Home | History | Annotate | Line # | Download | only in hppa
      1  1.27     skrll /*	$NetBSD: fpu.c,v 1.27 2020/04/16 05:44:43 skrll Exp $	*/
      2   1.1  fredette 
      3   1.1  fredette /*
      4   1.1  fredette  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5   1.1  fredette  * All rights reserved.
      6   1.1  fredette  *
      7   1.1  fredette  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1  fredette  * by Matthew Fredette.
      9   1.1  fredette  *
     10   1.1  fredette  * Redistribution and use in source and binary forms, with or without
     11   1.1  fredette  * modification, are permitted provided that the following conditions
     12   1.1  fredette  * are met:
     13   1.1  fredette  * 1. Redistributions of source code must retain the above copyright
     14   1.1  fredette  *    notice, this list of conditions and the following disclaimer.
     15   1.1  fredette  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  fredette  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  fredette  *    documentation and/or other materials provided with the distribution.
     18   1.1  fredette  *
     19   1.1  fredette  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1  fredette  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1  fredette  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1  fredette  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1  fredette  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1  fredette  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1  fredette  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  fredette  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1  fredette  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1  fredette  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1  fredette  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1  fredette  */
     31   1.1  fredette 
     32   1.1  fredette /*
     33   1.1  fredette  * FPU handling for NetBSD/hppa.
     34   1.1  fredette  */
     35   1.1  fredette 
     36   1.1  fredette #include <sys/cdefs.h>
     37  1.27     skrll __KERNEL_RCSID(0, "$NetBSD: fpu.c,v 1.27 2020/04/16 05:44:43 skrll Exp $");
     38   1.1  fredette 
     39  1.16     skrll #include <sys/param.h>
     40   1.1  fredette #include <sys/systm.h>
     41   1.1  fredette #include <sys/proc.h>
     42   1.1  fredette #include <sys/signalvar.h>
     43   1.1  fredette 
     44  1.17     skrll #include <uvm/uvm_extern.h>
     45  1.17     skrll 
     46   1.1  fredette #include <machine/cpufunc.h>
     47   1.1  fredette #include <machine/frame.h>
     48   1.1  fredette #include <machine/reg.h>
     49  1.22     rmind #include <machine/pcb.h>
     50  1.17     skrll #include <machine/pmap.h>
     51   1.1  fredette 
     52   1.1  fredette #include <hppa/hppa/machdep.h>
     53   1.1  fredette 
     54   1.1  fredette #include "../spmath/float.h"
     55   1.1  fredette #include "../spmath/fpudispatch.h"
     56   1.1  fredette 
     57   1.1  fredette /* Some macros representing opcodes. */
     58   1.1  fredette #define OPCODE_NOP	0x08000240
     59   1.1  fredette #define OPCODE_COPR_0_0	0x30000000
     60   1.1  fredette 
     61   1.1  fredette /* Some macros representing fields in load/store opcodes. */
     62   1.1  fredette #define	OPCODE_CMPLT_S	0x00002000
     63   1.1  fredette #define	OPCODE_CMPLT_M	0x00000020
     64   1.1  fredette #define	OPCODE_CMPLT_SM	(OPCODE_CMPLT_S | OPCODE_CMPLT_M)
     65   1.1  fredette #define	OPCODE_CMPLT_MB	OPCODE_CMPLT_M
     66   1.1  fredette #define	OPCODE_CMPLT_MA	(OPCODE_CMPLT_S | OPCODE_CMPLT_M)
     67   1.1  fredette #define	OPCODE_CMPLT	(OPCODE_CMPLT_S | OPCODE_CMPLT_M)
     68   1.1  fredette #define	OPCODE_DOUBLE	0x08000000
     69   1.1  fredette #define	OPCODE_STORE	0x00000200
     70   1.1  fredette #define OPCODE_INDEXED	0x00001000
     71   1.1  fredette 
     72   1.1  fredette /* This is nonzero iff we're using a hardware FPU. */
     73   1.1  fredette int fpu_present;
     74   1.1  fredette 
     75   1.1  fredette /* If we have any FPU, this is its version. */
     76   1.1  fredette u_int fpu_version;
     77   1.1  fredette 
     78   1.1  fredette /* The number of times we have had to switch the FPU context. */
     79   1.1  fredette u_int fpu_csw;
     80   1.1  fredette 
     81   1.1  fredette /* In locore.S, this swaps states in and out of the FPU. */
     82  1.20     skrll void hppa_fpu_swapout(struct pcb *);
     83  1.20     skrll void hppa_fpu_swap(struct fpreg *, struct fpreg *);
     84   1.1  fredette 
     85  1.24     skrll static int hppa_fpu_ls(struct trapframe *, struct lwp *);
     86  1.24     skrll 
     87   1.1  fredette /*
     88  1.26     skrll  * Given a trapframe and a general register number, the
     89   1.1  fredette  * FRAME_REG macro returns a pointer to that general
     90  1.26     skrll  * register.  The _frame_reg_positions array is a lookup
     91  1.26     skrll  * table, since the general registers aren't in order
     92   1.1  fredette  * in a trapframe.
