harmony.c revision 1.5.2.1 1 /* $NetBSD: harmony.c,v 1.5.2.1 2019/04/21 10:11:44 isaki Exp $ */
2
3 /* $OpenBSD: harmony.c,v 1.23 2004/02/13 21:28:19 mickey Exp $ */
4
5 /*-
6 * Copyright (c) 2009 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Matt Fleming.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 2003 Jason L. Wright (jason (at) thought.net)
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
48 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
49 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
50 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
51 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
52 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
53 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
55 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
56 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57 * POSSIBILITY OF SUCH DAMAGE.
58 */
59
60 /*
61 * Harmony (CS4215/AD1849 LASI) audio interface.
62 */
63
64
65
66 #include <sys/param.h>
67 #include <sys/kernel.h>
68 #include <sys/systm.h>
69 #include <sys/errno.h>
70 #include <sys/ioctl.h>
71 #include <sys/device.h>
72 #include <sys/proc.h>
73 #include <sys/kmem.h>
74 #include <uvm/uvm_extern.h>
75
76 #include <sys/rndsource.h>
77
78 #include <sys/audioio.h>
79 #include <dev/audio_if.h>
80
81 #include <machine/cpu.h>
82 #include <machine/intr.h>
83 #include <machine/iomod.h>
84 #include <machine/autoconf.h>
85 #include <sys/bus.h>
86
87 #include <hppa/dev/cpudevs.h>
88 #include <hppa/gsc/gscbusvar.h>
89 #include <hppa/gsc/harmonyreg.h>
90 #include <hppa/gsc/harmonyvar.h>
91
92 int harmony_open(void *, int);
93 void harmony_close(void *);
94 int harmony_query_format(void *, audio_format_query_t *);
95 int harmony_set_format(void *, int,
96 const audio_params_t *, const audio_params_t *,
97 audio_filter_reg_t *, audio_filter_reg_t *);
98 int harmony_round_blocksize(void *, int, int, const audio_params_t *);
99
100 int harmony_control_wait(struct harmony_softc *);
101 int harmony_commit_settings(void *);
102
103 int harmony_halt_output(void *);
104 int harmony_halt_input(void *);
105 int harmony_getdev(void *, struct audio_device *);
106 int harmony_set_port(void *, mixer_ctrl_t *);
107 int harmony_get_port(void *, mixer_ctrl_t *);
108 int harmony_query_devinfo(void *, mixer_devinfo_t *);
109 void * harmony_allocm(void *, int, size_t);
110 void harmony_freem(void *, void *, size_t);
111 size_t harmony_round_buffersize(void *, int, size_t);
112 int harmony_get_props(void *);
113 int harmony_trigger_output(void *, void *, void *, int,
114 void (*)(void *), void *, const audio_params_t *);
115 int harmony_trigger_input(void *, void *, void *, int,
116 void (*)(void *), void *, const audio_params_t *);
117 void harmony_get_locks(void *, kmutex_t **, kmutex_t **);
118
119 const struct audio_hw_if harmony_sa_hw_if = {
120 .open = harmony_open,
121 .close = harmony_close,
122 .query_format = harmony_query_format,
123 .set_format = harmony_set_format,
124 .round_blocksize = harmony_round_blocksize,
125 .commit_settings = harmony_commit_settings,
126 .halt_output = harmony_halt_output,
127 .halt_input = harmony_halt_input,
128 .getdev = harmony_getdev,
129 .set_port = harmony_set_port,
130 .get_port = harmony_get_port,
131 .query_devinfo = harmony_query_devinfo,
132 .allocm = harmony_allocm,
133 .freem = harmony_freem,
134 .round_buffersize = harmony_round_buffersize,
135 .get_props = harmony_get_props,
136 .trigger_output = harmony_trigger_output,
137 .trigger_input = harmony_trigger_input,
138 .get_locks = harmony_get_locks,
139 };
140
141 /* The HW actually supports more frequencies, but these looks enough. */
142 #define HARMONY_FORMAT(enc, prec) \
143 { \
144 .mode = AUMODE_PLAY | AUMODE_RECORD, \
145 .encoding = (enc), \
146 .validbits = (prec), \
147 .precision = (prec), \
148 .channels = 2, \
149 .channel_mask = AUFMT_STEREO, \
150 .frequency_type = 4, \
151 .frequency = { 16000, 32000, 44100, 48000 }, \
152 }
153 static struct audio_format harmony_formats[] = {
154 HARMONY_FORMAT(AUDIO_ENCODING_ULAW, 8),
155 HARMONY_FORMAT(AUDIO_ENCODING_ALAW, 8),
156 HARMONY_FORMAT(AUDIO_ENCODING_SLINEAR_BE, 16),
157 };
158 #define HARMONY_NFORMATS __arraycount(harmony_formats)
159
160 int harmony_match(device_t, struct cfdata *, void *);
161 void harmony_attach(device_t, device_t, void *);
162
163
164 CFATTACH_DECL_NEW(harmony, sizeof(struct harmony_softc),
165 harmony_match, harmony_attach, NULL, NULL);
166
167 int harmony_intr(void *);
