Home | History | Annotate | Line # | Download | only in spmath
      1  1.3  christos /*	$NetBSD: impys.S,v 1.3 2005/12/11 12:17:40 christos Exp $	*/
      2  1.1  fredette 
      3  1.1  fredette /*	$OpenBSD: impys.S,v 1.5 2001/03/29 03:58:18 mickey Exp $	*/
      4  1.1  fredette 
      5  1.1  fredette /*
      6  1.1  fredette  * Copyright 1996 1995 by Open Software Foundation, Inc.
      7  1.1  fredette  *              All Rights Reserved
      8  1.1  fredette  *
      9  1.1  fredette  * Permission to use, copy, modify, and distribute this software and
     10  1.1  fredette  * its documentation for any purpose and without fee is hereby granted,
     11  1.1  fredette  * provided that the above copyright notice appears in all copies and
     12  1.1  fredette  * that both the copyright notice and this permission notice appear in
     13  1.1  fredette  * supporting documentation.
     14  1.1  fredette  *
     15  1.1  fredette  * OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
     16  1.1  fredette  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     17  1.1  fredette  * FOR A PARTICULAR PURPOSE.
     18  1.1  fredette  *
     19  1.1  fredette  * IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
     20  1.1  fredette  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
     21  1.1  fredette  * LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
     22  1.1  fredette  * NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
     23  1.1  fredette  * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     24  1.1  fredette  *
     25  1.1  fredette  */
     26  1.1  fredette /*
     27  1.1  fredette  * pmk1.1
     28  1.1  fredette  */
     29  1.1  fredette /*
     30  1.1  fredette  * (c) Copyright 1986 HEWLETT-PACKARD COMPANY
     31  1.1  fredette  *
     32  1.1  fredette  * To anyone who acknowledges that this file is provided "AS IS"
     33  1.1  fredette  * without any express or implied warranty:
     34  1.1  fredette  *     permission to use, copy, modify, and distribute this file
     35  1.1  fredette  * for any purpose is hereby granted without fee, provided that
     36  1.1  fredette  * the above copyright notice and this notice appears in all
     37  1.1  fredette  * copies, and that the name of Hewlett-Packard Company not be
     38  1.1  fredette  * used in advertising or publicity pertaining to distribution
     39  1.1  fredette  * of the software without specific, written prior permission.
     40  1.1  fredette  * Hewlett-Packard Company makes no representations about the
     41  1.1  fredette  * suitability of this software for any purpose.
     42  1.1  fredette  */
     43  1.1  fredette 
     44  1.1  fredette #include <machine/asm.h>
     45  1.1  fredette 
     46  1.1  fredette /****************************************************************************
     47  1.1  fredette  *
     48  1.1  fredette  * Implement an integer multiply routine for 32-bit operands and 64-bit product
     49  1.1  fredette  * with operand values of zero (multiplicand only) and -2**31 treated specially.
     50  1.1  fredette  * The algorithm uses the absolute value of the multiplier, four bits at a time,
     51  1.1  fredette  * from right to left, to generate partial product.  Execution speed is more
     52  1.1  fredette  * important than program size in this implementation.