     93  1.26     skrll  *
     94  1.26     skrll  * NB: this more or less assumes that all members of
     95   1.1  fredette  * struct trapframe are u_ints.
     96   1.1  fredette  */
     97   1.1  fredette #define FRAME_REG(f, reg, r0)	\
     98   1.1  fredette 	((reg) == 0 ? (&r0) : ((&(f)->tf_t1) + _frame_reg_positions[reg]))
     99   1.1  fredette #define _FRAME_POSITION(f)	\
    100   1.1  fredette 	((&((struct trapframe *) 0)->f) - (&((struct trapframe *) 0)->tf_t1))
    101   1.1  fredette const int _frame_reg_positions[32] = {
    102   1.1  fredette 	-1,				/* r0 */
    103   1.1  fredette 	_FRAME_POSITION(tf_r1),
    104   1.1  fredette 	_FRAME_POSITION(tf_rp),		/* r2 */
    105   1.1  fredette 	_FRAME_POSITION(tf_r3),
    106   1.1  fredette 	_FRAME_POSITION(tf_r4),
    107   1.1  fredette 	_FRAME_POSITION(tf_r5),
    108   1.1  fredette 	_FRAME_POSITION(tf_r6),
    109   1.1  fredette 	_FRAME_POSITION(tf_r7),
    110   1.1  fredette 	_FRAME_POSITION(tf_r8),
    111   1.1  fredette 	_FRAME_POSITION(tf_r9),
    112   1.1  fredette 	_FRAME_POSITION(tf_r10),
    113   1.1  fredette 	_FRAME_POSITION(tf_r11),
    114   1.1  fredette 	_FRAME_POSITION(tf_r12),
    115   1.1  fredette 	_FRAME_POSITION(tf_r13),
    116   1.1  fredette 	_FRAME_POSITION(tf_r14),
    117   1.1  fredette 	_FRAME_POSITION(tf_r15),
    118   1.1  fredette 	_FRAME_POSITION(tf_r16),
    119   1.1  fredette 	_FRAME_POSITION(tf_r17),
    120   1.1  fredette 	_FRAME_POSITION(tf_r18),
    121   1.1  fredette 	_FRAME_POSITION(tf_t4),		/* r19 */
    122   1.1  fredette 	_FRAME_POSITION(tf_t3),		/* r20 */
    123   1.1  fredette 	_FRAME_POSITION(tf_t2),		/* r21 */
    124   1.1  fredette 	_FRAME_POSITION(tf_t1),		/* r22 */
    125   1.1  fredette 	_FRAME_POSITION(tf_arg3),	/* r23 */
    126   1.1  fredette 	_FRAME_POSITION(tf_arg2),	/* r24 */
    127   1.1  fredette 	_FRAME_POSITION(tf_arg1),	/* r25 */
    128   1.1  fredette 	_FRAME_POSITION(tf_arg0),	/* r26 */
    129   1.1  fredette 	_FRAME_POSITION(tf_dp),		/* r27 */
    130   1.1  fredette 	_FRAME_POSITION(tf_ret0),	/* r28 */
    131   1.1  fredette 	_FRAME_POSITION(tf_ret1),	/* r29 */
    132   1.1  fredette 	_FRAME_POSITION(tf_sp),		/* r30 */
    133   1.1  fredette 	_FRAME_POSITION(tf_r31),
    134   1.1  fredette };
    135   1.1  fredette 
    136   1.1  fredette /*
    137   1.1  fredette  * Bootstraps the FPU.
