rtc.c revision 1.4 1 /* $NetBSD: rtc.c,v 1.4 2000/03/17 09:54:15 sato Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Shin Takemura. All rights reserved.
5 * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6 * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the PocketBSD project
19 * and its contributors.
20 * 4. Neither the name of the project nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/device.h>
41 #include <sys/reboot.h>
42
43 #include <machine/bus.h>
44 #include <machine/clock_machdep.h>
45 #include <machine/cpu.h>
46
47 #include <hpcmips/vr/vr.h>
48 #include <hpcmips/vr/vripvar.h>
49 #include <hpcmips/vr/rtcreg.h>
50 #include <dev/dec/clockvar.h>
51
52 /*
53 * for debugging definitions
54 * VRRTCDEBUG print rtc debugging infomation
55 * VRRTC_HEARTBEAT print HEARTBEAT (too many print...)
56 */
57 #ifdef VRRTCDEBUG
58 #ifndef VRRTCDEBUG_CONF
59 #define VRRTCDEBUG_CONF 0
60 #endif
61 int vrrtc_debug = VRRTCDEBUG_CONF;
62 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
63 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
64 #else /* VRRTCDEBUG */
65 #define DPRINTF(arg)
66 #define DDUMP_REGS(arg)
67 #endif /* VRRTCDEBUG */
68
69 struct vrrtc_softc {
70 struct device sc_dev;
71 bus_space_tag_t sc_iot;
72 bus_space_handle_t sc_ioh;
73 void *sc_ih;
74 };
75
76 void clock_init __P((struct device *));
77 void clock_get __P((struct device *, time_t, struct clocktime *));
78 void clock_set __P((struct device *, struct clocktime *));
79
80 static const struct clockfns clockfns = {
81 clock_init, clock_get, clock_set,
82 };
83
84 int vrrtc_match __P((struct device *, struct cfdata *, void *));
85 void vrrtc_attach __P((struct device *, struct device *, void *));
86 int vrrtc_intr __P((void*, u_int32_t, u_int32_t));
87 void vrrtc_dump_regs __P((struct vrrtc_softc *));
88
89 struct cfattach vrrtc_ca = {
90 sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
91 };
92
93 void vrrtc_write __P((struct vrrtc_softc *, int, unsigned short));
94 unsigned short vrrtc_read __P((struct vrrtc_softc *, int));
95 void cvt_timehl_ct __P((u_long, u_long, struct clocktime *));
96
97 extern int rtc_offset;
98
99 int
100 vrrtc_match(parent, cf, aux)
101 struct device *parent;
102 struct cfdata *cf;
103 void *aux;
104 {
105 return(1);
106 }
107
108 inline void
109 vrrtc_write(sc, port, val)
110 struct vrrtc_softc *sc;
111 int port;
112 unsigned short val;
113 {
114 bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
115 }
116
117 inline unsigned short
118 vrrtc_read(sc, port)
119 struct vrrtc_softc *sc;
120 int port;
121 {
122 return bus_space_read_2(sc->sc_iot, sc->sc_ioh, port);
123 }
124
125 void
126 vrrtc_attach(parent, self, aux)
127 struct device *parent;
128 struct device *self;
129 void *aux;
130 {
131 struct vrip_attach_args *va = aux;
132 struct vrrtc_softc *sc = (void*)self;
133
134 sc->sc_iot = va->va_iot;
135 if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
136 0 /* no flags */, &sc->sc_ioh)) {
137 printf("vrrtc_attach: can't map i/o space\n");
138 return;
139 }
140 /* RTC interrupt handler is directly dispatched from CPU intr */
141 vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
142 /* But need to set level 1 interupt mask register,
143 * so regsiter fake interrurpt handler
144 */
145 if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_intr,
146 IPL_CLOCK, 0, 0))) {
147 printf (":can't map interrupt.\n");
148 return;
149 }
150 /*
151 * Rtc is attached to call this routine
152 * before cpu_initclock() calls clock_init().
153 * So we must disable all interrupt for now.
154 */
155 /*
156 * Disable all rtc interrupts
157 */
158 /* Disable Elapse compare intr */
159 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
160 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
161 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
162 /* Disable RTC Long1 intr */
163 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
164 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
165 /* Disable RTC Long2 intr */
166 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
167 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
168 /* Disable RTC TCLK intr */
169 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
170 bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
171 /*
172 * Clear all rtc intrrupts.