     53  1.1  fredette  *
     54  1.1  fredette  ***************************************************************************/
     55  1.1  fredette /*
     56  1.1  fredette  * Definitions - General registers
     57  1.1  fredette  */
     58  1.2       chs gr0:	.equ		0		/* General register zero */
     59  1.2       chs pu:	.equ		3		/* upper part of product */
     60  1.2       chs pl:	.equ		4		/* lower part of product */
     61  1.2       chs op2:	.equ		4		/* multiplier */
     62  1.2       chs op1:	.equ		5		/* multiplicand */
     63  1.2       chs cnt:	.equ		6		/* count in multiply */
     64  1.2       chs brindex:	.equ		7		/* index into the br. table */
     65  1.2       chs sign:	.equ		8		/* sign of product */
     66  1.2       chs pc:	.equ		9		/* carry bit of product, = 00...01 */
     67  1.2       chs pm:	.equ	       10		/* value of -1 used in shifting */
     68  1.1  fredette 
     69  1.1  fredette 	.text
     70  1.1  fredette 
     71  1.1  fredette ENTRY(impys,32)
     72  1.2       chs 	stws,ma		pu,4(%sp)		; save registers on stack
     73  1.2       chs 	stws,ma		pl,4(%sp)		; save registers on stack
     74  1.2       chs 	stws,ma		op1,4(%sp)		; save registers on stack
     75  1.2       chs 	stws,ma		cnt,4(%sp)		; save registers on stack
     76  1.2       chs 	stws,ma		brindex,4(%sp)		; save registers on stack
     77  1.2       chs 	stws,ma		sign,4(%sp)		; save registers on stack
     78  1.2       chs 	stws,ma		pc,4(%sp)		; save registers on stack
     79  1.2       chs 	stws,ma		pm,4(%sp)		; save registers on stack
     80  1.1  fredette ;
     81  1.1  fredette ;   Start multiply process
     82  1.1  fredette ;
     83  1.2       chs 	ldws		0(%arg1),op2		; get multiplier
     84  1.2       chs 	ldws		0(%arg0),op1		; get multiplicand
     85  1.1  fredette 	addi		-1,gr0,pm		; initialize pm to 111...1
     86  1.1  fredette 	comb,<		op2,gr0,mpyb		; br. if multiplier < 0
     87  1.1  fredette 	xor		op2,op1,sign		; sign(0) = sign of product
     88  1.2       chs mpy1:	comb,<		op1,gr0,mpya		; br. if multiplicand < 0
     89  1.1  fredette 	addi		0,gr0,pu		; clear product
     90  1.1  fredette 	addib,=		0,op1,fini0		; op1 = 0, product = 0
     91  1.2       chs mpy2:	addi		1,gr0,pc		; initialize pc to 00...01
     92  1.1  fredette 	movib,tr	8,cnt,mloop		; set count for mpy loop
     93  1.1  fredette 	extru		op2,31,4,brindex	; 4 bits as index into table
     94  1.1  fredette ;
     95  1.1  fredette 	.align		8
     96  1.1  fredette ;
     97  1.1  fredette 	b		sh4c			; br. if sign overflow
     98  1.2       chs sh4n:	shd		pu,pl,4,pl		; shift product right 4 bits
     99  1.1  fredette 	addib,<=	-1,cnt,mulend		; reduce count by 1, exit if
    100  1.1  fredette 	extru		pu,27,28,pu		;   <= zero
    101  1.1  fredette ;
    102  1.2       chs mloop:	blr		brindex,gr0		; br. into table
    103  1.1  fredette 						;   entries of 2 words
    104  1.1  fredette 	extru		op2,27,4,brindex	; next 4 bits into index
    105  1.1  fredette ;
    106  1.1  fredette ;
    107  1.1  fredette ;	branch table for the multiplication process with four multiplier bits
    108  1.1  fredette ;
    109  1.2       chs mtable:						; two words per entry
    110  1.1  fredette ;
    111  1.1  fredette ; ----	bits = 0000 ---- shift product 4 bits -------------------------------
    112  1.1  fredette ;
    113  1.1  fredette 	b		sh4n+4			; just shift partial
    114  1.1  fredette 	shd		pu,pl,4,pl		;   product right 4 bits
    115  1.1  fredette ;
    116  1.1  fredette ;  ----	bits = 0001 ---- add op1, then shift 4 bits
    117  1.1  fredette ;
    118  1.1  fredette 	addb,tr		op1,pu,sh4n+4		; add op1 to product, to shift
    119  1.1  fredette 	shd		pu,pl,4,pl		;   product right 4 bits
    120  1.1  fredette ;
    121  1.1  fredette ;  ----	bits = 0010 ---- add op1, add op1, then shift 4 bits
    122  1.1  fredette ;
    123  1.1  fredette 	addb,tr		op1,pu,sh4n		; add 2*op1, to shift
    124  1.1  fredette 	addb,uv		op1,pu,sh4c		;   product right 4 bits
    125  1.1  fredette ;
    126  1.1  fredette ;  ---- bits = 0011 ---- add op1, add 2*op1, shift 4 bits
    127  1.1  fredette ;
    128  1.1  fredette 	addb,tr		op1,pu,sh4n-4		; add op1 & 2*op1, shift
    129  1.1  fredette 	sh1add,nsv	op1,pu,pu		;   product right 4 bits