    138   1.1  fredette  */
    139   1.1  fredette void
    140   1.1  fredette hppa_fpu_bootstrap(u_int ccr_enable)
    141   1.1  fredette {
    142  1.18     skrll 	uint32_t junk[2];
    143  1.18     skrll 	uint32_t vers[2];
    144   1.1  fredette 
    145   1.1  fredette 	/* See if we have a present and functioning hardware FPU. */
    146   1.1  fredette 	fpu_present = (ccr_enable & HPPA_FPUS) == HPPA_FPUS;
    147  1.25     skrll 	if (!fpu_present) {
    148  1.25     skrll 		fpu_csw = 0;
    149  1.25     skrll 		curcpu()->ci_fpu_state = 0;
    150  1.25     skrll 
    151  1.25     skrll 		return;
    152  1.25     skrll 	}
    153   1.1  fredette 
    154  1.24     skrll 	KASSERT(fpu_present);
    155   1.1  fredette 	/* Initialize the FPU and get its version. */
    156   1.1  fredette 
    157  1.24     skrll 	/*
    158  1.24     skrll 	 * We track what process has the FPU,
    159  1.24     skrll 	 * and how many times we have to swap
    160  1.24     skrll 	 * in and out.
    161  1.24     skrll 	 */
    162  1.24     skrll 
    163  1.24     skrll 	/*
    164  1.26     skrll 	 * The PA-RISC 1.1 Architecture manual is
    165  1.26     skrll 	 * pretty clear that the copr,0,0 must be
    166  1.26     skrll 	 * wrapped in double word stores of fr0,
    167  1.24     skrll 	 * otherwise its operation is undefined.
    168  1.24     skrll 	 */
    169  1.24     skrll 	__asm volatile(
    170  1.24     skrll 		"	ldo	%0, %%r22	\n"
    171  1.24     skrll 		"	fstds	%%fr0, 0(%%r22)	\n"
    172  1.24     skrll 		"	ldo	%1, %%r22	\n"
    173  1.24     skrll 		"	copr,0,0		\n"
    174  1.24     skrll 		"	fstds	%%fr0, 0(%%r22)	\n"
    175  1.24     skrll 		: "=m" (junk), "=m" (vers) : : "r22");
    176  1.24     skrll 
    177  1.24     skrll 	/*
    178  1.24     skrll 	 * Now mark that no process has the FPU,
    179  1.24     skrll 	 * and disable it, so the first time it
    180  1.24     skrll 	 * gets used the process' state gets
    181  1.24     skrll 	 * swapped in.
    182  1.24     skrll 	 */
    183  1.24     skrll 	fpu_csw = 0;
    184  1.24     skrll 	curcpu()->ci_fpu_state = 0;
    185  1.26     skrll 	mtctl(ccr_enable & (CCR_MASK ^ HPPA_FPUS), CR_CCR);
    186  1.24     skrll 
    187  1.10       chs 	fpu_version = vers[0];
    188   1.1  fredette }
    189   1.1  fredette 
    190   1.1  fredette /*
    191   1.2       chs  * If the given LWP has its state in the FPU,
    192   1.2       chs  * flush that state out into the LWP's PCB.
    193   1.1  fredette  */
    194   1.1  fredette void
    195   1.2       chs hppa_fpu_flush(struct lwp *l)
    196   1.1  fredette {
    197   1.2       chs 	struct trapframe *tf = l->l_md.md_regs;
    198  1.19     rmind 	struct pcb *pcb = lwp_getpcb(l);
    199  1.23     skrll 	struct cpu_info *ci = curcpu();
    200  1.23     skrll 
    201  1.27     skrll 	if (!fpu_present)
    202  1.27     skrll 		return;
    203   1.1  fredette 
    204   1.1  fredette 	/*
    205  1.24     skrll 	 * If this process' state is currently in hardware, swap it out.
