fpu.c revision 1.22 1 1.22 rmind /* $NetBSD: fpu.c,v 1.22 2011/01/14 02:06:26 rmind Exp $ */
2 1.1 fredette
3 1.1 fredette /*
4 1.1 fredette * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 1.1 fredette * All rights reserved.
6 1.1 fredette *
7 1.1 fredette * This code is derived from software contributed to The NetBSD Foundation
8 1.1 fredette * by Matthew Fredette.
9 1.1 fredette *
10 1.1 fredette * Redistribution and use in source and binary forms, with or without
11 1.1 fredette * modification, are permitted provided that the following conditions
12 1.1 fredette * are met:
13 1.1 fredette * 1. Redistributions of source code must retain the above copyright
14 1.1 fredette * notice, this list of conditions and the following disclaimer.
15 1.1 fredette * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 fredette * notice, this list of conditions and the following disclaimer in the
17 1.1 fredette * documentation and/or other materials provided with the distribution.
18 1.1 fredette *
19 1.1 fredette * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 fredette * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 fredette * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 fredette * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 fredette * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 fredette * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 fredette * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 fredette * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 fredette * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 fredette * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 fredette * POSSIBILITY OF SUCH DAMAGE.
30 1.1 fredette */
31 1.1 fredette
32 1.1 fredette /*
33 1.1 fredette * FPU handling for NetBSD/hppa.
34 1.1 fredette */
35 1.1 fredette
36 1.1 fredette #include <sys/cdefs.h>
37 1.22 rmind __KERNEL_RCSID(0, "$NetBSD: fpu.c,v 1.22 2011/01/14 02:06:26 rmind Exp $");
38 1.1 fredette
39 1.16 skrll #include <sys/param.h>
40 1.1 fredette #include <sys/systm.h>
41 1.1 fredette #include <sys/proc.h>
42 1.1 fredette #include <sys/signalvar.h>
43 1.1 fredette
44 1.17 skrll #include <uvm/uvm_extern.h>
45 1.17 skrll
46 1.1 fredette #include <machine/cpufunc.h>
47 1.1 fredette #include <machine/frame.h>
48 1.1 fredette #include <machine/reg.h>
49 1.22 rmind #include <machine/pcb.h>
50 1.17 skrll #include <machine/pmap.h>
51 1.1 fredette
52 1.1 fredette #include <hppa/hppa/machdep.h>
53 1.1 fredette
54 1.1 fredette #include "../spmath/float.h"
55 1.1 fredette #include "../spmath/fpudispatch.h"
56 1.1 fredette
57 1.1 fredette /* Some macros representing opcodes. */
58 1.1 fredette #define OPCODE_NOP 0x08000240
59 1.1 fredette #define OPCODE_COPR_0_0 0x30000000
60 1.1 fredette
61 1.1 fredette /* Some macros representing fields in load/store opcodes. */
62 1.1 fredette #define OPCODE_CMPLT_S 0x00002000
63 1.1 fredette #define OPCODE_CMPLT_M 0x00000020
64 1.1 fredette #define OPCODE_CMPLT_SM (OPCODE_CMPLT_S | OPCODE_CMPLT_M)
65 1.1 fredette #define OPCODE_CMPLT_MB OPCODE_CMPLT_M
66 1.1 fredette #define OPCODE_CMPLT_MA (OPCODE_CMPLT_S | OPCODE_CMPLT_M)
67 1.1 fredette #define OPCODE_CMPLT (OPCODE_CMPLT_S | OPCODE_CMPLT_M)
68 1.1 fredette #define OPCODE_DOUBLE 0x08000000
69 1.1 fredette #define OPCODE_STORE 0x00000200
70 1.1 fredette #define OPCODE_INDEXED 0x00001000
71 1.1 fredette
72 1.1 fredette /* This is nonzero iff we're using a hardware FPU. */
73 1.1 fredette int fpu_present;
74 1.1 fredette
75 1.1 fredette /* If we have any FPU, this is its version. */
76 1.1 fredette u_int fpu_version;
77 1.1 fredette
78 1.1 fredette /* The number of times we have had to switch the FPU context. */
79 1.1 fredette u_int fpu_csw;
80 1.1 fredette
81 1.1 fredette /* The U-space physical address of the proc in the FPU, or zero. */
82 1.1 fredette paddr_t fpu_cur_uspace;
83 1.1 fredette
84 1.1 fredette /* In locore.S, this swaps states in and out of the FPU. */
85 1.20 skrll void hppa_fpu_swapout(struct pcb *);
86 1.20 skrll void hppa_fpu_swap(struct fpreg *, struct fpreg *);
87 1.1 fredette
88 1.1 fredette #ifdef FPEMUL
89 1.1 fredette /*
90 1.1 fredette * Given a trapframe and a general register number, the
91 1.1 fredette * FRAME_REG macro returns a pointer to that general
92 1.1 fredette * register. The _frame_reg_positions array is a lookup
93 1.1 fredette * table, since the general registers aren't in order
94 1.1 fredette * in a trapframe.