    130  1.1  fredette ;
    131  1.1  fredette ;  ----	bits = 0100 ---- shift 2, add op1, shift 2
    132  1.1  fredette ;
    133  1.1  fredette 	b		sh2sa
    134  1.1  fredette 	shd		pu,pl,2,pl		; shift product 2 bits
    135  1.1  fredette ;
    136  1.1  fredette ;  ----	bits = 0101 ---- add op1, shift 2, add op1, and shift 2 again
    137  1.1  fredette ;
    138  1.1  fredette 	addb,tr		op1,pu,sh2us		; add op1 to product
    139  1.1  fredette 	shd		pu,pl,2,pl		; shift 2 bits
    140  1.1  fredette ;
    141  1.1  fredette ;  ----	bits = 0110 ---- add op1, add op1, shift 2, add op1, and shift 2 again
    142  1.1  fredette ;
    143  1.1  fredette 	addb,tr		op1,pu,sh2c		; add 2*op1, to shift 2 bits
    144  1.1  fredette 	addb,nuv	op1,pu,sh2us		; br. if not overflow
    145  1.1  fredette ;
    146  1.1  fredette ;  ----	bits = 0111 ---- subtract op1, shift 3, add op1, and shift 1
    147  1.1  fredette ;
    148  1.1  fredette 	b		sh3s
    149  1.1  fredette 	sub		pu,op1,pu		; subtract op1, br. to sh3s
    150  1.1  fredette 
    151  1.1  fredette ;
    152  1.1  fredette ;  ----	bits = 1000 ---- shift 3, add op1, shift 1
    153  1.1  fredette ;
    154  1.1  fredette 	b		sh3sa
    155  1.1  fredette 	shd		pu,pl,3,pl		; shift product right 3 bits
    156  1.1  fredette ;
    157  1.1  fredette ;  ----	bits = 1001 ---- add op1, shift 3, add op1, shift 1
    158  1.1  fredette ;
    159  1.1  fredette 	addb,tr		op1,pu,sh3us		; add op1, to shift 3, add op1,
    160  1.1  fredette 	shd		pu,pl,3,pl		;   and shift 1
    161  1.1  fredette ;
    162  1.1  fredette ;  ----	bits = 1010 ---- add op1, add op1, shift 3, add op1, shift 1
    163  1.1  fredette ;
    164  1.1  fredette 	addb,tr		op1,pu,sh3c		; add 2*op1, to shift 3 bits
    165  1.1  fredette 	addb,nuv	op1,pu,sh3us		;   br. if no overflow
    166  1.1  fredette ;
    167  1.1  fredette ;  ----	bits = 1011 ---- add -op1, shift 2, add -op1, shift 2, inc. next index
    168  1.1  fredette ;
    169  1.1  fredette 	addib,tr	1,brindex,sh2s		; add 1 to index, subtract op1,
    170  1.1  fredette 	sub		pu,op1,pu		;   shift 2 with minus sign
    171  1.1  fredette ;
    172  1.1  fredette ;  ----	bits = 1100 ---- shift 2, subtract op1, shift 2, increment next index
    173  1.1  fredette ;
    174  1.1  fredette 	addib,tr	1,brindex,sh2sb		; add 1 to index, to shift
    175  1.1  fredette 	shd		pu,pl,2,pl		; shift right 2 bits signed
    176  1.1  fredette ;
    177  1.1  fredette ;  ----	bits = 1101 ---- add op1, shift 2, add -op1, shift 2
    178  1.1  fredette ;
    179  1.1  fredette 	addb,tr		op1,pu,sh2ns		; add op1, to shift 2
    180  1.1  fredette 	shd		pu,pl,2,pl		;   right 2 unsigned, etc.
    181  1.1  fredette ;
    182  1.1  fredette ;  ----	bits = 1110 ---- shift 1 signed, add -op1, shift 3 signed
    183  1.1  fredette ;
    184  1.1  fredette 	addib,tr	1,brindex,sh1sa		; add 1 to index, to shift
    185  1.1  fredette 	shd		pu,pl,1,pl		; shift 1 bit
    186  1.1  fredette ;
    187  1.1  fredette ;  ----	bits = 1111 ---- add -op1, shift 4 signed
    188  1.1  fredette ;
    189  1.1  fredette 	addib,tr	1,brindex,sh4s		; add 1 to index, subtract op1,
    190  1.1  fredette 	sub		pu,op1,pu		;   to shift 4 signed
    191  1.1  fredette 
    192  1.1  fredette ;
    193  1.1  fredette ;  ----	bits = 10000 ---- shift 4 signed
    194  1.1  fredette ;
    195  1.1  fredette 	addib,tr	1,brindex,sh4s+4	; add 1 to index
    196  1.1  fredette 	shd		pu,pl,4,pl		; shift 4 signed
    197  1.1  fredette ;
    198  1.1  fredette ;  ---- end of table ---------------------------------------------------------
    199  1.1  fredette ;
    200  1.2       chs sh4s:	shd		pu,pl,4,pl
    201  1.1  fredette 	addib,tr	-1,cnt,mloop		; loop (count > 0 always here)
    202  1.1  fredette 	shd		pm,pu,4,pu		; shift 4, minus signed
    203  1.1  fredette ;
    204  1.2       chs sh4c:	addib,>		-1,cnt,mloop		; decrement count, loop if > 0
    205  1.1  fredette 	shd		pc,pu,4,pu		; shift 4 with overflow
    206  1.1  fredette 	b		signs			; end of multiply
    207  1.1  fredette 	bb,>=,n		sign,0,fini		; test sign of procduct
    208  1.1  fredette ;
    209  1.2       chs mpyb:	add,=		op2,op2,gr0		; if <> 0, back to main sect.