    206   1.2       chs 	 */
    207  1.26     skrll 
    208  1.23     skrll 	if (ci->ci_fpu_state == 0 ||
    209  1.23     skrll 	    ci->ci_fpu_state != tf->tf_cr30) {
    210   1.6       chs 		return;
    211   1.6       chs 	}
    212   1.6       chs 
    213  1.20     skrll 	hppa_fpu_swapout(pcb);
    214  1.23     skrll 	ci->ci_fpu_state = 0;
    215   1.1  fredette }
    216   1.1  fredette 
    217   1.1  fredette /*
    218   1.1  fredette  * This emulates a coprocessor load/store instruction.
    219   1.1  fredette  */
    220  1.26     skrll static int
    221   1.2       chs hppa_fpu_ls(struct trapframe *frame, struct lwp *l)
    222   1.1  fredette {
    223  1.19     rmind 	struct pcb *pcb = lwp_getpcb(l);
    224   1.1  fredette 	u_int inst, inst_b, inst_x, inst_s, inst_t;
    225   1.1  fredette 	int log2size;
    226   1.1  fredette 	u_int *base;
    227   1.1  fredette 	u_int offset, index, im5;
    228   1.1  fredette 	void *fpreg;
    229   1.1  fredette 	u_int r0 = 0;
    230   1.6       chs 	int error;
    231   1.6       chs 
    232   1.1  fredette 	/*
    233   1.1  fredette 	 * Get the instruction that we're emulating,
    234   1.1  fredette 	 * and break it down.  Using HP bit notation,
    235  1.26     skrll 	 * b is a five-bit field starting at bit 10,
    236   1.1  fredette 	 * x is a five-bit field starting at bit 15,
    237  1.26     skrll 	 * s is a two-bit field starting at bit 17,
    238   1.7       chs 	 * and t is a five-bit field starting at bit 31.
    239   1.1  fredette 	 */
    240   1.1  fredette 	inst = frame->tf_iir;
    241  1.12     perry 	__asm volatile(
    242   1.1  fredette 		"	extru %4, 10, 5, %1	\n"
    243   1.1  fredette 		"	extru %4, 15, 5, %2	\n"
    244   1.1  fredette 		"	extru %4, 17, 2, %3	\n"
    245   1.1  fredette 		"	extru %4, 31, 5, %4	\n"
    246   1.1  fredette 		: "=r" (inst_b), "=r" (inst_x), "=r" (inst_s), "=r" (inst_t)
    247   1.1  fredette 		: "r" (inst));
    248   1.1  fredette 
    249   1.1  fredette 	/*
    250   1.1  fredette 	 * The space must be the user's space, else we
    251   1.1  fredette 	 * segfault.
    252   1.1  fredette 	 */
    253  1.19     rmind 	if (inst_s != pcb->pcb_space)
    254  1.21     skrll 		return EFAULT;
    255   1.1  fredette 
    256   1.1  fredette 	/* See whether or not this is a doubleword load/store. */
    257   1.1  fredette 	log2size = (inst & OPCODE_DOUBLE) ? 3 : 2;
    258   1.1  fredette 
    259   1.1  fredette 	/* Get the floating point register. */
    260  1.19     rmind 	fpreg = ((char *)pcb->pcb_fpregs) + (inst_t << log2size);
    261   1.1  fredette 
    262   1.1  fredette 	/* Get the base register. */
    263   1.1  fredette 	base = FRAME_REG(frame, inst_b, r0);
    264  1.26     skrll 
    265   1.1  fredette 	/* Dispatch on whether or not this is an indexed load/store. */
    266   1.1  fredette 	if (inst & OPCODE_INDEXED) {
    267  1.26     skrll 
    268   1.1  fredette 		/* Get the index register value. */
    269   1.1  fredette 		index = *FRAME_REG(frame, inst_x, r0);
    270  1.26     skrll 
    271   1.1  fredette 		/* Dispatch on the completer. */
    272   1.1  fredette 		switch (inst & OPCODE_CMPLT) {
    273   1.1  fredette 		case OPCODE_CMPLT_S:
    274   1.1  fredette 			offset = *base + (index << log2size);
    275   1.1  fredette 			break;
