Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.103.14.2
      1  1.103.14.1  uebayasi /*	$NetBSD: pmap.h,v 1.103.14.2 2010/08/17 06:44:38 uebayasi Exp $	*/
      2        1.38   mycroft 
      3        1.40   thorpej /*
      4        1.40   thorpej  *
      5        1.40   thorpej  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6        1.38   mycroft  * All rights reserved.
      7        1.38   mycroft  *
      8        1.38   mycroft  * Redistribution and use in source and binary forms, with or without
      9        1.38   mycroft  * modification, are permitted provided that the following conditions
     10        1.38   mycroft  * are met:
     11        1.38   mycroft  * 1. Redistributions of source code must retain the above copyright
     12        1.38   mycroft  *    notice, this list of conditions and the following disclaimer.
     13        1.38   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     14        1.38   mycroft  *    notice, this list of conditions and the following disclaimer in the
     15        1.38   mycroft  *    documentation and/or other materials provided with the distribution.
     16        1.38   mycroft  * 3. All advertising materials mentioning features or use of this software
     17        1.40   thorpej  *    must display the following acknowledgment:
     18        1.40   thorpej  *      This product includes software developed by Charles D. Cranor and
     19        1.40   thorpej  *      Washington University.
     20        1.40   thorpej  * 4. The name of the author may not be used to endorse or promote products
     21        1.40   thorpej  *    derived from this software without specific prior written permission.
     22         1.1       cgd  *
     23        1.40   thorpej  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24        1.40   thorpej  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25        1.40   thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26        1.40   thorpej  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27        1.40   thorpej  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28        1.40   thorpej  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29        1.40   thorpej  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30        1.40   thorpej  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31        1.40   thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32        1.40   thorpej  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33         1.1       cgd  */
     34         1.1       cgd 
     35         1.1       cgd /*
     36        1.94      yamt  * Copyright (c) 2001 Wasabi Systems, Inc.
     37        1.94      yamt  * All rights reserved.
     38        1.94      yamt  *
     39        1.94      yamt  * Written by Frank van der Linden for Wasabi Systems, Inc.
     40        1.94      yamt  *
     41        1.94      yamt  * Redistribution and use in source and binary forms, with or without
     42        1.94      yamt  * modification, are permitted provided that the following conditions
     43        1.94      yamt  * are met:
     44        1.94      yamt  * 1. Redistributions of source code must retain the above copyright
     45        1.94      yamt  *    notice, this list of conditions and the following disclaimer.
     46        1.94      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     47        1.94      yamt  *    notice, this list of conditions and the following disclaimer in the
     48        1.94      yamt  *    documentation and/or other materials provided with the distribution.
     49        1.94      yamt  * 3. All advertising materials mentioning features or use of this software
     50        1.94      yamt  *    must display the following acknowledgement:
     51        1.94      yamt  *      This product includes software developed for the NetBSD Project by
     52        1.94      yamt  *      Wasabi Systems, Inc.
     53        1.94      yamt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     54        1.94      yamt  *    or promote products derived from this software without specific prior
     55        1.94      yamt  *    written permission.
     56        1.94      yamt  *
     57        1.94      yamt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     58        1.94      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     59        1.94      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     60        1.94      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     61        1.94      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62        1.94      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63        1.94      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64        1.94      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65        1.94      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66        1.94      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67        1.94      yamt  * POSSIBILITY OF SUCH DAMAGE.
     68         1.1       cgd  */
     69        1.34       mrg 
     70        1.40   thorpej #ifndef	_I386_PMAP_H_
     71        1.40   thorpej #define	_I386_PMAP_H_
     72        1.40   thorpej 
     73        1.58       mrg #if defined(_KERNEL_OPT)
     74        1.39   thorpej #include "opt_user_ldt.h"
     75        1.98    bouyer #include "opt_xen.h"
     76        1.34       mrg #endif
     77         1.1       cgd 
     78        1.96        ad #include <sys/atomic.h>
     79        1.96        ad 
     80       1.103       mrg #include <i386/pte.h>
     81        1.39   thorpej #include <machine/segments.h>
     82        1.92        ad #if defined(_KERNEL)
     83        1.91        ad #include <machine/cpufunc.h>
     84        1.91        ad #endif
     85        1.90        ad 
     86        1.40   thorpej #include <uvm/uvm_object.h>
     87        1.98    bouyer #ifdef XEN
     88        1.98    bouyer #include <xen/xenfunc.h>
     89        1.98    bouyer #include <xen/xenpmap.h>
     90        1.98    bouyer #endif /* XEN */
     91         1.1       cgd 
     92         1.1       cgd /*
     93        1.40   thorpej  * see pte.h for a description of i386 MMU terminology and hardware
     94        1.40   thorpej  * interface.