    210  1.1  fredette 	b		mpy1
    211  1.1  fredette 	sub		0,op2,op2		; op2 = |multiplier|
    212  1.1  fredette 	add,>=		op1,gr0,gr0		; if op1 < 0, invert sign,
    213  1.1  fredette 	xor		pm,sign,sign		;   for correct result
    214  1.1  fredette ;
    215  1.1  fredette ;	special case for multiplier = -2**31, op1 = signed multiplicand
    216  1.1  fredette ;		or multiplicand = -2**31, op1 = signed multiplier
    217  1.1  fredette ;
    218  1.1  fredette 	shd		op1,0,1,pl		; shift op1 left 31 bits
    219  1.2       chs mmax:	extrs		op1,30,31,pu
    220  1.1  fredette 	b		signs			; negate product (if needed)
    221  1.1  fredette 	bb,>=,n		sign,0,fini		; test sign of product
    222  1.1  fredette ;
    223  1.2       chs mpya:	add,=		op1,op1,gr0		; op1 = -2**31, special case
    224  1.1  fredette 	b		mpy2
    225  1.1  fredette 	sub		0,op1,op1		; op1 = |multiplicand|
    226  1.1  fredette 	add,>=		op2,gr0,gr0		; if op2 < 0, invert sign,
    227  1.1  fredette 	xor		pm,sign,sign		;   for correct result
    228  1.1  fredette 	movb,tr		op2,op1,mmax		; use op2 as multiplicand
    229  1.1  fredette 	shd		op1,0,1,pl		; shift it left 31 bits
    230  1.1  fredette ;
    231  1.2       chs sh3c:	shd		pu,pl,3,pl		; shift product 3 bits
    232  1.1  fredette 	shd		pc,pu,3,pu		; shift 3 signed
    233  1.1  fredette 	addb,tr		op1,pu,sh1		; add op1, to shift 1 bit
    234  1.1  fredette 	shd		pu,pl,1,pl
    235  1.1  fredette ;
    236  1.2       chs sh3us:	extru		pu,28,29,pu		; shift 3 unsigned
    237  1.1  fredette 	addb,tr		op1,pu,sh1		; add op1, to shift 1 bit
    238  1.1  fredette 	shd		pu,pl,1,pl
    239  1.1  fredette ;
    240  1.2       chs sh3sa:	extrs		pu,28,29,pu		; shift 3 signed
    241  1.1  fredette 	addb,tr		op1,pu,sh1		; add op1, to shift 1 bit
    242  1.1  fredette 	shd		pu,pl,1,pl
    243  1.1  fredette ;
    244  1.2       chs sh3s:	shd		pu,pl,3,pl		; shift 3 minus signed
    245  1.1  fredette 	shd		pm,pu,3,pu
    246  1.1  fredette 	addb,tr		op1,pu,sh1		; add op1, to shift 1 bit
    247  1.1  fredette 	shd		pu,pl,1,pl
    248  1.1  fredette ;
    249  1.2       chs sh1:	addib,>		-1,cnt,mloop		; loop if count > 0
    250  1.1  fredette 	extru		pu,30,31,pu
    251  1.1  fredette 	b		signs			; end of multiply
    252  1.1  fredette 	bb,>=,n		sign,0,fini		; test sign of product
    253  1.1  fredette ;
    254  1.2       chs sh2ns:	addib,tr	1,brindex,sh2sb+4	; increment index
    255  1.1  fredette 	extru		pu,29,30,pu		; shift unsigned
    256  1.1  fredette ;
    257  1.2       chs sh2s:	shd		pu,pl,2,pl		; shift with minus sign
    258  1.1  fredette 	shd		pm,pu,2,pu		;
    259  1.1  fredette 	sub		pu,op1,pu		; subtract op1
    260  1.1  fredette 	shd		pu,pl,2,pl		; shift with minus sign
    261  1.1  fredette 	addib,tr	-1,cnt,mloop		; decrement count, loop
    262  1.1  fredette 	shd		pm,pu,2,pu		; shift with minus sign
