impys.S revision 1.1 1 /* $NetBSD: impys.S,v 1.1 2002/06/05 01:04:25 fredette Exp $ */
2
3 /* $OpenBSD: impys.S,v 1.5 2001/03/29 03:58:18 mickey Exp $ */
4
5 /*
6 * Copyright 1996 1995 by Open Software Foundation, Inc.
7 * All Rights Reserved
8 *
9 * Permission to use, copy, modify, and distribute this software and
10 * its documentation for any purpose and without fee is hereby granted,
11 * provided that the above copyright notice appears in all copies and
12 * that both the copyright notice and this permission notice appear in
13 * supporting documentation.
14 *
15 * OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
16 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
17 * FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
20 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
21 * LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
22 * NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
23 * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 *
25 */
26 /*
27 * pmk1.1
28 */
29 /*
30 * (c) Copyright 1986 HEWLETT-PACKARD COMPANY
31 *
32 * To anyone who acknowledges that this file is provided "AS IS"
33 * without any express or implied warranty:
34 * permission to use, copy, modify, and distribute this file
35 * for any purpose is hereby granted without fee, provided that
36 * the above copyright notice and this notice appears in all
37 * copies, and that the name of Hewlett-Packard Company not be
38 * used in advertising or publicity pertaining to distribution
39 * of the software without specific, written prior permission.
40 * Hewlett-Packard Company makes no representations about the
41 * suitability of this software for any purpose.
42 */
43
44 #include <machine/asm.h>
45
46 /****************************************************************************
47 *
48 * Implement an integer multiply routine for 32-bit operands and 64-bit product
49 * with operand values of zero (multiplicand only) and -2**31 treated specially.
50 * The algorithm uses the absolute value of the multiplier, four bits at a time,
51 * from right to left, to generate partial product. Execution speed is more
52 * important than program size in this implementation.
53 *
54 ***************************************************************************/
55 /*
56 * Definitions - General registers
57 */
58 gr0 .equ 0 /* General register zero */
59 pu .equ 3 /* upper part of product */
60 pl .equ 4 /* lower part of product */
61 op2 .equ 4 /* multiplier */
62 op1 .equ 5 /* multiplicand */
63 cnt .equ 6 /* count in multiply */
64 brindex .equ 7 /* index into the br. table */
65 sign .equ 8 /* sign of product */
66 pc .equ 9 /* carry bit of product, = 00...01 */
67 pm .equ 10 /* value of -1 used in shifting */
68
69 .text
70
71 ENTRY(impys,32)
72 stws,ma pu,4(sp) ; save registers on stack
73 stws,ma pl,4(sp) ; save registers on stack
74 stws,ma op1,4(sp) ; save registers on stack
75 stws,ma cnt,4(sp) ; save registers on stack
76 stws,ma brindex,4(sp) ; save registers on stack
77 stws,ma sign,4(sp) ; save registers on stack
78 stws,ma pc,4(sp) ; save registers on stack
79 stws,ma pm,4(sp) ; save registers on stack
80 ;
81 ; Start multiply process
82 ;
83 ldws 0(arg1),op2 ; get multiplier
84 ldws 0(arg0),op1 ; get multiplicand
85 addi -1,gr0,pm ; initialize pm to 111...1
86 comb,< op2,gr0,mpyb ; br. if multiplier < 0
87 xor op2,op1,sign ; sign(0) = sign of product
88 mpy1 comb,< op1,gr0,mpya ; br. if multiplicand < 0
89 addi 0,gr0,pu ; clear product
90 addib,= 0,op1,fini0 ; op1 = 0, product = 0
91 mpy2 addi 1,gr0,pc ; initialize pc to 00...01
92 movib,tr 8,cnt,mloop ; set count for mpy loop
93 extru op2,31,4,brindex ; 4 bits as index into table
94 ;
95 .align 8