168 void harmony_intr_enable(struct harmony_softc *);
169 void harmony_intr_disable(struct harmony_softc *);
170 uint32_t harmony_speed_bits(struct harmony_softc *, u_int *);
171 int harmony_set_gainctl(struct harmony_softc *);
172 void harmony_reset_codec(struct harmony_softc *);
173 void harmony_start_cp(struct harmony_softc *, int);
174 void harmony_start_pp(struct harmony_softc *, int);
175 void harmony_tick_pb(void *);
176 void harmony_tick_cp(void *);
177 void harmony_try_more(struct harmony_softc *, int, int,
178 struct harmony_channel *);
179 static void harmony_empty_input(struct harmony_softc *);
180 static void harmony_empty_output(struct harmony_softc *);
181
182 void harmony_acc_tmo(void *);
183 #define ADD_CLKALLICA(sc) do { \
184 (sc)->sc_acc <<= 1; \
185 (sc)->sc_acc |= READ_REG((sc), HARMONY_DIAG) & DIAG_CO; \
186 if ((sc)->sc_acc_cnt++ && !((sc)->sc_acc_cnt % 32)) \
187 rnd_add_uint32(&(sc)->sc_rnd_source, \
188 (sc)->sc_acc_num ^= (sc)->sc_acc); \
189 } while(0)
190
191 int
192 harmony_match(device_t parent, struct cfdata *match, void *aux)
193 {
194 struct gsc_attach_args *ga;
195
196 ga = aux;
197 if (ga->ga_type.iodc_type == HPPA_TYPE_FIO) {
198 if (ga->ga_type.iodc_sv_model == HPPA_FIO_A1 ||
199 ga->ga_type.iodc_sv_model == HPPA_FIO_A2NB ||
200 ga->ga_type.iodc_sv_model == HPPA_FIO_A1NB ||
201 ga->ga_type.iodc_sv_model == HPPA_FIO_A2)
202 return 1;
203 }
204 return 0;
205 }
206
207 void
208 harmony_attach(device_t parent, device_t self, void *aux)
209 {
210 struct harmony_softc *sc = device_private(self);
211 struct gsc_attach_args *ga;
212 uint8_t rev;
213 uint32_t cntl;
214 int i;
215
216 sc->sc_dv = self;
217 ga = aux;
218 sc->sc_bt = ga->ga_iot;
219 sc->sc_dmat = ga->ga_dmatag;
220
221 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
222 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
223
224 if (bus_space_map(sc->sc_bt, ga->ga_hpa, HARMONY_NREGS, 0,
225 &sc->sc_bh) != 0) {
226 aprint_error(": couldn't map registers\n");
227 return;
228 }
229
230 cntl = READ_REG(sc, HARMONY_ID);
231 switch ((cntl & ID_REV_MASK)) {
232 case ID_REV_TS:
233 sc->sc_teleshare = 1;
234 case ID_REV_NOTS:
235 break;
236 default:
237 aprint_error(": unknown id == 0x%02x\n",
238 (cntl & ID_REV_MASK) >> ID_REV_SHIFT);
239 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
240 return;
241 }
242
243 if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct harmony_empty),
244 PAGE_SIZE, 0, &sc->sc_empty_seg, 1, &sc->sc_empty_rseg,
245 BUS_DMA_WAITOK) != 0) {
246 aprint_error(": could not alloc DMA memory\n");
247 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
248 return;
249 }
250 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_empty_seg, 1,
251 sizeof(struct harmony_empty), (void **)&sc->sc_empty_kva,
252 BUS_DMA_WAITOK) != 0) {
253 aprint_error(": couldn't map DMA memory\n");
254 bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
255 sc->sc_empty_rseg);
256 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
257 return;
258 }
259 if (bus_dmamap_create(sc->sc_dmat, sizeof(struct harmony_empty), 1,
260 sizeof(struct harmony_empty), 0, BUS_DMA_WAITOK,
261 &sc->sc_empty_map) != 0) {
262 aprint_error(": can't create DMA map\n");
263 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_empty_kva,
264 sizeof(struct harmony_empty));
265 bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
266 sc->sc_empty_rseg);
267 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
268 return;
269 }
270 if (bus_dmamap_load(sc->sc_dmat, sc->sc_empty_map, sc->sc_empty_kva,
271 sizeof(struct harmony_empty), NULL, BUS_DMA_WAITOK) != 0) {
272 aprint_error(": can't load DMA map\n");
273 bus_dmamap_destroy(sc->sc_dmat, sc->sc_empty_map);
274 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_empty_kva,
275 sizeof(struct harmony_empty));
276 bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
277 sc->sc_empty_rseg);
278 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
279 return;
280 }
281
282 sc->sc_playback_empty = 0;
283 for (i = 0; i < PLAYBACK_EMPTYS; i++)
284 sc->sc_playback_paddrs[i] =
285 sc->sc_empty_map->dm_segs[0].ds_addr +
286 offsetof(struct harmony_empty, playback[i][0]);
287
288 sc->sc_capture_empty = 0;
289 for (i = 0; i < CAPTURE_EMPTYS; i++)
290 sc->sc_capture_paddrs[i] =
291 sc->sc_empty_map->dm_segs[0].ds_addr +
292 offsetof(struct harmony_empty, capture[i][0]);
293
294 bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
295 offsetof(struct harmony_empty, playback[0][0]),
296 PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_PREWRITE);