     95        1.40   thorpej  *
     96       1.102    bouyer  * a pmap describes a processes' 4GB virtual address space.  when PAE
     97       1.102    bouyer  * is not in use, this virtual address space can be broken up into 1024 4MB
     98       1.102    bouyer  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     99       1.102    bouyer  * follows:
    100        1.40   thorpej  *
    101        1.40   thorpej  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
    102        1.43   thorpej  * (the following assumes that KERNBASE is 0xc0000000)
    103        1.40   thorpej  *
    104        1.40   thorpej  * PDE#s	VA range		usage
    105        1.68  drochner  * 0->766	0x0 -> 0xbfc00000	user address space
    106        1.61      yamt  * 767		0xbfc00000->		recursive mapping of PDP (used for
    107        1.43   thorpej  *			0xc0000000	linear mapping of PTPs)
    108        1.43   thorpej  * 768->1023	0xc0000000->		kernel address space (constant
    109        1.40   thorpej  *			0xffc00000	across all pmap's/processes)
    110        1.40   thorpej  * 1023		0xffc00000->		"alternate" recursive PDP mapping
    111        1.40   thorpej  *			<end>		(for other pmaps)
    112        1.40   thorpej  *
    113        1.40   thorpej  *
    114        1.40   thorpej  * note: a recursive PDP mapping provides a way to map all the PTEs for
    115        1.41       chs  * a 4GB address space into a linear chunk of virtual memory.  in other
    116        1.41       chs  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    117        1.41       chs  * area.  the PTE for page 1 is the second int.  the very last int in the
    118        1.81  junyoung  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    119        1.40   thorpej  * address).
    120        1.40   thorpej  *
    121        1.43   thorpej  * all pmap's PD's must have the same values in slots 768->1023 so that
    122        1.41       chs  * the kernel is always mapped in every process.  these values are loaded
    123        1.40   thorpej  * into the PD at pmap creation time.
    124        1.40   thorpej  *
    125        1.41       chs  * at any one time only one pmap can be active on a processor.  this is
    126        1.41       chs  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    127        1.40   thorpej  * will have all its PTEs mapped into memory at the recursive mapping
    128        1.43   thorpej  * point (slot #767 as show above).  when the pmap code wants to find the
    129        1.40   thorpej  * PTE for a virtual address, all it has to do is the following:
    130        1.40   thorpej  *
    131        1.71   thorpej  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    132        1.43   thorpej  *                = 0xbfc00000 + (VA / 4096) * 4
    133        1.40   thorpej  *
    134        1.40   thorpej  * what happens if the pmap layer is asked to perform an operation
    135        1.41       chs  * on a pmap that is not the one which is currently active?  in that
    136        1.41       chs  * case we take the PA of the PDP of non-active pmap and put it in
    137        1.41       chs  * slot 1023 of the active pmap.  this causes the non-active pmap's
    138        1.40   thorpej  * PTEs to get mapped in the final 4MB of the 4GB address space
    139        1.40   thorpej  * (e.g. starting at 0xffc00000).
