351 printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
352
353 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
354 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
355 printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
356
357 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
358 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
359 printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
360
361 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
362 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
363 printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
364
365 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
366 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
367 printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
368
369 if (TCLK_H_REG_W != RTC_NO_REG_W) {
370 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
371 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
372 printf("clock_init() TCLK %04x%04x\n", timeh, timel);
373
374 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
375 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
376 printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
377 }
378 }
379