297
298 (void) hppa_intr_establish(IPL_AUDIO, harmony_intr, sc, ga->ga_ir,
299 ga->ga_irq);
300
301 /* set defaults */
302 sc->sc_in_port = HARMONY_IN_LINE;
303 sc->sc_out_port = HARMONY_OUT_SPEAKER;
304 sc->sc_input_lvl.left = sc->sc_input_lvl.right = 240;
305 sc->sc_output_lvl.left = sc->sc_output_lvl.right = 244;
306 sc->sc_monitor_lvl.left = sc->sc_monitor_lvl.right = 208;
307 sc->sc_outputgain = 0;
308
309 /* reset chip, and push default gain controls */
310 harmony_reset_codec(sc);
311
312 cntl = READ_REG(sc, HARMONY_CNTL);
313 rev = (cntl & CNTL_CODEC_REV_MASK) >> CNTL_CODEC_REV_SHIFT;
314 aprint_normal(": rev %u", rev);
315
316 if (sc->sc_teleshare)
317 printf(", teleshare");
318 aprint_normal("\n");
319
320 strlcpy(sc->sc_audev.name, ga->ga_name, sizeof(sc->sc_audev.name));
321 snprintf(sc->sc_audev.version, sizeof sc->sc_audev.version,
322 "%u.%u;%u", ga->ga_type.iodc_sv_rev,
323 ga->ga_type.iodc_model, ga->ga_type.iodc_revision);
324 strlcpy(sc->sc_audev.config, device_xname(sc->sc_dv),
325 sizeof(sc->sc_audev.config));
326
327 audio_attach_mi(&harmony_sa_hw_if, sc, sc->sc_dv);
328
329 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dv),
330 RND_TYPE_UNKNOWN, RND_FLAG_DEFAULT);
331
332 callout_init(&sc->sc_acc_tmo, 0);
333 callout_setfunc(&sc->sc_acc_tmo, harmony_acc_tmo, sc);
334 sc->sc_acc_num = 0xa5a5a5a5;
335 }
336
337 void
338 harmony_reset_codec(struct harmony_softc *sc)
339 {
340
341 /* silence */
342 WRITE_REG(sc, HARMONY_GAINCTL, GAINCTL_OUTPUT_LEFT_M |
343 GAINCTL_OUTPUT_RIGHT_M | GAINCTL_MONITOR_M);
344
345 /* start reset */
346 WRITE_REG(sc, HARMONY_RESET, RESET_RST);
347
348 DELAY(100000); /* wait at least 0.05 sec */
349
350 harmony_set_gainctl(sc);
351 WRITE_REG(sc, HARMONY_RESET, 0);
352 }
353
354 void
355 harmony_acc_tmo(void *v)
356 {
357 struct harmony_softc *sc;
358
359 sc = v;
360 ADD_CLKALLICA(sc);
361 callout_schedule(&sc->sc_acc_tmo, 1);
362 }
363
364 /*
365 * interrupt handler
366 */
367 int
368 harmony_intr(void *vsc)
369 {
370 struct harmony_softc *sc;
371 uint32_t dstatus;
372 int r;
373
374 sc = vsc;
375 r = 0;
376 ADD_CLKALLICA(sc);
377
378 mutex_spin_enter(&sc->sc_intr_lock);
379
380 harmony_intr_disable(sc);
381
382 dstatus = READ_REG(sc, HARMONY_DSTATUS);
383
384 if (dstatus & DSTATUS_PN) {
385 r = 1;
386 harmony_start_pp(sc, 0);
387 }
388
389 if (dstatus & DSTATUS_RN) {
390 r = 1;
391 harmony_start_cp(sc, 0);
392 }
393
394 if (READ_REG(sc, HARMONY_OV) & OV_OV) {
395 sc->sc_ov = 1;
396 WRITE_REG(sc, HARMONY_OV, 0);
397 } else
398 sc->sc_ov = 0;
399
400 harmony_intr_enable(sc);
401
402 mutex_spin_exit(&sc->sc_intr_lock);
403
404 return r;
405 }
406
407 void
408 harmony_intr_enable(struct harmony_softc *sc)
409 {
410
411 WRITE_REG(sc, HARMONY_DSTATUS, DSTATUS_IE);
412 SYNC_REG(sc, HARMONY_DSTATUS, BUS_SPACE_BARRIER_WRITE);
413 }
414
415 void
416 harmony_intr_disable(struct harmony_softc *sc)
417 {
418
419 WRITE_REG(sc, HARMONY_DSTATUS, 0);
420 SYNC_REG(sc, HARMONY_DSTATUS, BUS_SPACE_BARRIER_WRITE);
421 }
422
423 int
424 harmony_open(void *vsc, int flags)
425 {
426 struct harmony_softc *sc;
427
428 sc = vsc;
429 if (sc->sc_open)
430 return EBUSY;
431 sc->sc_open = 1;
432 return 0;
433 }
434
435 void
436 harmony_close(void *vsc)
437 {
438 struct harmony_softc *sc;
439
440 sc = vsc;
441 harmony_intr_disable(sc);
442 sc->sc_open = 0;
443 }
444
445 int
446 harmony_query_format(void *vsc, audio_format_query_t *afp)
447 {
448
449 return audio_query_format(harmony_formats, HARMONY_NFORMATS, afp);
450 }
451
452 int
453 harmony_set_format(void *vsc, int setmode,
454 const audio_params_t *play, const audio_params_t *rec,
455 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
456 {
457 struct harmony_softc *sc;
458 uint32_t bits;
459 int rate;
460
461 sc = vsc;
462
463 /* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */
464 switch (play->encoding) {
465 case AUDIO_ENCODING_ULAW:
466 bits = CNTL_FORMAT_ULAW;
467 break;
468 case AUDIO_ENCODING_ALAW:
469 bits = CNTL_FORMAT_ALAW;
470 break;
471 case AUDIO_ENCODING_SLINEAR_BE:
472 bits = CNTL_FORMAT_SLINEAR16BE;
473 break;
474 default:
475 return EINVAL;
476 }
477
478 if (sc->sc_outputgain)
479 bits |= CNTL_OLB;
480
481 bits |= CNTL_CHANS_STEREO;
482
483 /* XXX modify harmony_speed_bits() not to rewrite rate */
484 rate = play->sample_rate;
485 sc->sc_cntlbits |= harmony_speed_bits(sc, &rate);
486 sc->sc_need_commit = 1;
487
488 return 0;
489 }
490
491 int
492 harmony_round_blocksize(void *vsc, int blk,
493 int mode, const audio_params_t *param)
494 {
495
