pmap.h revision 1.108 1 1.108 uebayasi /* $NetBSD: pmap.h,v 1.108 2010/11/14 13:33:21 uebayasi Exp $ */
2 1.38 mycroft
3 1.40 thorpej /*
4 1.40 thorpej *
5 1.40 thorpej * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 1.38 mycroft * All rights reserved.
7 1.38 mycroft *
8 1.38 mycroft * Redistribution and use in source and binary forms, with or without
9 1.38 mycroft * modification, are permitted provided that the following conditions
10 1.38 mycroft * are met:
11 1.38 mycroft * 1. Redistributions of source code must retain the above copyright
12 1.38 mycroft * notice, this list of conditions and the following disclaimer.
13 1.38 mycroft * 2. Redistributions in binary form must reproduce the above copyright
14 1.38 mycroft * notice, this list of conditions and the following disclaimer in the
15 1.38 mycroft * documentation and/or other materials provided with the distribution.
16 1.38 mycroft * 3. All advertising materials mentioning features or use of this software
17 1.40 thorpej * must display the following acknowledgment:
18 1.40 thorpej * This product includes software developed by Charles D. Cranor and
19 1.40 thorpej * Washington University.
20 1.40 thorpej * 4. The name of the author may not be used to endorse or promote products
21 1.40 thorpej * derived from this software without specific prior written permission.
22 1.1 cgd *
23 1.40 thorpej * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.40 thorpej * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.40 thorpej * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.40 thorpej * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.40 thorpej * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 1.40 thorpej * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 1.40 thorpej * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 1.40 thorpej * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 1.40 thorpej * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 1.40 thorpej * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.1 cgd /*
36 1.94 yamt * Copyright (c) 2001 Wasabi Systems, Inc.
37 1.94 yamt * All rights reserved.
38 1.94 yamt *
39 1.94 yamt * Written by Frank van der Linden for Wasabi Systems, Inc.
40 1.94 yamt *
41 1.94 yamt * Redistribution and use in source and binary forms, with or without
42 1.94 yamt * modification, are permitted provided that the following conditions
43 1.94 yamt * are met:
44 1.94 yamt * 1. Redistributions of source code must retain the above copyright
45 1.94 yamt * notice, this list of conditions and the following disclaimer.
46 1.94 yamt * 2. Redistributions in binary form must reproduce the above copyright
47 1.94 yamt * notice, this list of conditions and the following disclaimer in the
48 1.94 yamt * documentation and/or other materials provided with the distribution.
49 1.94 yamt * 3. All advertising materials mentioning features or use of this software
50 1.94 yamt * must display the following acknowledgement:
51 1.94 yamt * This product includes software developed for the NetBSD Project by
52 1.94 yamt * Wasabi Systems, Inc.
53 1.94 yamt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 1.94 yamt * or promote products derived from this software without specific prior
55 1.94 yamt * written permission.
56 1.94 yamt *
57 1.94 yamt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 1.94 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 1.94 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 1.94 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 1.94 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 1.94 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 1.94 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 1.94 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 1.94 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 1.94 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 1.94 yamt * POSSIBILITY OF SUCH DAMAGE.
68 1.1 cgd */
69 1.34 mrg
70 1.40 thorpej #ifndef _I386_PMAP_H_
71 1.40 thorpej #define _I386_PMAP_H_
72 1.40 thorpej
73 1.58 mrg #if defined(_KERNEL_OPT)
74 1.39 thorpej #include "opt_user_ldt.h"
75 1.98 bouyer #include "opt_xen.h"
76 1.34 mrg #endif
77 1.1 cgd
78 1.96 ad #include <sys/atomic.h>
79 1.96 ad
80 1.103 mrg #include <i386/pte.h>
81 1.39 thorpej #include <machine/segments.h>
82 1.92 ad #if defined(_KERNEL)
83 1.91 ad #include <machine/cpufunc.h>
84 1.91 ad #endif
85 1.90 ad
86 1.40 thorpej #include <uvm/uvm_object.h>
87 1.98 bouyer #ifdef XEN
88 1.98 bouyer #include <xen/xenfunc.h>
89 1.98 bouyer #include <xen/xenpmap.h>
90 1.98 bouyer #endif /* XEN */
91 1.1 cgd
92 1.1 cgd /*
93 1.40 thorpej * see pte.h for a description of i386 MMU terminology and hardware
94 1.40 thorpej * interface.
95 1.40 thorpej *
96 1.102 bouyer * a pmap describes a processes' 4GB virtual address space. when PAE
97 1.102 bouyer * is not in use, this virtual address space can be broken up into 1024 4MB
98 1.102 bouyer * regions which are described by PDEs in the PDP. the PDEs are defined as
99 1.102 bouyer * follows:
100 1.40 thorpej *
101 1.40 thorpej * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
102 1.43 thorpej * (the following assumes that KERNBASE is 0xc0000000)
103 1.40 thorpej *
104 1.40 thorpej * PDE#s VA range usage
105 1.68 drochner * 0->766 0x0 -> 0xbfc00000 user address space
106 1.61 yamt * 767 0xbfc00000-> recursive mapping of PDP (used for
107 1.43 thorpej * 0xc0000000 linear mapping of PTPs)
108 1.43 thorpej * 768->1023 0xc0000000-> kernel address space (constant
109 1.40 thorpej * 0xffc00000 across all pmap's/processes)
110 1.40 thorpej * 1023 0xffc00000-> "alternate" recursive PDP mapping
111 1.40 thorpej * <end> (for other pmaps)
112 1.40 thorpej *
113 1.40 thorpej *
114 1.40 thorpej * note: a recursive PDP mapping provides a way to map all the PTEs for
115 1.41 chs * a 4GB address space into a linear chunk of virtual memory. in other
116 1.41 chs * words, the PTE for page 0 is the first int mapped into the 4MB recursive
117 1.41 chs * area. the PTE for page 1 is the second int. the very last int in the
118 1.81 junyoung * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
119 1.40 thorpej * address).