173 */
174 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
175
176 clockattach(&sc->sc_dev, &clockfns);
177 }
178
179 int
180 vrrtc_intr(arg, pc, statusReg)
181 void *arg;
182 u_int32_t pc;
183 u_int32_t statusReg;
184 {
185 struct vrrtc_softc *sc = arg;
186 struct clockframe cf;
187
188 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
189 cf.pc = pc;
190 cf.sr = statusReg;
191 hardclock(&cf);
192 intrcnt[HARDCLOCK]++;
193
194 #ifdef VRRTC_HEARTBEAT
195 if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
196 struct clocktime ct;
197 clock_get((struct device *)sc, NULL, &ct);
198 printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
199 __FILE__, __LINE__,
200 ct.year, ct.mon, ct.day,
201 ct.hour, ct.min, ct.sec);
202 }
203 #endif
204 return 0;
205 }
206
207 void
208 vrrtc_dump_regs(sc)
209 struct vrrtc_softc *sc;
210 {
211 int timeh;
212 int timel;
213
214 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
215 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
216 timel = (timel << 16)
217 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
218 printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
219
220 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
221 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
222 timel = (timel << 16)
223 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
224 printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
225
226 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
227 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
228 printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
229
230 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
231 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
232 printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
233
234 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
235 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
236 printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
237
238 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
239 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
240 printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
241
242 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
243 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
244 printf("clock_init() TCLK %04x%04x\n", timeh, timel);
245
246 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
247 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
248 printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
249 }
250
251 void
252 clock_init(dev)
253 struct device *dev;
254 {
255 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
256
257 DDUMP_REGS(sc);
258 /*
259 * Set tick (CLOCK_RATE)
260 */
261 bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
262 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
263 RTCL1_L_REG_W, RTCL1_L_HZ/CLOCK_RATE);
264 }
265
266 static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
267
268 void
269 cvt_timehl_ct(timeh, timel, ct)
270 u_long timeh; /* 2 sec */
271 u_long timel; /* 1/32768 sec */
272 struct clocktime *ct;
273 {
274 u_long year, month, date, hour, min, sec, sec2;
275
276 timeh -= EPOCHOFF;
277
278 timeh += (rtc_offset*SEC2MIN);
279
280 year = EPOCHYEAR;
281 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
282 while (timeh > sec2) {
283 year++;
284 timeh -= sec2;
285 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
286 }
287
288 DPRINTF(("cvt_timehl_ct: timeh %08lx year %ld yrref %ld\n",
289 timeh, year, sec2));
290
291 month = 0; /* now month is 0..11 */
292 sec2 = SEC2DAY * m2d[month];
293 while (timeh > sec2) {
294 timeh -= sec2;
295 month++;
296 sec2 = SEC2DAY * m2d[month];
297 if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
298 sec2 += SEC2DAY;
299 }
300 month +=1; /* now month is 1..12 */
301
302 DPRINTF(("cvt_timehl_ct: timeh %08lx month %ld mref %ld\n",
303 timeh, month, sec2));
304
305 sec2 = SEC2DAY;
306 date = timeh/sec2+1; /* date is 1..31 */
307 timeh -= (date-1)*sec2;
308
309 DPRINTF(("cvt_timehl_ct: timeh %08lx date %ld dref %ld\n",
310 timeh, date, sec2));
311
312 sec2 = SEC2HOUR;
313 hour = timeh/sec2;
314 timeh -= hour*sec2;
315
316 sec2 = SEC2MIN;
317 min = timeh/sec2;
318 timeh -= min*sec2;
319
320 sec = timeh*2 + timel/ETIME_L_HZ;
321
322 DPRINTF(("cvt_timehl_ct: hour %ld min %ld sec %ld\n", hour, min, sec));
323
324 if (ct) {
325 ct->year = year - YBASE; /* base 1900 */
326 ct->mon = month;
327 ct->day = date;
328 ct->hour = hour;
329 ct->min = min;
330 ct->sec = sec;
331 }
332 }
333
334 void
335 clock_get(dev, base, ct)
336 struct device *dev;
337 time_t base;
338 struct clocktime *ct;
339 {
340
341 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
342 u_long timeh; /* elapse time (2*timeh sec) */
343 u_long timel; /* timel/32768 sec */
344
345 timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
346 timeh = (timeh << 16)
347 | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
348 timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
349
350 DPRINTF(("clock_get: timeh %08lx timel %08lx\n", timeh, timel));
351
352 cvt_timehl_ct(timeh, timel, ct);
353
354 DPRINTF(("clock_get: %d/%d/%d/%d/%d/%d\n",
355 ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
356 }
357
358
359 void
360 clock_set(dev, ct)
361 struct device *dev;
362 struct clocktime *ct;
363 {
364 struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
365 u_long timeh; /* elapse time (2*timeh sec) */
366 u_long timel; /* timel/32768 sec */
367 int year, month, sec2;
368
369 timeh = 0;
370 timel = 0;
371
372 DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n",
373 ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
374
375 ct->year += YBASE;
376
377 DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n",
378 ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec));
379
380 year = EPOCHYEAR;
381 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
382 while (year < ct->year) {
383 year++;
384 timeh += sec2;
385 sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
386 }
387 month = 1; /* now month is 1..12 */
388 sec2 = SEC2DAY * m2d[month-1];
389 while (month < ct->mon) {
390 month++;
391 timeh += sec2;
392 sec2 = SEC2DAY * m2d[month-1];
393 if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
394 sec2 += SEC2DAY;
395 }
396
397 timeh += (ct->day - 1)*SEC2DAY;
398
399 timeh += ct->hour*SEC2HOUR;
400
401 timeh += ct->min*SEC2MIN;
402
403 timeh += ct->sec/2;
404 timel += (ct->sec%2)*ETIME_L_HZ;
405
406 timeh += EPOCHOFF;
407 timeh -= (rtc_offset*SEC2MIN);
408
409 #ifdef VRRTCDEBUG
410 cvt_timehl_ct(timeh, timel, NULL);
411 #endif /* RTCDEBUG */
412
413 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
414 ETIME_H_REG_W, (timeh>>16)&0xffff);
415 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W, timeh&0xffff);
416 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W, timel);
417
418 }
419
420