    140        1.40   thorpej  *
    141        1.40   thorpej  * the following figure shows the effects of the recursive PDP mapping:
    142        1.40   thorpej  *
    143        1.40   thorpej  *   PDP (%cr3)
    144        1.40   thorpej  *   +----+
    145        1.40   thorpej  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    146        1.40   thorpej  *   |    |
    147        1.40   thorpej  *   |    |
    148        1.43   thorpej  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    149        1.83  junyoung  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    150        1.40   thorpej  *   |    |
    151        1.40   thorpej  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    152        1.40   thorpej  *   +----+
    153        1.40   thorpej  *
    154        1.43   thorpej  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    155        1.40   thorpej  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    156        1.40   thorpej  *
    157        1.43   thorpej  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    158        1.40   thorpej  * PTP:
    159        1.40   thorpej  *
    160        1.43   thorpej  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    161        1.40   thorpej  *   +----+
    162        1.43   thorpej  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    163        1.40   thorpej  *   |    |
    164        1.40   thorpej  *   |    |
    165        1.81  junyoung  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    166        1.43   thorpej  *   | 768| -> maps contents of first kernel PTP
    167        1.40   thorpej  *   |    |
    168        1.40   thorpej  *   |1023|
    169        1.40   thorpej  *   +----+
    170        1.40   thorpej  *
    171        1.81  junyoung  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    172        1.40   thorpej  * defined as "PDP_BASE".... within that mapping there are two
    173        1.41       chs  * defines:
    174        1.59       chs  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    175        1.41       chs  *      which points back to itself.
    176        1.59       chs  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    177        1.40   thorpej  *      establishes the recursive mapping of the alternate pmap.
    178        1.40   thorpej  *      to set the alternate PDP, one just has to put the correct
    179        1.40   thorpej  *	PA info in *APDP_PDE.
    180        1.40   thorpej  *
    181        1.41       chs  * note that in the APTE_BASE space, the APDP appears at VA
    182        1.40   thorpej  * "APDP_BASE" (0xfffff000).
    183       1.102    bouyer  *
    184  1.103.14.2  uebayasi  * - PAE support -
    185  1.103.14.2  uebayasi  * ---------------
    186  1.103.14.2  uebayasi  *
    187  1.103.14.2  uebayasi  * PAE adds another layer of indirection during address translation, breaking
    188  1.103.14.2  uebayasi  * up the translation process in 3 different levels:
    189  1.103.14.2  uebayasi  * - L3 page directory, containing 4 * 64-bits addresses (index determined by
    190  1.103.14.2  uebayasi  * bits [31:30] from the virtual address). This breaks up the address space
    191  1.103.14.2  uebayasi  * in 4 1GB regions.
    192  1.103.14.2  uebayasi  * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
    193  1.103.14.2  uebayasi  * in 512 * 2MB regions.
    194  1.103.14.2  uebayasi  * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
    195  1.103.14.2  uebayasi  * the pages is still 4K).
    196  1.103.14.2  uebayasi  *
    197       1.102    bouyer  * The kernel virtual space is mapped by the last entry in the L3 page,
    198       1.102    bouyer  * the first 3 entries mapping the user VA space.
    199  1.103.14.2  uebayasi  *
    200       1.102    bouyer  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    201  1.103.14.2  uebayasi  * mappings at this level for PDP_PDE and APDP_PDE (this would eat up 2 of
    202  1.103.14.2  uebayasi  * the 4GB virtual space). There are also restrictions imposed by Xen on the
    203  1.103.14.2  uebayasi  * last entry of the L3 PD (reference count to this page cannot be bigger
    204  1.103.14.2  uebayasi  * than 1), which makes it hard to use one L3 page per pmap to switch
    205  1.103.14.2  uebayasi  * between pmaps using %cr3.
    206  1.103.14.2  uebayasi  *
    207  1.103.14.2  uebayasi  * As such, each CPU gets its own L3 page that is always loaded into its %cr3
    208  1.103.14.2  uebayasi  * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
    209  1.103.14.2  uebayasi  * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
    210  1.103.14.2  uebayasi  * pages long (corresponding to the 4 entries of the L3), and the different
    211  1.103.14.2  uebayasi  * index/slots (like PDP_PDE) are adapted accordingly.