496 return HARMONY_BUFSIZE;
497 }
498
499 int
500 harmony_control_wait(struct harmony_softc *sc)
501 {
502 uint32_t reg;
503 int j = 0;
504
505 while (j < 10) {
506 /* Wait for it to come out of control mode */
507 reg = READ_REG(sc, HARMONY_CNTL);
508 if ((reg & CNTL_C) == 0)
509 return 0;
510 DELAY(50000); /* wait 0.05 */
511 j++;
512 }
513
514 return 1;
515 }
516
517 int
518 harmony_commit_settings(void *vsc)
519 {
520 struct harmony_softc *sc;
521 uint32_t reg;
522 uint8_t quietchar;
523 int i;
524
525 sc = vsc;
526 if (sc->sc_need_commit == 0)
527 return 0;
528
529 harmony_intr_disable(sc);
530
531 for (;;) {
532 reg = READ_REG(sc, HARMONY_DSTATUS);
533 if ((reg & (DSTATUS_PC | DSTATUS_RC)) == 0)
534 break;
535 }
536
537 /* Setting some bits in gainctl requires a reset */
538 harmony_reset_codec(sc);
539
540 /* set the silence character based on the encoding type */
541 bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
542 offsetof(struct harmony_empty, playback[0][0]),
543 PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_POSTWRITE);
544 switch (sc->sc_cntlbits & CNTL_FORMAT_MASK) {
545 case CNTL_FORMAT_ULAW:
546 quietchar = 0x7f;
547 break;
548 case CNTL_FORMAT_ALAW:
549 quietchar = 0x55;
550 break;
551 case CNTL_FORMAT_SLINEAR16BE:
552 case CNTL_FORMAT_ULINEAR8:
553 default:
554 quietchar = 0;
555 break;
556 }
557 for (i = 0; i < PLAYBACK_EMPTYS; i++)
558 memset(&sc->sc_empty_kva->playback[i][0],
559 quietchar, HARMONY_BUFSIZE);
560 bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
561 offsetof(struct harmony_empty, playback[0][0]),
562 PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_PREWRITE);
563
564 harmony_control_wait(sc);
565
566 bus_space_write_4(sc->sc_bt, sc->sc_bh, HARMONY_CNTL,
567 sc->sc_cntlbits | CNTL_C);
568
569 harmony_control_wait(sc);
570
571 sc->sc_need_commit = 0;
572
573 if (sc->sc_playing || sc->sc_capturing)
574 harmony_intr_enable(sc);
575
576 return 0;
577 }
578
579 static void
580 harmony_empty_output(struct harmony_softc *sc)
581 {
582
583 WRITE_REG(sc, HARMONY_PNXTADD,
584 sc->sc_playback_paddrs[sc->sc_playback_empty]);
585 SYNC_REG(sc, HARMONY_PNXTADD, BUS_SPACE_BARRIER_WRITE);
586
587 if (++sc->sc_playback_empty == PLAYBACK_EMPTYS)
588 sc->sc_playback_empty = 0;
589 }
590
591 int
592 harmony_halt_output(void *vsc)
593 {
594 struct harmony_softc *sc;
595
596 sc = vsc;
597 sc->sc_playing = 0;
598
599 harmony_empty_output(sc);
600 return 0;
601 }
602
603 static void
604 harmony_empty_input(struct harmony_softc *sc)
605 {
606
607 WRITE_REG(sc, HARMONY_RNXTADD,
608 sc->sc_capture_paddrs[sc->sc_capture_empty]);
609 SYNC_REG(sc, HARMONY_RNXTADD, BUS_SPACE_BARRIER_WRITE);
610
611 if (++sc->sc_capture_empty == CAPTURE_EMPTYS)
612 sc->sc_capture_empty = 0;
613 }
614
615 int
616 harmony_halt_input(void *vsc)
617 {
618 struct harmony_softc *sc;
619
620 sc = vsc;
621 sc->sc_capturing = 0;
622
623 harmony_empty_input(sc);
624 return 0;
625 }
626
627 int
628 harmony_getdev(void *vsc, struct audio_device *retp)
629 {
630 struct harmony_softc *sc;
631
632 sc = vsc;
633 *retp = sc->sc_audev;
634 return 0;
635 }
636
637 int
638 harmony_set_port(void *vsc, mixer_ctrl_t *cp)
639 {
640 struct harmony_softc *sc;
641 int err;
642
643 sc = vsc;
644 err = EINVAL;
645 switch (cp->dev) {
646 case HARMONY_PORT_INPUT_LVL:
647 if (cp->type != AUDIO_MIXER_VALUE)
648 break;
649 if (cp->un.value.num_channels == 1)
650 sc->sc_input_lvl.left = sc->sc_input_lvl.right =
651 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
652 else if (cp->un.value.num_channels == 2) {
653 sc->sc_input_lvl.left =
654 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
655 sc->sc_input_lvl.right =
656 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
657 } else
658 break;
659 sc->sc_need_commit = 1;
660 err = 0;
661 break;
662 case HARMONY_PORT_OUTPUT_LVL:
663 if (cp->type != AUDIO_MIXER_VALUE)
664 break;
665 if (cp->un.value.num_channels == 1)
666 sc->sc_output_lvl.left = sc->sc_output_lvl.right =
667 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
668 else if (cp->un.value.num_channels == 2) {
669 sc->sc_output_lvl.left =
670 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
671 sc->sc_output_lvl.right =
672 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
673 } else
674 break;
675 sc->sc_need_commit = 1;
676 err = 0;
677 break;
678 case HARMONY_PORT_OUTPUT_GAIN:
679 if (cp->type != AUDIO_MIXER_ENUM)
680 break;
681 sc->sc_outputgain = cp->un.ord ? 1 : 0;
682 err = 0;
683 break;
684 case HARMONY_PORT_MONITOR_LVL:
685 if (cp->type != AUDIO_MIXER_VALUE)