95 1.1 fredette *
96 1.1 fredette * NB: this more or less assumes that all members of
97 1.1 fredette * struct trapframe are u_ints.
98 1.1 fredette */
99 1.1 fredette #define FRAME_REG(f, reg, r0) \
100 1.1 fredette ((reg) == 0 ? (&r0) : ((&(f)->tf_t1) + _frame_reg_positions[reg]))
101 1.1 fredette #define _FRAME_POSITION(f) \
102 1.1 fredette ((&((struct trapframe *) 0)->f) - (&((struct trapframe *) 0)->tf_t1))
103 1.1 fredette const int _frame_reg_positions[32] = {
104 1.1 fredette -1, /* r0 */
105 1.1 fredette _FRAME_POSITION(tf_r1),
106 1.1 fredette _FRAME_POSITION(tf_rp), /* r2 */
107 1.1 fredette _FRAME_POSITION(tf_r3),
108 1.1 fredette _FRAME_POSITION(tf_r4),
109 1.1 fredette _FRAME_POSITION(tf_r5),
110 1.1 fredette _FRAME_POSITION(tf_r6),
111 1.1 fredette _FRAME_POSITION(tf_r7),
112 1.1 fredette _FRAME_POSITION(tf_r8),
113 1.1 fredette _FRAME_POSITION(tf_r9),
114 1.1 fredette _FRAME_POSITION(tf_r10),
115 1.1 fredette _FRAME_POSITION(tf_r11),
116 1.1 fredette _FRAME_POSITION(tf_r12),
117 1.1 fredette _FRAME_POSITION(tf_r13),
118 1.1 fredette _FRAME_POSITION(tf_r14),
119 1.1 fredette _FRAME_POSITION(tf_r15),
120 1.1 fredette _FRAME_POSITION(tf_r16),
121 1.1 fredette _FRAME_POSITION(tf_r17),
122 1.1 fredette _FRAME_POSITION(tf_r18),
123 1.1 fredette _FRAME_POSITION(tf_t4), /* r19 */
124 1.1 fredette _FRAME_POSITION(tf_t3), /* r20 */
125 1.1 fredette _FRAME_POSITION(tf_t2), /* r21 */
126 1.1 fredette _FRAME_POSITION(tf_t1), /* r22 */
127 1.1 fredette _FRAME_POSITION(tf_arg3), /* r23 */
128 1.1 fredette _FRAME_POSITION(tf_arg2), /* r24 */
129 1.1 fredette _FRAME_POSITION(tf_arg1), /* r25 */
130 1.1 fredette _FRAME_POSITION(tf_arg0), /* r26 */
131 1.1 fredette _FRAME_POSITION(tf_dp), /* r27 */
132 1.1 fredette _FRAME_POSITION(tf_ret0), /* r28 */
133 1.1 fredette _FRAME_POSITION(tf_ret1), /* r29 */
134 1.1 fredette _FRAME_POSITION(tf_sp), /* r30 */
135 1.1 fredette _FRAME_POSITION(tf_r31),
136 1.1 fredette };
137 1.1 fredette #endif /* FPEMUL */
138 1.1 fredette
139 1.1 fredette /*
140 1.1 fredette * Bootstraps the FPU.