    212  1.103.14.2  uebayasi  *
    213  1.103.14.2  uebayasi  * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
    214  1.103.14.2  uebayasi  * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
    215  1.103.14.2  uebayasi  *
    216  1.103.14.2  uebayasi  * PTE_BASE and APTE_BASE will need 4 entries in the L2 PD pages to map the
    217  1.103.14.2  uebayasi  * L2 pages recursively.
    218  1.103.14.2  uebayasi  *
    219  1.103.14.2  uebayasi  * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
    220  1.103.14.2  uebayasi  * count on this page to be exactly one), so we use a shadow PD page for
    221  1.103.14.2  uebayasi  * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
    222  1.103.14.2  uebayasi  * contiguous we'll allocate/copy one page per pmap.
    223         1.1       cgd  */
    224        1.65      fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
    225        1.33       mrg 
    226        1.33       mrg /*
    227        1.94      yamt  * Mask to get rid of the sign-extended part of addresses.
    228        1.94      yamt  */
    229        1.94      yamt #define VA_SIGN_MASK		0
    230        1.94      yamt #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    231        1.94      yamt /*
    232        1.94      yamt  * XXXfvdl this one's not right.
    233        1.94      yamt  */
    234        1.94      yamt #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    235        1.94      yamt 
    236        1.94      yamt /*
    237        1.40   thorpej  * the following defines identify the slots used as described above.
    238        1.33       mrg  */
    239       1.102    bouyer #ifdef PAE
    240       1.102    bouyer #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
    241       1.102    bouyer #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
    242  1.103.14.2  uebayasi #ifndef XEN
    243  1.103.14.2  uebayasi #define L2_SLOT_APTE	2044		/* 2044: alternative recursive slot */
    244  1.103.14.2  uebayasi #else
    245  1.103.14.2  uebayasi #define L2_SLOT_APTE	1960		/* 1964-2047 reserved by Xen */
    246  1.103.14.2  uebayasi #endif
    247       1.102    bouyer #else /* PAE */
    248       1.102    bouyer #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
    249       1.102    bouyer #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 768: start of kernel space */
    250        1.98    bouyer #ifndef XEN
    251  1.103.14.2  uebayasi #define L2_SLOT_APTE	1023		/* 1023: alternative recursive slot */
    252        1.98    bouyer #else
    253        1.98    bouyer #define L2_SLOT_APTE	1007		/* 1008-1023 reserved by Xen */
    254        1.98    bouyer #endif
    255       1.102    bouyer #endif /* PAE */
    256        1.98    bouyer 
    257  1.103.14.2  uebayasi #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    258        1.94      yamt 
    259        1.94      yamt #define PDIR_SLOT_KERN	L2_SLOT_KERN
    260        1.94      yamt #define PDIR_SLOT_PTE	L2_SLOT_PTE
    261        1.94      yamt #define PDIR_SLOT_APTE	L2_SLOT_APTE
    262         1.1       cgd 
    263         1.1       cgd /*
    264        1.41       chs  * the following defines give the virtual addresses of various MMU
    265        1.40   thorpej  * data structures:
    266        1.40   thorpej  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    267        1.81  junyoung  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    268        1.40   thorpej  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    269         1.1       cgd  */
    270        1.29      fvdl 
    271       1.102    bouyer #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    272       1.102    bouyer #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
    273        1.40   thorpej 
    274        1.94      yamt #define L1_BASE		PTE_BASE
    275        1.94      yamt #define AL1_BASE	APTE_BASE
    276        1.40   thorpej 
    277        1.94      yamt #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    278        1.94      yamt #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
    279        1.40   thorpej 
    280        1.94      yamt #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    281  1.103.14.2  uebayasi #if defined(PAE) && defined(XEN)
    282       1.102    bouyer /*
    283  1.103.14.2  uebayasi  * when PAE is in use under Xen, we can't write APDP_PDE through the recursive