    276   1.1  fredette 		case OPCODE_CMPLT_M:
    277   1.1  fredette 			offset = *base;
    278   1.1  fredette 			*base = *base + index;
    279   1.1  fredette 			break;
    280   1.1  fredette 		case OPCODE_CMPLT_SM:
    281   1.1  fredette 			offset = *base;
    282   1.1  fredette 			*base = *base + (index << log2size);
    283   1.1  fredette 			break;
    284   1.1  fredette 		default:
    285   1.1  fredette 			offset = *base + index;
    286   1.1  fredette 			break;
    287   1.1  fredette 		}
    288   1.1  fredette 	} else {
    289   1.1  fredette 
    290   1.1  fredette 		/* Do a low_sign_ext(x, 5). */
    291   1.1  fredette 		im5 = inst_x >> 1;
    292   1.1  fredette 		if (inst_x & 1)
    293   1.1  fredette 			im5 |= 0xfffffff0;
    294   1.1  fredette 
    295   1.1  fredette 		/* Dispatch on the completer. */
    296   1.1  fredette 		switch (inst & OPCODE_CMPLT) {
    297   1.1  fredette 		case OPCODE_CMPLT_MB:
    298   1.1  fredette 			offset = *base + im5;
    299   1.1  fredette 			*base = *base + im5;
    300   1.1  fredette 			break;
    301   1.1  fredette 		case OPCODE_CMPLT_MA:
    302   1.1  fredette 			offset = *base;
    303   1.1  fredette 			*base = *base + im5;
    304   1.1  fredette 			break;
    305   1.1  fredette 		default:
    306   1.1  fredette 			offset = *base + im5;
    307   1.1  fredette 			break;
    308   1.1  fredette 		}
    309   1.1  fredette 	}
    310   1.1  fredette 
    311   1.1  fredette 	/*
    312   1.1  fredette 	 * The offset we calculated must be the same as the
    313   1.1  fredette 	 * offset in the IOR.
    314   1.1  fredette 	 */
    315   1.1  fredette 	KASSERT(offset == frame->tf_ior);
    316   1.1  fredette 
    317   1.1  fredette 	/* Perform the load or store. */
    318   1.6       chs 	error = (inst & OPCODE_STORE) ?
    319   1.1  fredette 		copyout(fpreg, (void *) offset, 1 << log2size) :
    320   1.1  fredette 		copyin((const void *) offset, fpreg, 1 << log2size);
    321   1.6       chs 	return error;
    322   1.1  fredette }
    323   1.1  fredette 
    324   1.1  fredette /*
    325   1.1  fredette  * This is called to emulate an instruction.
    326   1.1  fredette  */
    327  1.26     skrll void
    328   1.7       chs hppa_fpu_emulate(struct trapframe *frame, struct lwp *l, u_int inst)
    329   1.1  fredette {
    330  1.19     rmind 	struct pcb *pcb = lwp_getpcb(l);
    331   1.7       chs 	u_int opcode, class, sub;
    332   1.1  fredette 	u_int *fpregs;
    333   1.1  fredette 	int exception;
    334   1.8       chs 	ksiginfo_t ksi;
    335   1.1  fredette 
    336   1.1  fredette 	/*
    337  1.26     skrll 	 * If the process' state is in any hardware FPU,
    338   1.1  fredette 	 * flush it out - we need to operate on it.
    339   1.1  fredette 	 */
    340   1.2       chs 	hppa_fpu_flush(l);
    341   1.1  fredette 
    342   1.1  fredette 	/*
    343   1.1  fredette 	 * Get the instruction that we're emulating,
    344   1.1  fredette 	 * and break it down.  Using HP bit notation,
    345   1.1  fredette 	 * the class is a two-bit field starting at
    346   1.1  fredette 	 * bit 22, the opcode is a 6-bit field starting
    347   1.1  fredette 	 * at bit 5, and sub for a class 1 instruction
    348   1.1  fredette 	 * is a two bit field starting at bit 16, else
    349   1.1  fredette 	 * it is a three bit field starting at bit 18.