96 ;
97 b sh4c ; br. if sign overflow
98 sh4n shd pu,pl,4,pl ; shift product right 4 bits
99 addib,<= -1,cnt,mulend ; reduce count by 1, exit if
100 extru pu,27,28,pu ; <= zero
101 ;
102 mloop blr brindex,gr0 ; br. into table
103 ; entries of 2 words
104 extru op2,27,4,brindex ; next 4 bits into index
105 ;
106 ;
107 ; branch table for the multiplication process with four multiplier bits
108 ;
109 mtable ; two words per entry
110 ;
111 ; ---- bits = 0000 ---- shift product 4 bits -------------------------------
112 ;
113 b sh4n+4 ; just shift partial
114 shd pu,pl,4,pl ; product right 4 bits
115 ;
116 ; ---- bits = 0001 ---- add op1, then shift 4 bits
117 ;
118 addb,tr op1,pu,sh4n+4 ; add op1 to product, to shift
119 shd pu,pl,4,pl ; product right 4 bits
120 ;
121 ; ---- bits = 0010 ---- add op1, add op1, then shift 4 bits
122 ;
123 addb,tr op1,pu,sh4n ; add 2*op1, to shift
124 addb,uv op1,pu,sh4c ; product right 4 bits
125 ;
126 ; ---- bits = 0011 ---- add op1, add 2*op1, shift 4 bits
127 ;
128 addb,tr op1,pu,sh4n-4 ; add op1 & 2*op1, shift
129 sh1add,nsv op1,pu,pu ; product right 4 bits
130 ;
131 ; ---- bits = 0100 ---- shift 2, add op1, shift 2
132 ;
133 b sh2sa
134 shd pu,pl,2,pl ; shift product 2 bits
135 ;
136 ; ---- bits = 0101 ---- add op1, shift 2, add op1, and shift 2 again
137 ;
138 addb,tr op1,pu,sh2us ; add op1 to product
139 shd pu,pl,2,pl ; shift 2 bits
140 ;
141 ; ---- bits = 0110 ---- add op1, add op1, shift 2, add op1, and shift 2 again
142 ;
143 addb,tr op1,pu,sh2c ; add 2*op1, to shift 2 bits
144 addb,nuv op1,pu,sh2us ; br. if not overflow
145 ;
146 ; ---- bits = 0111 ---- subtract op1, shift 3, add op1, and shift 1
147 ;
148 b sh3s
149 sub pu,op1,pu ; subtract op1, br. to sh3s
150
151 ;
152 ; ---- bits = 1000 ---- shift 3, add op1, shift 1
153 ;
154 b sh3sa
155 shd pu,pl,3,pl ; shift product right 3 bits
156 ;
157 ; ---- bits = 1001 ---- add op1, shift 3, add op1, shift 1
158 ;
159 addb,tr op1,pu,sh3us ; add op1, to shift 3, add op1,
160 shd pu,pl,3,pl ; and shift 1
161 ;
162 ; ---- bits = 1010 ---- add op1, add op1, shift 3, add op1, shift 1
163 ;
164 addb,tr op1,pu,sh3c ; add 2*op1, to shift 3 bits
165 addb,nuv op1,pu,sh3us ; br. if no overflow
166 ;
167 ; ---- bits = 1011 ---- add -op1, shift 2, add -op1, shift 2, inc. next index
168 ;
169 addib,tr 1,brindex,sh2s ; add 1 to index, subtract op1,
170 sub pu,op1,pu ; shift 2 with minus sign
171 ;
172 ; ---- bits = 1100 ---- shift 2, subtract op1, shift 2, increment next index
173 ;
174 addib,tr 1,brindex,sh2sb ; add 1 to index, to shift
175 shd pu,pl,2,pl ; shift right 2 bits signed
176 ;
177 ; ---- bits = 1101 ---- add op1, shift 2, add -op1, shift 2
178 ;
179 addb,tr op1,pu,sh2ns ; add op1, to shift 2
180 shd pu,pl,2,pl ; right 2 unsigned, etc.
181 ;
182 ; ---- bits = 1110 ---- shift 1 signed, add -op1, shift 3 signed
183 ;
184 addib,tr 1,brindex,sh1sa ; add 1 to index, to shift
185 shd pu,pl,1,pl ; shift 1 bit
186 ;
187 ; ---- bits = 1111 ---- add -op1, shift 4 signed
188 ;
189 addib,tr 1,brindex,sh4s ; add 1 to index, subtract op1,
190 sub pu,op1,pu ; to shift 4 signed
191
192 ;
193 ; ---- bits = 10000 ---- shift 4 signed
194 ;
195 addib,tr 1,brindex,sh4s+4 ; add 1 to index
196 shd pu,pl,4,pl ; shift 4 signed
197 ;
198 ; ---- end of table ---------------------------------------------------------
199 ;
200 sh4s shd pu,pl,4,pl
201 addib,tr -1,cnt,mloop ; loop (count > 0 always here)
202 shd pm,pu,4,pu ; shift 4, minus signed
203 ;
204 sh4c addib,> -1,cnt,mloop ; decrement count, loop if > 0
205 shd pc,pu,4,pu ; shift 4 with overflow
206 b signs ; end of multiply
207 bb,>=,n sign,0,fini ; test sign of procduct
208 ;
209 mpyb add,= op2,op2,gr0 ; if <> 0, back to main sect.