141 1.1 fredette */
142 1.1 fredette void
143 1.1 fredette hppa_fpu_bootstrap(u_int ccr_enable)
144 1.1 fredette {
145 1.18 skrll uint32_t junk[2];
146 1.18 skrll uint32_t vers[2];
147 1.1 fredette extern u_int hppa_fpu_nop0;
148 1.1 fredette extern u_int hppa_fpu_nop1;
149 1.1 fredette
150 1.1 fredette /* See if we have a present and functioning hardware FPU. */
151 1.1 fredette fpu_present = (ccr_enable & HPPA_FPUS) == HPPA_FPUS;
152 1.1 fredette
153 1.1 fredette /* Initialize the FPU and get its version. */
154 1.1 fredette if (fpu_present) {
155 1.1 fredette
156 1.1 fredette /*
157 1.1 fredette * To somewhat optimize the emulation
158 1.1 fredette * assist trap handling and context
159 1.1 fredette * switching (to save them from having
160 1.1 fredette * to always load and check fpu_present),
161 1.1 fredette * there are two instructions in locore.S
162 1.1 fredette * that are replaced with nops when
163 1.1 fredette * there is a hardware FPU.
164 1.1 fredette */
165 1.1 fredette hppa_fpu_nop0 = OPCODE_NOP;
166 1.1 fredette hppa_fpu_nop1 = OPCODE_NOP;
167 1.1 fredette fcacheall();
168 1.1 fredette
169 1.1 fredette /*
170 1.1 fredette * We track what process has the FPU,
171 1.1 fredette * and how many times we have to swap
172 1.1 fredette * in and out.
173 1.1 fredette */
174 1.1 fredette
175 1.1 fredette /*
176 1.1 fredette * The PA-RISC 1.1 Architecture manual is
177 1.1 fredette * pretty clear that the copr,0,0 must be
178 1.1 fredette * wrapped in double word stores of fr0,
179 1.1 fredette * otherwise its operation is undefined.
180 1.1 fredette */
181 1.12 perry __asm volatile(
182 1.1 fredette " ldo %0, %%r22 \n"
183 1.1 fredette " fstds %%fr0, 0(%%r22) \n"
184 1.1 fredette " ldo %1, %%r22 \n"
185 1.1 fredette " copr,0,0 \n"
186 1.1 fredette " fstds %%fr0, 0(%%r22) \n"
187 1.10 chs : "=m" (junk), "=m" (vers) : : "r22");
188 1.1 fredette
189 1.1 fredette /*
190 1.1 fredette * Now mark that no process has the FPU,
191 1.1 fredette * and disable it, so the first time it
192 1.1 fredette * gets used the process' state gets
193 1.1 fredette * swapped in.
194 1.1 fredette */
195 1.1 fredette fpu_csw = 0;
196 1.1 fredette fpu_cur_uspace = 0;
197 1.1 fredette mtctl(ccr_enable & (CCR_MASK ^ HPPA_FPUS), CR_CCR);
198 1.1 fredette }
199 1.1 fredette #ifdef FPEMUL
200 1.1 fredette else
201 1.1 fredette /*
202 1.1 fredette * XXX This is a hack - to avoid
203 1.1 fredette * having to set up the emulator so
204 1.1 fredette * it can work for one instruction for
205 1.1 fredette * proc0, we dispatch the copr,0,0 opcode
206 1.1 fredette * into the emulator directly.
207 1.1 fredette */
208 1.10 chs decode_0c(OPCODE_COPR_0_0, 0, 0, vers);
209 1.1 fredette #endif /* FPEMUL */
210 1.10 chs fpu_version = vers[0];
211 1.1 fredette }
212 1.1 fredette
213 1.1 fredette /*
214 1.2 chs * If the given LWP has its state in the FPU,
215 1.2 chs * flush that state out into the LWP's PCB.