    350   1.1  fredette 	 */
    351   1.7       chs #if 0
    352  1.12     perry 	__asm volatile(
    353   1.1  fredette 		"	extru %3, 22, 2, %1	\n"
    354   1.1  fredette 		"	extru %3, 5, 6, %0	\n"
    355   1.1  fredette 		"	extru %3, 18, 3, %2	\n"
    356   1.1  fredette 		"	comib,<> 1, %1, 0	\n"
    357   1.1  fredette 		"	extru %3, 16, 2, %2	\n"
    358   1.1  fredette 		: "=r" (opcode), "=r" (class), "=r" (sub)
    359   1.1  fredette 		: "r" (inst));
    360   1.7       chs #else
    361   1.7       chs 	opcode = (inst >> (31 - 5)) & 0x3f;
    362   1.7       chs 	class = (inst >> (31 - 22)) & 0x3;
    363   1.7       chs 	if (class == 1) {
    364   1.7       chs 		sub = (inst >> (31 - 16)) & 3;
    365   1.7       chs 	} else {
    366   1.7       chs 		sub = (inst >> (31 - 18)) & 7;
    367   1.7       chs 	}
    368   1.7       chs #endif
    369   1.1  fredette 
    370   1.2       chs 	/* Get this LWP's FPU registers. */
    371  1.19     rmind 	fpregs = (u_int *)pcb->pcb_fpregs;
    372   1.1  fredette 
    373   1.1  fredette 	/* Dispatch on the opcode. */
    374   1.1  fredette 	switch (opcode) {
    375   1.1  fredette 	case 0x09:
    376   1.1  fredette 	case 0x0b:
    377   1.8       chs 		if (hppa_fpu_ls(frame, l) != 0) {
    378   1.8       chs 			KSI_INIT_TRAP(&ksi);
    379   1.8       chs 			ksi.ksi_signo = SIGSEGV;
    380   1.8       chs 			ksi.ksi_code = SEGV_MAPERR;
    381   1.8       chs 			ksi.ksi_trap = T_DTLBMISS;
    382   1.8       chs 			ksi.ksi_addr = (void *)frame->tf_iioq_head;
    383   1.8       chs 			trapsignal(l, &ksi);
    384   1.8       chs 		}
    385   1.1  fredette 		return;
    386   1.1  fredette 	case 0x0c:
    387   1.1  fredette 		exception = decode_0c(inst, class, sub, fpregs);
    388   1.1  fredette 		break;
    389   1.1  fredette 	case 0x0e:
    390   1.1  fredette 		exception = decode_0e(inst, class, sub, fpregs);
    391   1.1  fredette 		break;
    392   1.1  fredette 	case 0x06:
    393   1.1  fredette 		exception = decode_06(inst, fpregs);
    394   1.1  fredette 		break;
    395  1.26     skrll 	case 0x26:
    396   1.1  fredette 		exception = decode_26(inst, fpregs);
    397   1.1  fredette 		break;
    398  1.26     skrll 	default:
    399   1.1  fredette 		exception = UNIMPLEMENTEDEXCEPTION;
    400   1.1  fredette 		break;
    401   1.1  fredette         }
    402   1.1  fredette 
    403   1.8       chs 	if (exception) {
    404   1.8       chs 		KSI_INIT_TRAP(&ksi);
    405   1.8       chs 		if (exception & UNIMPLEMENTEDEXCEPTION) {
    406   1.8       chs 			ksi.ksi_signo = SIGILL;
    407   1.8       chs 			ksi.ksi_code = ILL_COPROC;
    408   1.8       chs 		} else {
    409   1.8       chs 			ksi.ksi_signo = SIGFPE;
    410   1.8       chs 			if (exception & INVALIDEXCEPTION) {
    411   1.8       chs 				ksi.ksi_code = FPE_FLTINV;
    412   1.8       chs 			} else if (exception & DIVISIONBYZEROEXCEPTION) {
    413   1.8       chs 				ksi.ksi_code = FPE_FLTDIV;
    414   1.8       chs 			} else if (exception & OVERFLOWEXCEPTION) {
    415   1.8       chs 				ksi.ksi_code = FPE_FLTOVF;
    416   1.8       chs 			} else if (exception & UNDERFLOWEXCEPTION) {
    417   1.8       chs 				ksi.ksi_code = FPE_FLTUND;
    418   1.8       chs 			} else if (exception & INEXACTEXCEPTION) {
    419   1.8       chs 				ksi.ksi_code = FPE_FLTRES;
    420   1.8       chs 			}
    421   1.8       chs 		}
    422   1.8       chs 		ksi.ksi_trap = T_EMULATION;
    423   1.8       chs 		ksi.ksi_addr = (void *)frame->tf_iioq_head;
    424   1.8       chs 		trapsignal(l, &ksi);
    425   1.8       chs 	}
    426   1.1  fredette }
    427