210 b mpy1
211 sub 0,op2,op2 ; op2 = |multiplier|
212 add,>= op1,gr0,gr0 ; if op1 < 0, invert sign,
213 xor pm,sign,sign ; for correct result
214 ;
215 ; special case for multiplier = -2**31, op1 = signed multiplicand
216 ; or multiplicand = -2**31, op1 = signed multiplier
217 ;
218 shd op1,0,1,pl ; shift op1 left 31 bits
219 mmax extrs op1,30,31,pu
220 b signs ; negate product (if needed)
221 bb,>=,n sign,0,fini ; test sign of product
222 ;
223 mpya add,= op1,op1,gr0 ; op1 = -2**31, special case
224 b mpy2
225 sub 0,op1,op1 ; op1 = |multiplicand|
226 add,>= op2,gr0,gr0 ; if op2 < 0, invert sign,
227 xor pm,sign,sign ; for correct result
228 movb,tr op2,op1,mmax ; use op2 as multiplicand
229 shd op1,0,1,pl ; shift it left 31 bits
230 ;
231 sh3c shd pu,pl,3,pl ; shift product 3 bits
232 shd pc,pu,3,pu ; shift 3 signed
233 addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
234 shd pu,pl,1,pl
235 ;
236 sh3us extru pu,28,29,pu ; shift 3 unsigned
237 addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
238 shd pu,pl,1,pl
239 ;
240 sh3sa extrs pu,28,29,pu ; shift 3 signed
241 addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
242 shd pu,pl,1,pl
243 ;
244 sh3s shd pu,pl,3,pl ; shift 3 minus signed
245 shd pm,pu,3,pu
246 addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
247 shd pu,pl,1,pl
248 ;
249 sh1 addib,> -1,cnt,mloop ; loop if count > 0
250 extru pu,30,31,pu
251 b signs ; end of multiply
252 bb,>=,n sign,0,fini ; test sign of product
253 ;
254 sh2ns addib,tr 1,brindex,sh2sb+4 ; increment index
255 extru pu,29,30,pu ; shift unsigned
256 ;
257 sh2s shd pu,pl,2,pl ; shift with minus sign
258 shd pm,pu,2,pu ;
259 sub pu,op1,pu ; subtract op1
260 shd pu,pl,2,pl ; shift with minus sign
261 addib,tr -1,cnt,mloop ; decrement count, loop
262 shd pm,pu,2,pu ; shift with minus sign
263 ; count never reaches 0 here
264 ;
265 sh2sb extrs pu,29,30,pu ; shift 2 signed
266 sub pu,op1,pu ; subtract op1 from product
267 shd pu,pl,2,pl ; shift with minus sign
268 addib,tr -1,cnt,mloop ; decrement count, loop
269 shd pm,pu,2,pu ; shift with minus sign
270 ; count never reaches 0 here
271 ;
272 sh1sa extrs pu,30,31,pu ; signed
273 sub pu,op1,pu ; subtract op1 from product
274 shd pu,pl,3,pl ; shift 3 with minus sign
275 addib,tr -1,cnt,mloop ; dec. count, to loop
276 shd pm,pu,3,pu ; count never reaches 0 here
277 ;
278 fini0 movib,tr,n 0,pl,fini ; product = 0 as op1 = 0
279 ;
280 sh2us extru pu,29,30,pu ; shift 2 unsigned
281 addb,tr op1,pu,sh2a ; add op1
282 shd pu,pl,2,pl ; shift 2 bits
283 ;
284 sh2c shd pu,pl,2,pl
285 shd pc,pu,2,pu ; shift with carry
286 addb,tr op1,pu,sh2a ; add op1 to product
287 shd pu,pl,2,pl ; br. to sh2 to shift pu
288 ;
289 sh2sa extrs pu,29,30,pu ; shift with sign
290 addb,tr op1,pu,sh2a ; add op1 to product
291 shd pu,pl,2,pl ; br. to sh2 to shift pu
292 ;
293 sh2a addib,> -1,cnt,mloop ; loop if count > 0
294 extru pu,29,30,pu
295 ;
296 mulend bb,>=,n sign,0,fini ; test sign of product
297 signs sub 0,pl,pl ; negate product if sign
298 subb 0,pu,pu ; is negative
299 ;
300 ; finish
301 ;
302 fini stws pu,0(arg2) ; save high part of result
303 stws pl,4(arg2) ; save low part of result
304
305 ldws,mb -4(sp),pm ; restore registers
306 ldws,mb -4(sp),pc ; restore registers
307 ldws,mb -4(sp),sign ; restore registers
308 ldws,mb -4(sp),brindex ; restore registers
309 ldws,mb -4(sp),cnt ; restore registers
310 ldws,mb -4(sp),op1 ; restore registers
311 ldws,mb -4(sp),pl ; restore registers
312 bv 0(rp) ; return
313 ldws,mb -4(sp),pu ; restore registers
314
315 EXIT(impys)
316 .end
317