216 1.1 fredette */
217 1.1 fredette void
218 1.2 chs hppa_fpu_flush(struct lwp *l)
219 1.1 fredette {
220 1.2 chs struct trapframe *tf = l->l_md.md_regs;
221 1.19 rmind struct pcb *pcb = lwp_getpcb(l);
222 1.1 fredette
223 1.1 fredette /*
224 1.2 chs * If we have a hardware FPU, and this process'
225 1.2 chs * state is currently in it, swap it out.
226 1.2 chs */
227 1.2 chs
228 1.6 chs if (!fpu_present || fpu_cur_uspace == 0 ||
229 1.6 chs fpu_cur_uspace != tf->tf_cr30) {
230 1.6 chs return;
231 1.6 chs }
232 1.6 chs
233 1.20 skrll hppa_fpu_swapout(pcb);
234 1.6 chs fpu_cur_uspace = 0;
235 1.1 fredette }
236 1.1 fredette
237 1.1 fredette #ifdef FPEMUL
238 1.1 fredette
239 1.1 fredette /*
240 1.1 fredette * This emulates a coprocessor load/store instruction.
241 1.1 fredette */
242 1.4 chs static int hppa_fpu_ls(struct trapframe *, struct lwp *);
243 1.1 fredette static int
244 1.2 chs hppa_fpu_ls(struct trapframe *frame, struct lwp *l)
245 1.1 fredette {
246 1.19 rmind struct pcb *pcb = lwp_getpcb(l);
247 1.1 fredette u_int inst, inst_b, inst_x, inst_s, inst_t;
248 1.1 fredette int log2size;
249 1.1 fredette u_int *base;
250 1.1 fredette u_int offset, index, im5;
251 1.1 fredette void *fpreg;
252 1.1 fredette u_int r0 = 0;
253 1.6 chs int error;
254 1.6 chs
255 1.1 fredette /*
256 1.1 fredette * Get the instruction that we're emulating,
257 1.1 fredette * and break it down. Using HP bit notation,
258 1.1 fredette * b is a five-bit field starting at bit 10,
259 1.1 fredette * x is a five-bit field starting at bit 15,
260 1.1 fredette * s is a two-bit field starting at bit 17,
261 1.7 chs * and t is a five-bit field starting at bit 31.
262 1.1 fredette */
263 1.1 fredette inst = frame->tf_iir;
264 1.12 perry __asm volatile(
265 1.1 fredette " extru %4, 10, 5, %1 \n"
266 1.1 fredette " extru %4, 15, 5, %2 \n"
267 1.1 fredette " extru %4, 17, 2, %3 \n"
268 1.1 fredette " extru %4, 31, 5, %4 \n"
269 1.1 fredette : "=r" (inst_b), "=r" (inst_x), "=r" (inst_s), "=r" (inst_t)
270 1.1 fredette : "r" (inst));
271 1.1 fredette
272 1.1 fredette /*
273 1.1 fredette * The space must be the user's space, else we
274 1.1 fredette * segfault.