686 break;
687 if (cp->un.value.num_channels != 1)
688 break;
689 sc->sc_monitor_lvl.left = sc->sc_input_lvl.right =
690 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
691 sc->sc_need_commit = 1;
692 err = 0;
693 break;
694 case HARMONY_PORT_RECORD_SOURCE:
695 if (cp->type != AUDIO_MIXER_ENUM)
696 break;
697 if (cp->un.ord != HARMONY_IN_LINE &&
698 cp->un.ord != HARMONY_IN_MIC)
699 break;
700 sc->sc_in_port = cp->un.ord;
701 err = 0;
702 sc->sc_need_commit = 1;
703 break;
704 case HARMONY_PORT_OUTPUT_SOURCE:
705 if (cp->type != AUDIO_MIXER_ENUM)
706 break;
707 if (cp->un.ord != HARMONY_OUT_LINE &&
708 cp->un.ord != HARMONY_OUT_SPEAKER &&
709 cp->un.ord != HARMONY_OUT_HEADPHONE)
710 break;
711 sc->sc_out_port = cp->un.ord;
712 err = 0;
713 sc->sc_need_commit = 1;
714 break;
715 }
716
717 return err;
718 }
719
720 int
721 harmony_get_port(void *vsc, mixer_ctrl_t *cp)
722 {
723 struct harmony_softc *sc;
724 int err;
725
726 sc = vsc;
727 err = EINVAL;
728 switch (cp->dev) {
729 case HARMONY_PORT_INPUT_LVL:
730 if (cp->type != AUDIO_MIXER_VALUE)
731 break;
732 if (cp->un.value.num_channels == 1) {
733 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
734 sc->sc_input_lvl.left;
735 } else if (cp->un.value.num_channels == 2) {
736 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
737 sc->sc_input_lvl.left;
738 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
739 sc->sc_input_lvl.right;
740 } else
741 break;
742 err = 0;
743 break;
744 case HARMONY_PORT_INPUT_OV:
745 if (cp->type != AUDIO_MIXER_ENUM)
746 break;
747 cp->un.ord = sc->sc_ov ? 1 : 0;
748 err = 0;
749 break;
750 case HARMONY_PORT_OUTPUT_LVL:
751 if (cp->type != AUDIO_MIXER_VALUE)
752 break;
753 if (cp->un.value.num_channels == 1) {
754 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
755 sc->sc_output_lvl.left;
756 } else if (cp->un.value.num_channels == 2) {
757 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
758 sc->sc_output_lvl.left;
759 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
760 sc->sc_output_lvl.right;
761 } else
762 break;
763 err = 0;
764 break;
765 case HARMONY_PORT_OUTPUT_GAIN:
766 if (cp->type != AUDIO_MIXER_ENUM)
767 break;
768 cp->un.ord = sc->sc_outputgain ? 1 : 0;
769 err = 0;
770 break;
771 case HARMONY_PORT_MONITOR_LVL:
772 if (cp->type != AUDIO_MIXER_VALUE)
773 break;
774 if (cp->un.value.num_channels != 1)
775 break;
776 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
777 sc->sc_monitor_lvl.left;
778 err = 0;
779 break;
780 case HARMONY_PORT_RECORD_SOURCE:
781 if (cp->type != AUDIO_MIXER_ENUM)
782 break;
783 cp->un.ord = sc->sc_in_port;
784 err = 0;
785 break;
786 case HARMONY_PORT_OUTPUT_SOURCE:
787 if (cp->type != AUDIO_MIXER_ENUM)
788 break;
789 cp->un.ord = sc->sc_out_port;
790 err = 0;
791 break;
792 }
793 return err;
794 }
795
796 int
797 harmony_query_devinfo(void *vsc, mixer_devinfo_t *dip)
798 {
799 int err;
800
801 err = 0;
802 switch (dip->index) {
803 case HARMONY_PORT_INPUT_LVL:
804 dip->type = AUDIO_MIXER_VALUE;
805 dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
806 dip->prev = dip->next = AUDIO_MIXER_LAST;
807 strlcpy(dip->label.name, AudioNinput, sizeof dip->label.name);
808 dip->un.v.num_channels = 2;
809 strlcpy(dip->un.v.units.name, AudioNvolume,
810 sizeof dip->un.v.units.name);
811 break;
812 case HARMONY_PORT_INPUT_OV:
813 dip->type = AUDIO_MIXER_ENUM;
814 dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
815 dip->prev = dip->next = AUDIO_MIXER_LAST;
816 strlcpy(dip->label.name, "overrange", sizeof dip->label.name);
817 dip->un.e.num_mem = 2;
818 strlcpy(dip->un.e.member[0].label.name, AudioNoff,
819 sizeof dip->un.e.member[0].label.name);
820 dip->un.e.member[0].ord = 0;
821 strlcpy(dip->un.e.member[1].label.name, AudioNon,
822 sizeof dip->un.e.member[1].label.name);
823 dip->un.e.member[1].ord = 1;
824 break;
825 case HARMONY_PORT_OUTPUT_LVL:
826 dip->type = AUDIO_MIXER_VALUE;
827 dip->mixer_class = HARMONY_PORT_OUTPUT_CLASS;
828 dip->prev = dip->next = AUDIO_MIXER_LAST;
829 strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name);
830 dip->un.v.num_channels = 2;
831 strlcpy(dip->un.v.units.name, AudioNvolume,
832 sizeof dip->un.v.units.name);
833 break;
834 case HARMONY_PORT_OUTPUT_GAIN:
835 dip->type = AUDIO_MIXER_ENUM;
836 dip->mixer_class = HARMONY_PORT_OUTPUT_CLASS;
837 dip->prev = dip->next = AUDIO_MIXER_LAST;
838 strlcpy(dip->label.name, "gain", sizeof dip->label.name);
839 dip->un.e.num_mem = 2;
840 strlcpy(dip->un.e.member[0].label.name, AudioNoff,