    263  1.1  fredette 						; count never reaches 0 here
    264  1.1  fredette ;
    265  1.2       chs sh2sb:	extrs		pu,29,30,pu		; shift 2 signed
    266  1.1  fredette 	sub		pu,op1,pu		; subtract op1 from product
    267  1.1  fredette 	shd		pu,pl,2,pl		; shift with minus sign
    268  1.1  fredette 	addib,tr	-1,cnt,mloop		; decrement count, loop
    269  1.1  fredette 	shd		pm,pu,2,pu		; shift with minus sign
    270  1.1  fredette 						; count never reaches 0 here
    271  1.1  fredette ;
    272  1.2       chs sh1sa:	extrs		pu,30,31,pu		;   signed
    273  1.1  fredette 	sub		pu,op1,pu		; subtract op1 from product
    274  1.1  fredette 	shd		pu,pl,3,pl		; shift 3 with minus sign
    275  1.1  fredette 	addib,tr	-1,cnt,mloop		; dec. count, to loop
    276  1.1  fredette 	shd		pm,pu,3,pu		; count never reaches 0 here
    277  1.1  fredette ;
    278  1.2       chs fini0:	movib,tr,n	0,pl,fini		; product = 0 as op1 = 0
    279  1.1  fredette ;
    280  1.2       chs sh2us:	extru		pu,29,30,pu		; shift 2 unsigned
    281  1.1  fredette 	addb,tr		op1,pu,sh2a		; add op1
    282  1.1  fredette 	shd		pu,pl,2,pl		; shift 2 bits
    283  1.1  fredette ;
    284  1.2       chs sh2c:	shd		pu,pl,2,pl
    285  1.1  fredette 	shd		pc,pu,2,pu		; shift with carry
    286  1.1  fredette 	addb,tr		op1,pu,sh2a		; add op1 to product
    287  1.1  fredette 	shd		pu,pl,2,pl		; br. to sh2 to shift pu
    288  1.1  fredette ;
    289  1.2       chs sh2sa:	extrs		pu,29,30,pu		; shift with sign
    290  1.1  fredette 	addb,tr		op1,pu,sh2a		; add op1 to product
    291  1.1  fredette 	shd		pu,pl,2,pl		; br. to sh2 to shift pu
    292  1.1  fredette ;
    293  1.2       chs sh2a:	addib,>		-1,cnt,mloop		; loop if count > 0
    294  1.1  fredette 	extru		pu,29,30,pu
    295  1.1  fredette ;
    296  1.2       chs mulend:	bb,>=,n		sign,0,fini		; test sign of product
    297  1.2       chs signs:	sub		0,pl,pl			; negate product if sign
    298  1.1  fredette 	subb		0,pu,pu			;   is negative
    299  1.1  fredette ;
    300  1.1  fredette ;	finish
    301  1.1  fredette ;
    302  1.2       chs fini:	stws		pu,0(%arg2)		; save high part of result
    303  1.2       chs 	stws		pl,4(%arg2)		; save low part of result
    304  1.1  fredette 
    305  1.2       chs 	ldws,mb		-4(%sp),pm		; restore registers
    306  1.2       chs 	ldws,mb		-4(%sp),pc		; restore registers
    307  1.2       chs 	ldws,mb		-4(%sp),sign		; restore registers
    308  1.2       chs 	ldws,mb		-4(%sp),brindex		; restore registers
    309  1.2       chs 	ldws,mb		-4(%sp),cnt		; restore registers
    310  1.2       chs 	ldws,mb		-4(%sp),op1		; restore registers
    311  1.2       chs 	ldws,mb		-4(%sp),pl		; restore registers
    312  1.2       chs 	bv		0(%rp)			; return
    313  1.2       chs 	ldws,mb		-4(%sp),pu		; restore registers
    314  1.1  fredette 
    315  1.1  fredette EXIT(impys)
    316  1.1  fredette 	.end
    317