275 1.1 fredette */
276 1.19 rmind if (inst_s != pcb->pcb_space)
277 1.21 skrll return EFAULT;
278 1.1 fredette
279 1.1 fredette /* See whether or not this is a doubleword load/store. */
280 1.1 fredette log2size = (inst & OPCODE_DOUBLE) ? 3 : 2;
281 1.1 fredette
282 1.1 fredette /* Get the floating point register. */
283 1.19 rmind fpreg = ((char *)pcb->pcb_fpregs) + (inst_t << log2size);
284 1.1 fredette
285 1.1 fredette /* Get the base register. */
286 1.1 fredette base = FRAME_REG(frame, inst_b, r0);
287 1.1 fredette
288 1.1 fredette /* Dispatch on whether or not this is an indexed load/store. */
289 1.1 fredette if (inst & OPCODE_INDEXED) {
290 1.1 fredette
291 1.1 fredette /* Get the index register value. */
292 1.1 fredette index = *FRAME_REG(frame, inst_x, r0);
293 1.1 fredette
294 1.1 fredette /* Dispatch on the completer. */
295 1.1 fredette switch (inst & OPCODE_CMPLT) {
296 1.1 fredette case OPCODE_CMPLT_S:
297 1.1 fredette offset = *base + (index << log2size);
298 1.1 fredette break;
299 1.1 fredette case OPCODE_CMPLT_M:
300 1.1 fredette offset = *base;
301 1.1 fredette *base = *base + index;
302 1.1 fredette break;
303 1.1 fredette case OPCODE_CMPLT_SM:
304 1.1 fredette offset = *base;
305 1.1 fredette *base = *base + (index << log2size);
306 1.1 fredette break;
307 1.1 fredette default:
308 1.1 fredette offset = *base + index;
309 1.1 fredette break;
310 1.1 fredette }
311 1.1 fredette } else {
312 1.1 fredette
313 1.1 fredette /* Do a low_sign_ext(x, 5). */
314 1.1 fredette im5 = inst_x >> 1;
315 1.1 fredette if (inst_x & 1)
316 1.1 fredette im5 |= 0xfffffff0;
317 1.1 fredette
318 1.1 fredette /* Dispatch on the completer. */
319 1.1 fredette switch (inst & OPCODE_CMPLT) {
320 1.1 fredette case OPCODE_CMPLT_MB:
321 1.1 fredette offset = *base + im5;
322 1.1 fredette *base = *base + im5;
323 1.1 fredette break;
324 1.1 fredette case OPCODE_CMPLT_MA:
325 1.1 fredette offset = *base;
326 1.1 fredette *base = *base + im5;
327 1.1 fredette break;
328 1.1 fredette default:
329 1.1 fredette offset = *base + im5;
330 1.1 fredette break;
331 1.1 fredette }
332 1.1 fredette }
333 1.1 fredette
334 1.1 fredette /*
335 1.1 fredette * The offset we calculated must be the same as the
336 1.1 fredette * offset in the IOR.
337 1.1 fredette */
338 1.1 fredette KASSERT(offset == frame->tf_ior);
339 1.1 fredette
340 1.1 fredette /* Perform the load or store. */
341 1.6 chs error = (inst & OPCODE_STORE) ?
342 1.1 fredette copyout(fpreg, (void *) offset, 1 << log2size) :
343 1.1 fredette copyin((const void *) offset, fpreg, 1 << log2size);
344 1.6 chs return error;
345 1.1 fredette }
346 1.1 fredette
347 1.1 fredette /*
348 1.1 fredette * This is called to emulate an instruction.
349 1.1 fredette */
350 1.1 fredette void
351 1.7 chs hppa_fpu_emulate(struct trapframe *frame, struct lwp *l, u_int inst)
352 1.1 fredette {
353 1.19 rmind struct pcb *pcb = lwp_getpcb(l);
354 1.7 chs u_int opcode, class, sub;
355 1.1 fredette u_int *fpregs;
356 1.1 fredette int exception;
357 1.8 chs ksiginfo_t ksi;
358 1.1 fredette
359 1.1 fredette /*
360 1.1 fredette * If the process' state is in any hardware FPU,
361 1.1 fredette * flush it out - we need to operate on it.
362 1.1 fredette */
363 1.2 chs hppa_fpu_flush(l);
364 1.1 fredette
365 1.1 fredette /*
366 1.1 fredette * Get the instruction that we're emulating,
367 1.1 fredette * and break it down. Using HP bit notation,
368 1.1 fredette * the class is a two-bit field starting at
369 1.1 fredette * bit 22, the opcode is a 6-bit field starting
370 1.1 fredette * at bit 5, and sub for a class 1 instruction
371 1.1 fredette * is a two bit field starting at bit 16, else
372 1.1 fredette * it is a three bit field starting at bit 18.