841 sizeof dip->un.e.member[0].label.name);
842 dip->un.e.member[0].ord = 0;
843 strlcpy(dip->un.e.member[1].label.name, AudioNon,
844 sizeof dip->un.e.member[1].label.name);
845 dip->un.e.member[1].ord = 1;
846 break;
847 case HARMONY_PORT_MONITOR_LVL:
848 dip->type = AUDIO_MIXER_VALUE;
849 dip->mixer_class = HARMONY_PORT_MONITOR_CLASS;
850 dip->prev = dip->next = AUDIO_MIXER_LAST;
851 strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name);
852 dip->un.v.num_channels = 1;
853 strlcpy(dip->un.v.units.name, AudioNvolume,
854 sizeof dip->un.v.units.name);
855 break;
856 case HARMONY_PORT_RECORD_SOURCE:
857 dip->type = AUDIO_MIXER_ENUM;
858 dip->mixer_class = HARMONY_PORT_RECORD_CLASS;
859 dip->prev = dip->next = AUDIO_MIXER_LAST;
860 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name);
861 dip->un.e.num_mem = 2;
862 strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone,
863 sizeof dip->un.e.member[0].label.name);
864 dip->un.e.member[0].ord = HARMONY_IN_MIC;
865 strlcpy(dip->un.e.member[1].label.name, AudioNline,
866 sizeof dip->un.e.member[1].label.name);
867 dip->un.e.member[1].ord = HARMONY_IN_LINE;
868 break;
869 case HARMONY_PORT_OUTPUT_SOURCE:
870 dip->type = AUDIO_MIXER_ENUM;
871 dip->mixer_class = HARMONY_PORT_MONITOR_CLASS;
872 dip->prev = dip->next = AUDIO_MIXER_LAST;
873 strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name);
874 dip->un.e.num_mem = 3;
875 strlcpy(dip->un.e.member[0].label.name, AudioNline,
876 sizeof dip->un.e.member[0].label.name);
877 dip->un.e.member[0].ord = HARMONY_OUT_LINE;
878 strlcpy(dip->un.e.member[1].label.name, AudioNspeaker,
879 sizeof dip->un.e.member[1].label.name);
880 dip->un.e.member[1].ord = HARMONY_OUT_SPEAKER;
881 strlcpy(dip->un.e.member[2].label.name, AudioNheadphone,
882 sizeof dip->un.e.member[2].label.name);
883 dip->un.e.member[2].ord = HARMONY_OUT_HEADPHONE;
884 break;
885 case HARMONY_PORT_INPUT_CLASS:
886 dip->type = AUDIO_MIXER_CLASS;
887 dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
888 dip->prev = dip->next = AUDIO_MIXER_LAST;
889 strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name);
890 break;
891 case HARMONY_PORT_OUTPUT_CLASS:
892 dip->type = AUDIO_MIXER_CLASS;
893 dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
894 dip->prev = dip->next = AUDIO_MIXER_LAST;
895 strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name);
896 break;
897 case HARMONY_PORT_MONITOR_CLASS:
898 dip->type = AUDIO_MIXER_CLASS;
899 dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
900 dip->prev = dip->next = AUDIO_MIXER_LAST;
901 strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name);
902 break;
903 case HARMONY_PORT_RECORD_CLASS:
904 dip->type = AUDIO_MIXER_CLASS;
905 dip->mixer_class = HARMONY_PORT_RECORD_CLASS;
906 dip->prev = dip->next = AUDIO_MIXER_LAST;
907 strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name);
908 break;
909 default:
910 err = ENXIO;
911 break;
912 }
913
914 return err;
915 }
916
917 void *
918 harmony_allocm(void *vsc, int dir, size_t size)
919 {
920 struct harmony_softc *sc;
921 struct harmony_dma *d;
922 int rseg;
923
924 sc = vsc;
925 d = kmem_alloc(sizeof(*d), KM_SLEEP);
926
927 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_WAITOK,
928 &d->d_map) != 0)
929 goto fail1;
930
931 if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &d->d_seg, 1,
932 &rseg, BUS_DMA_WAITOK) != 0)
933 goto fail2;
934
935 if (bus_dmamem_map(sc->sc_dmat, &d->d_seg, 1, size, &d->d_kva,
936 BUS_DMA_WAITOK) != 0)
937 goto fail3;
938
939 if (bus_dmamap_load(sc->sc_dmat, d->d_map, d->d_kva, size, NULL,
940 BUS_DMA_WAITOK) != 0)
941 goto fail4;
942
943 d->d_next = sc->sc_dmas;
944 sc->sc_dmas = d;
945 d->d_size = size;
946 return (d->d_kva);
947
948 fail4:
949 bus_dmamem_unmap(sc->sc_dmat, d->d_kva, size);
950 fail3:
951 bus_dmamem_free(sc->sc_dmat, &d->d_seg, 1);
952 fail2:
953 bus_dmamap_destroy(sc->sc_dmat, d->d_map);
954 fail1:
955 kmem_free(d, sizeof(*d));
956 return (NULL);
957 }
958
959 void
960 harmony_freem(void *vsc, void *ptr, size_t size)
961 {
962 struct harmony_softc *sc;
963 struct harmony_dma *d, **dd;
964
965 sc = vsc;
966 for (dd = &sc->sc_dmas; (d = *dd) != NULL; dd = &(*dd)->d_next) {
967 if (d->d_kva != ptr)
968 continue;
969 bus_dmamap_unload(sc->sc_dmat, d->d_map);
970 bus_dmamem_unmap(sc->sc_dmat, d->d_kva, d->d_size);
971 bus_dmamem_free(sc->sc_dmat, &d->d_seg, 1);
972 bus_dmamap_destroy(sc->sc_dmat, d->d_map);
973 kmem_free(d, sizeof(*d));
974 return;
975 }
976 printf("%s: free rogue pointer\n", device_xname(sc->sc_dv));
977 }
978