    284  1.103.14.2  uebayasi  * mapping, because it points to the shadow PD. Use the kernel PD instead,
    285  1.103.14.2  uebayasi  * which is static
    286       1.102    bouyer  */
    287       1.102    bouyer #define APDP_PDE	(&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
    288       1.102    bouyer #define APDP_PDE_SHADOW	(L2_BASE + PDIR_SLOT_APTE)
    289  1.103.14.2  uebayasi #else /* PAE && XEN */
    290        1.94      yamt #define APDP_PDE	(L2_BASE + PDIR_SLOT_APTE)
    291  1.103.14.2  uebayasi #endif /* PAE && XEN */
    292        1.40   thorpej 
    293        1.94      yamt #define PDP_BASE	L2_BASE
    294        1.94      yamt #define APDP_BASE	AL2_BASE
    295         1.1       cgd 
    296        1.94      yamt /* largest value (-1 for APTP space) */
    297        1.94      yamt #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    298        1.94      yamt #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    299        1.39   thorpej 
    300        1.94      yamt #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    301        1.40   thorpej 
    302        1.94      yamt #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    303        1.94      yamt #define NKL1_START_ENTRIES	0	/* XXX unused */
    304        1.11   mycroft 
    305  1.103.14.1  uebayasi #define NTOPLEVEL_PDES		(PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
    306        1.11   mycroft 
    307        1.94      yamt #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    308         1.1       cgd 
    309        1.94      yamt #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    310        1.94      yamt #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    311        1.94      yamt #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    312        1.94      yamt #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    313        1.94      yamt #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    314        1.94      yamt #define PDES_INITIALIZER	{ L2_BASE }
    315        1.94      yamt #define APDES_INITIALIZER	{ AL2_BASE }
    316        1.40   thorpej 
    317        1.94      yamt #define PTP_LEVELS	2
    318        1.40   thorpej 
    319        1.40   thorpej /*
    320        1.94      yamt  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    321        1.11   mycroft  */
    322         1.1       cgd 
    323        1.94      yamt #define PG_W		PG_AVAIL1	/* "wired" mapping */
    324        1.94      yamt #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    325        1.94      yamt #define PG_X		PG_AVAIL3	/* executable mapping */
    326        1.40   thorpej 
    327        1.40   thorpej /*
    328        1.94      yamt  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    329        1.94      yamt  * Used to avoid false sharing of cache lines.
    330        1.40   thorpej  */
    331       1.102    bouyer #ifdef PAE
    332       1.102    bouyer #define NPTECL		4
    333       1.102    bouyer #else
    334        1.94      yamt #define NPTECL		8
    335       1.102    bouyer #endif
    336        1.70      fvdl 
    337        1.98    bouyer #include <x86/pmap.h>
    338        1.98    bouyer 
    339        1.98    bouyer #ifndef XEN
    340        1.95    bouyer #define pmap_pa2pte(a)			(a)
    341        1.95    bouyer #define pmap_pte2pa(a)			((a) & PG_FRAME)
    342        1.95    bouyer #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    343  1.103.14.2  uebayasi #define pmap_pte_flush()		/* nothing */
    344  1.103.14.2  uebayasi 
    345  1.103.14.2  uebayasi #ifdef PAE
    346  1.103.14.2  uebayasi #define pmap_pte_cas(p, o, n)		atomic_cas_64((p), (o), (n))
    347  1.103.14.2  uebayasi #define pmap_pte_testset(p, n)		\
    348  1.103.14.2  uebayasi     atomic_swap_64((volatile uint64_t *)p, n)
    349  1.103.14.2  uebayasi #define pmap_pte_setbits(p, b)		\
    350  1.103.14.2  uebayasi     atomic_or_64((volatile uint64_t *)p, b)
    351  1.103.14.2  uebayasi #define pmap_pte_clearbits(p, b)	\
    352  1.103.14.2  uebayasi     atomic_and_64((volatile uint64_t *)p, ~(b))
    353  1.103.14.2  uebayasi #else /* PAE */
    354       1.100      yamt #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    355        1.96        ad #define pmap_pte_testset(p, n)		\
    356        1.96        ad     atomic_swap_ulong((volatile unsigned long *)p, n)
    357        1.96        ad #define pmap_pte_setbits(p, b)		\