373 1.1 fredette */
374 1.7 chs #if 0
375 1.12 perry __asm volatile(
376 1.1 fredette " extru %3, 22, 2, %1 \n"
377 1.1 fredette " extru %3, 5, 6, %0 \n"
378 1.1 fredette " extru %3, 18, 3, %2 \n"
379 1.1 fredette " comib,<> 1, %1, 0 \n"
380 1.1 fredette " extru %3, 16, 2, %2 \n"
381 1.1 fredette : "=r" (opcode), "=r" (class), "=r" (sub)
382 1.1 fredette : "r" (inst));
383 1.7 chs #else
384 1.7 chs opcode = (inst >> (31 - 5)) & 0x3f;
385 1.7 chs class = (inst >> (31 - 22)) & 0x3;
386 1.7 chs if (class == 1) {
387 1.7 chs sub = (inst >> (31 - 16)) & 3;
388 1.7 chs } else {
389 1.7 chs sub = (inst >> (31 - 18)) & 7;
390 1.7 chs }
391 1.7 chs #endif
392 1.1 fredette
393 1.2 chs /* Get this LWP's FPU registers. */
394 1.19 rmind fpregs = (u_int *)pcb->pcb_fpregs;
395 1.1 fredette
396 1.1 fredette /* Dispatch on the opcode. */
397 1.1 fredette switch (opcode) {
398 1.1 fredette case 0x09:
399 1.1 fredette case 0x0b:
400 1.8 chs if (hppa_fpu_ls(frame, l) != 0) {
401 1.8 chs KSI_INIT_TRAP(&ksi);
402 1.8 chs ksi.ksi_signo = SIGSEGV;
403 1.8 chs ksi.ksi_code = SEGV_MAPERR;
404 1.8 chs ksi.ksi_trap = T_DTLBMISS;
405 1.8 chs ksi.ksi_addr = (void *)frame->tf_iioq_head;
406 1.8 chs trapsignal(l, &ksi);
407 1.8 chs }
408 1.1 fredette return;
409 1.1 fredette case 0x0c:
410 1.1 fredette exception = decode_0c(inst, class, sub, fpregs);
411 1.1 fredette break;
412 1.1 fredette case 0x0e:
413 1.1 fredette exception = decode_0e(inst, class, sub, fpregs);
414 1.1 fredette break;
415 1.1 fredette case 0x06:
416 1.1 fredette exception = decode_06(inst, fpregs);
417 1.1 fredette break;
418 1.1 fredette case 0x26:
419 1.1 fredette exception = decode_26(inst, fpregs);
420 1.1 fredette break;
421 1.1 fredette default:
422 1.1 fredette exception = UNIMPLEMENTEDEXCEPTION;
423 1.1 fredette break;
424 1.1 fredette }
425 1.1 fredette
426 1.8 chs if (exception) {
427 1.8 chs KSI_INIT_TRAP(&ksi);
428 1.8 chs if (exception & UNIMPLEMENTEDEXCEPTION) {
429 1.8 chs ksi.ksi_signo = SIGILL;
430 1.8 chs ksi.ksi_code = ILL_COPROC;
431 1.8 chs } else {
432 1.8 chs ksi.ksi_signo = SIGFPE;
433 1.8 chs if (exception & INVALIDEXCEPTION) {
434 1.8 chs ksi.ksi_code = FPE_FLTINV;
435 1.8 chs } else if (exception & DIVISIONBYZEROEXCEPTION) {
436 1.8 chs ksi.ksi_code = FPE_FLTDIV;
437 1.8 chs } else if (exception & OVERFLOWEXCEPTION) {
438 1.8 chs ksi.ksi_code = FPE_FLTOVF;
439 1.8 chs } else if (exception & UNDERFLOWEXCEPTION) {
440 1.8 chs ksi.ksi_code = FPE_FLTUND;
441 1.8 chs } else if (exception & INEXACTEXCEPTION) {
442 1.8 chs ksi.ksi_code = FPE_FLTRES;
443 1.8 chs }
444 1.8 chs }
445 1.8 chs ksi.ksi_trap = T_EMULATION;
446 1.8 chs ksi.ksi_addr = (void *)frame->tf_iioq_head;
447 1.8 chs trapsignal(l, &ksi);
448 1.8 chs }
449 1.1 fredette }
450 1.1 fredette
451 1.1 fredette #endif /* FPEMUL */
452