979 size_t
980 harmony_round_buffersize(void *vsc, int direction, size_t size)
981 {
982
983 return ((size + HARMONY_BUFSIZE - 1) & (size_t)(-HARMONY_BUFSIZE));
984 }
985
986 int
987 harmony_get_props(void *vsc)
988 {
989
990 return AUDIO_PROP_FULLDUPLEX;
991 }
992
993 void
994 harmony_get_locks(void *vsc, kmutex_t **intr, kmutex_t **thread)
995 {
996 struct harmony_softc *sc;
997
998 sc = vsc;
999 *intr = &sc->sc_intr_lock;
1000 *thread = &sc->sc_lock;
1001 }
1002
1003 int
1004 harmony_trigger_output(void *vsc, void *start, void *end, int blksize,
1005 void (*intr)(void *), void *intrarg, const audio_params_t *param)
1006 {
1007 struct harmony_softc *sc;
1008 struct harmony_channel *c;
1009 struct harmony_dma *d;
1010
1011 sc = vsc;
1012 c = &sc->sc_playback;
1013 for (d = sc->sc_dmas; d->d_kva != start; d = d->d_next)
1014 continue;
1015 if (d == NULL) {
1016 printf("%s: trigger_output: bad addr: %p\n",
1017 device_xname(sc->sc_dv), start);
1018 return EINVAL;
1019 }
1020
1021 mutex_spin_enter(&sc->sc_intr_lock);
1022
1023 c->c_intr = intr;
1024 c->c_intrarg = intrarg;
1025 c->c_blksz = blksize;
1026 c->c_current = d;
1027 c->c_segsz = (char *)end - (char *)start;
1028 c->c_cnt = 0;
1029 c->c_lastaddr = d->d_map->dm_segs[0].ds_addr;
1030
1031 sc->sc_playing = 1;
1032
1033 harmony_start_pp(sc, 1);
1034 harmony_start_cp(sc, 0);
1035 harmony_intr_enable(sc);
1036
1037 mutex_spin_exit(&sc->sc_intr_lock);
1038
1039 return 0;
1040 }
1041
1042 void
1043 harmony_start_cp(struct harmony_softc *sc, int start)
1044 {
1045 struct harmony_channel *c;
1046 struct harmony_dma *d;
1047 bus_addr_t nextaddr;
1048 bus_size_t togo;
1049
1050 KASSERT(mutex_owned(&sc->sc_intr_lock));
1051
1052 c = &sc->sc_capture;
1053 if (sc->sc_capturing == 0)
1054 harmony_empty_input(sc);
1055 else {
1056 d = c->c_current;
1057 togo = c->c_segsz - c->c_cnt;
1058 if (togo == 0) {
1059 nextaddr = d->d_map->dm_segs[0].ds_addr;
1060 c->c_cnt = togo = c->c_blksz;
1061 } else {
1062 nextaddr = c->c_lastaddr;
1063 if (togo > c->c_blksz)
1064 togo = c->c_blksz;
1065 c->c_cnt += togo;
1066 }
1067
1068 bus_dmamap_sync(sc->sc_dmat, d->d_map,
1069 nextaddr - d->d_map->dm_segs[0].ds_addr,
1070 c->c_blksz, BUS_DMASYNC_PREWRITE);
1071
1072 WRITE_REG(sc, HARMONY_RNXTADD, nextaddr);
1073 if (start)
1074 c->c_theaddr = nextaddr;
1075 SYNC_REG(sc, HARMONY_RNXTADD, BUS_SPACE_BARRIER_WRITE);
1076 c->c_lastaddr = nextaddr + togo;
1077
1078 harmony_try_more(sc, HARMONY_RCURADD,
1079 RCURADD_BUFMASK, &sc->sc_capture);
1080 }
1081
1082 callout_schedule(&sc->sc_acc_tmo, 1);
1083 }
1084
1085 void
1086 harmony_start_pp(struct harmony_softc *sc, int start)
1087 {
1088 struct harmony_channel *c;
1089 struct harmony_dma *d;
1090 bus_addr_t nextaddr;
1091 bus_size_t togo;
1092
1093 KASSERT(mutex_owned(&sc->sc_intr_lock));
1094
1095 c = &sc->sc_playback;
1096 if (sc->sc_playing == 0)
1097 harmony_empty_output(sc);
1098 else {
1099 d = c->c_current;
1100 togo = c->c_segsz - c->c_cnt;
1101 if (togo == 0) {
1102 nextaddr = d->d_map->dm_segs[0].ds_addr;
1103 c->c_cnt = togo = c->c_blksz;
1104 } else {
1105 nextaddr = c->c_lastaddr;
1106 if (togo > c->c_blksz)
1107 togo = c->c_blksz;
1108 c->c_cnt += togo;
1109 }
1110
1111 bus_dmamap_sync(sc->sc_dmat, d->d_map,
1112 nextaddr - d->d_map->dm_segs[0].ds_addr,
1113 c->c_blksz, BUS_DMASYNC_PREWRITE);
1114
1115 WRITE_REG(sc, HARMONY_PNXTADD, nextaddr);
1116 if (start)
1117 c->c_theaddr = nextaddr;
1118 SYNC_REG(sc, HARMONY_PNXTADD, BUS_SPACE_BARRIER_WRITE);
1119 c->c_lastaddr = nextaddr + togo;
1120
1121 harmony_try_more(sc, HARMONY_PCURADD,
1122 PCURADD_BUFMASK, &sc->sc_playback);
1123 }
1124 }
1125
1126 int
1127 harmony_trigger_input(void *vsc, void *start, void *end, int blksize,
1128 void (*intr)(void *), void *intrarg, const audio_params_t *param)
1129 {
1130 struct harmony_softc *sc = vsc;
1131 struct harmony_channel *c = &sc->sc_capture;
1132 struct harmony_dma *d;
1133
1134 KASSERT(mutex_owned(&sc->sc_intr_lock));
1135
1136 for (d = sc->sc_dmas; d->d_kva != start; d = d->d_next)
1137 continue;
1138 if (d == NULL) {
1139 printf("%s: trigger_input: bad addr: %p\n",
1140 device_xname(sc->sc_dv), start);
1141 return EINVAL;
1142 }
1143
1144 c->c_intr = intr;
1145 c->c_intrarg = intrarg;
1146 c->c_blksz = blksize;
1147 c->c_current = d;
1148 c->c_segsz = (char *)end - (char *)start;
1149 c->c_cnt = 0;
1150 c->c_lastaddr = d->d_map->dm_segs[0].ds_addr;
1151
1152 sc->sc_capturing = 1;
1153
1154 harmony_start_cp(sc, 1);
1155 harmony_intr_enable(sc);
1156
1157 return 0;
1158 }
1159