    358        1.96        ad     atomic_or_ulong((volatile unsigned long *)p, b)
    359        1.96        ad #define pmap_pte_clearbits(p, b)	\
    360        1.96        ad     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    361  1.103.14.2  uebayasi #endif /* PAE */
    362  1.103.14.2  uebayasi 
    363  1.103.14.2  uebayasi #else /* XEN */
    364        1.98    bouyer static __inline pt_entry_t
    365        1.98    bouyer pmap_pa2pte(paddr_t pa)
    366        1.98    bouyer {
    367        1.98    bouyer 	return (pt_entry_t)xpmap_ptom_masked(pa);
    368        1.98    bouyer }
    369        1.98    bouyer 
    370        1.98    bouyer static __inline paddr_t
    371        1.98    bouyer pmap_pte2pa(pt_entry_t pte)
    372        1.98    bouyer {
    373        1.98    bouyer 	return xpmap_mtop_masked(pte & PG_FRAME);
    374        1.98    bouyer }
    375        1.98    bouyer static __inline void
    376        1.98    bouyer pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    377        1.98    bouyer {
    378        1.98    bouyer 	int s = splvm();
    379       1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    380        1.98    bouyer 	splx(s);
    381        1.98    bouyer }
    382        1.98    bouyer 
    383        1.98    bouyer static __inline pt_entry_t
    384       1.101    bouyer pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    385       1.100      yamt {
    386       1.100      yamt 	int s = splvm();
    387       1.100      yamt 	pt_entry_t opte = *ptep;
    388       1.100      yamt 
    389       1.100      yamt 	if (opte == o) {
    390       1.102    bouyer 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    391       1.100      yamt 		xpq_flush_queue();
    392       1.100      yamt 	}
    393       1.100      yamt 	splx(s);
    394       1.100      yamt 	return opte;
    395       1.100      yamt }
    396       1.100      yamt 
    397       1.100      yamt static __inline pt_entry_t
    398        1.98    bouyer pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    399        1.98    bouyer {
    400        1.98    bouyer 	int s = splvm();
    401        1.98    bouyer 	pt_entry_t opte = *pte;
    402       1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    403        1.98    bouyer 	    npte);
    404        1.98    bouyer 	xpq_flush_queue();
    405        1.98    bouyer 	splx(s);
    406        1.98    bouyer 	return opte;
    407        1.98    bouyer }
    408        1.98    bouyer 
    409        1.98    bouyer static __inline void
    410        1.98    bouyer pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    411        1.98    bouyer {
    412        1.98    bouyer 	int s = splvm();
    413       1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    414        1.98    bouyer 	xpq_flush_queue();
    415        1.98    bouyer 	splx(s);
    416        1.98    bouyer }
    417        1.98    bouyer 
    418        1.98    bouyer static __inline void
    419        1.98    bouyer pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    420        1.98    bouyer {
    421        1.98    bouyer 	int s = splvm();
    422       1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    423        1.98    bouyer 	    (*pte) & ~bits);
    424        1.98    bouyer 	xpq_flush_queue();
    425        1.98    bouyer 	splx(s);
    426        1.98    bouyer }
    427        1.98    bouyer 
    428        1.98    bouyer static __inline void
    429        1.98    bouyer pmap_pte_flush(void)
    430        1.98    bouyer {
    431        1.98    bouyer 	int s = splvm();
    432        1.98    bouyer 	xpq_flush_queue();
    433        1.98    bouyer 	splx(s);
    434        1.98    bouyer }
    435       1.102    bouyer 
    436        1.98    bouyer #endif
    437        1.73   thorpej 
    438       1.102    bouyer #ifdef PAE
    439  1.103.14.2  uebayasi /* Address of the static kernel's L2 page */
    440       1.102    bouyer pd_entry_t *pmap_kl2pd;
    441       1.102    bouyer paddr_t pmap_kl2paddr;
    442       1.102    bouyer #endif
    443       1.102    bouyer 
    444       1.102    bouyer 
    445        1.94      yamt struct trapframe;
    446         1.1       cgd 
    447        1.94      yamt int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    448        1.94      yamt void	pmap_ldt_cleanup(struct lwp *);
    449        1.90        ad 
    450        1.40   thorpej #endif	/* _I386_PMAP_H_ */
    451