1160 static const struct speed_struct {
1161 uint32_t speed;
1162 uint32_t bits;
1163 } harmony_speeds[] = {
1164 { 5125, CNTL_RATE_5125 },
1165 { 6615, CNTL_RATE_6615 },
1166 { 8000, CNTL_RATE_8000 },
1167 { 9600, CNTL_RATE_9600 },
1168 { 11025, CNTL_RATE_11025 },
1169 { 16000, CNTL_RATE_16000 },
1170 { 18900, CNTL_RATE_18900 },
1171 { 22050, CNTL_RATE_22050 },
1172 { 27428, CNTL_RATE_27428 },
1173 { 32000, CNTL_RATE_32000 },
1174 { 33075, CNTL_RATE_33075 },
1175 { 37800, CNTL_RATE_37800 },
1176 { 44100, CNTL_RATE_44100 },
1177 { 48000, CNTL_RATE_48000 },
1178 };
1179
1180 uint32_t
1181 harmony_speed_bits(struct harmony_softc *sc, u_int *speedp)
1182 {
1183 int i, n, selected;
1184
1185 selected = -1;
1186 n = sizeof(harmony_speeds) / sizeof(harmony_speeds[0]);
1187
1188 if ((*speedp) <= harmony_speeds[0].speed)
1189 selected = 0;
1190 else if ((*speedp) >= harmony_speeds[n - 1].speed)
1191 selected = n - 1;
1192 else {
1193 for (i = 1; selected == -1 && i < n; i++) {
1194 if ((*speedp) == harmony_speeds[i].speed)
1195 selected = i;
1196 else if ((*speedp) < harmony_speeds[i].speed) {
1197 int diff1, diff2;
1198
1199 diff1 = (*speedp) - harmony_speeds[i - 1].speed;
1200 diff2 = harmony_speeds[i].speed - (*speedp);
1201 if (diff1 < diff2)
1202 selected = i - 1;
1203 else
1204 selected = i;
1205 }
1206 }
1207 }
1208
1209 if (selected == -1)
1210 selected = 2;
1211
1212 *speedp = harmony_speeds[selected].speed;
1213 return harmony_speeds[selected].bits;
1214 }
1215
1216 int
1217 harmony_set_gainctl(struct harmony_softc *sc)
1218 {
1219 uint32_t bits, mask, val, old;
1220
1221 /* XXX leave these bits alone or the chip will not come out of CNTL */
1222 bits = GAINCTL_LE | GAINCTL_HE | GAINCTL_SE | GAINCTL_IS_MASK;
1223
1224 /* input level */
1225 bits |= ((sc->sc_input_lvl.left >> (8 - GAINCTL_INPUT_BITS)) <<
1226 GAINCTL_INPUT_LEFT_S) & GAINCTL_INPUT_LEFT_M;
1227 bits |= ((sc->sc_input_lvl.right >> (8 - GAINCTL_INPUT_BITS)) <<
1228 GAINCTL_INPUT_RIGHT_S) & GAINCTL_INPUT_RIGHT_M;
1229
1230 /* output level (inverted) */
1231 mask = (1 << GAINCTL_OUTPUT_BITS) - 1;
1232 val = mask - (sc->sc_output_lvl.left >> (8 - GAINCTL_OUTPUT_BITS));
1233 bits |= (val << GAINCTL_OUTPUT_LEFT_S) & GAINCTL_OUTPUT_LEFT_M;
1234 val = mask - (sc->sc_output_lvl.right >> (8 - GAINCTL_OUTPUT_BITS));
1235 bits |= (val << GAINCTL_OUTPUT_RIGHT_S) & GAINCTL_OUTPUT_RIGHT_M;
1236
1237 /* monitor level (inverted) */
1238 mask = (1 << GAINCTL_MONITOR_BITS) - 1;
1239 val = mask - (sc->sc_monitor_lvl.left >> (8 - GAINCTL_MONITOR_BITS));
1240 bits |= (val << GAINCTL_MONITOR_S) & GAINCTL_MONITOR_M;
1241
1242 /* XXX messing with these causes CNTL_C to get stuck... grr. */
1243 bits &= ~GAINCTL_IS_MASK;
1244 if (sc->sc_in_port == HARMONY_IN_MIC)
1245 bits |= GAINCTL_IS_LINE;
1246 else
1247 bits |= GAINCTL_IS_MICROPHONE;
1248
1249 /* XXX messing with these causes CNTL_C to get stuck... grr. */
1250 bits &= ~(GAINCTL_LE | GAINCTL_HE | GAINCTL_SE);
1251 if (sc->sc_out_port == HARMONY_OUT_LINE)
1252 bits |= GAINCTL_LE;
1253 else if (sc->sc_out_port == HARMONY_OUT_SPEAKER)
1254 bits |= GAINCTL_SE;
1255 else
1256 bits |= GAINCTL_HE;
1257
1258 mask = GAINCTL_LE | GAINCTL_HE | GAINCTL_SE | GAINCTL_IS_MASK;
1259 old = bus_space_read_4(sc->sc_bt, sc->sc_bh, HARMONY_GAINCTL);
1260 bus_space_write_4(sc->sc_bt, sc->sc_bh, HARMONY_GAINCTL, bits);
1261 if ((old & mask) != (bits & mask))
1262 return 1;
1263 return 0;
1264 }
1265
1266 void
1267 harmony_try_more(struct harmony_softc *sc, int curadd, int bufmask,
1268 struct harmony_channel *c)
1269 {
1270 struct harmony_dma *d;
1271 uint32_t cur;
1272 int i, nsegs;
1273
1274 d = c->c_current;
1275 cur = bus_space_read_4(sc->sc_bt, sc->sc_bh, curadd);
1276 cur &= bufmask;
1277 nsegs = 0;
1278
1279 #ifdef DIAGNOSTIC
1280 if (cur < d->d_map->dm_segs[0].ds_addr ||
1281 cur >= (d->d_map->dm_segs[0].ds_addr + c->c_segsz))
1282 panic("%s: bad current %x < %lx || %x > %lx",
1283 device_xname(sc->sc_dv), cur,
1284 d->d_map->dm_segs[0].ds_addr, cur,
1285 d->d_map->dm_segs[0].ds_addr + c->c_segsz);
1286 #endif /* DIAGNOSTIC */
1287
1288 if (cur > c->c_theaddr) {
1289 nsegs = (cur - c->c_theaddr) / HARMONY_BUFSIZE;
1290 } else if (cur < c->c_theaddr) {
1291 nsegs = (d->d_map->dm_segs[0].ds_addr + c->c_segsz -
1292 c->c_theaddr) / HARMONY_BUFSIZE;
1293 nsegs += (cur - d->d_map->dm_segs[0].ds_addr) /
1294 HARMONY_BUFSIZE;
1295 }
1296
1297 if (nsegs != 0 && c->c_intr != NULL) {
1298 for (i = 0; i < nsegs; i++)
1299 (*c->c_intr)(c->c_intrarg);
1300 c->c_theaddr = cur;
1301 }
1302 }
1303