120 1.40 thorpej *
121 1.43 thorpej * all pmap's PD's must have the same values in slots 768->1023 so that
122 1.41 chs * the kernel is always mapped in every process. these values are loaded
123 1.40 thorpej * into the PD at pmap creation time.
124 1.40 thorpej *
125 1.41 chs * at any one time only one pmap can be active on a processor. this is
126 1.41 chs * the pmap whose PDP is pointed to by processor register %cr3. this pmap
127 1.40 thorpej * will have all its PTEs mapped into memory at the recursive mapping
128 1.43 thorpej * point (slot #767 as show above). when the pmap code wants to find the
129 1.40 thorpej * PTE for a virtual address, all it has to do is the following:
130 1.40 thorpej *
131 1.71 thorpej * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
132 1.43 thorpej * = 0xbfc00000 + (VA / 4096) * 4
133 1.40 thorpej *
134 1.40 thorpej * what happens if the pmap layer is asked to perform an operation
135 1.41 chs * on a pmap that is not the one which is currently active? in that
136 1.41 chs * case we take the PA of the PDP of non-active pmap and put it in
137 1.41 chs * slot 1023 of the active pmap. this causes the non-active pmap's
138 1.40 thorpej * PTEs to get mapped in the final 4MB of the 4GB address space
139 1.40 thorpej * (e.g. starting at 0xffc00000).
140 1.40 thorpej *
141 1.40 thorpej * the following figure shows the effects of the recursive PDP mapping:
142 1.40 thorpej *
143 1.40 thorpej * PDP (%cr3)
144 1.40 thorpej * +----+
145 1.40 thorpej * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
146 1.40 thorpej * | |
147 1.40 thorpej * | |
148 1.43 thorpej * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
149 1.83 junyoung * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
150 1.40 thorpej * | |
151 1.40 thorpej * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
152 1.40 thorpej * +----+
153 1.40 thorpej *
154 1.43 thorpej * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
155 1.40 thorpej * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
156 1.40 thorpej *
157 1.43 thorpej * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
158 1.40 thorpej * PTP:
159 1.40 thorpej *
160 1.43 thorpej * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
161 1.40 thorpej * +----+
162 1.43 thorpej * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
163 1.40 thorpej * | |
164 1.40 thorpej * | |
165 1.81 junyoung * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
166 1.43 thorpej * | 768| -> maps contents of first kernel PTP
167 1.40 thorpej * | |
168 1.40 thorpej * |1023|
169 1.40 thorpej * +----+
170 1.40 thorpej *
171 1.81 junyoung * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
172 1.40 thorpej * defined as "PDP_BASE".... within that mapping there are two
173 1.41 chs * defines:
174 1.59 chs * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
175 1.41 chs * which points back to itself.
176 1.59 chs * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
177 1.40 thorpej * establishes the recursive mapping of the alternate pmap.
178 1.40 thorpej * to set the alternate PDP, one just has to put the correct
179 1.40 thorpej * PA info in *APDP_PDE.
180 1.40 thorpej *
181 1.41 chs * note that in the APTE_BASE space, the APDP appears at VA
182 1.40 thorpej * "APDP_BASE" (0xfffff000).
183 1.102 bouyer *
184 1.107 jym * - PAE support -
185 1.107 jym * ---------------
186 1.107 jym *
187 1.107 jym * PAE adds another layer of indirection during address translation, breaking
188 1.107 jym * up the translation process in 3 different levels:
189 1.107 jym * - L3 page directory, containing 4 * 64-bits addresses (index determined by
190 1.107 jym * bits [31:30] from the virtual address). This breaks up the address space
191 1.107 jym * in 4 1GB regions.
192 1.107 jym * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
193 1.107 jym * in 512 * 2MB regions.
194 1.107 jym * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
195 1.107 jym * the pages is still 4K).
196 1.107 jym *
197 1.102 bouyer * The kernel virtual space is mapped by the last entry in the L3 page,
198 1.102 bouyer * the first 3 entries mapping the user VA space.
199 1.107 jym *
200 1.102 bouyer * Because the L3 has only 4 entries of 1GB each, we can't use recursive
201 1.107 jym * mappings at this level for PDP_PDE and APDP_PDE (this would eat up 2 of
202 1.107 jym * the 4GB virtual space). There are also restrictions imposed by Xen on the
203 1.107 jym * last entry of the L3 PD (reference count to this page cannot be bigger
204 1.107 jym * than 1), which makes it hard to use one L3 page per pmap to switch
205 1.107 jym * between pmaps using %cr3.
206 1.107 jym *
207 1.107 jym * As such, each CPU gets its own L3 page that is always loaded into its %cr3
208 1.107 jym * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
209 1.107 jym * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
210 1.107 jym * pages long (corresponding to the 4 entries of the L3), and the different
211 1.107 jym * index/slots (like PDP_PDE) are adapted accordingly.
212 1.107 jym *
213 1.107 jym * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
214 1.107 jym * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
215 1.107 jym *
216 1.107 jym * PTE_BASE and APTE_BASE will need 4 entries in the L2 PD pages to map the
217 1.107 jym * L2 pages recursively.
218 1.107 jym *
219 1.107 jym * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
220 1.107 jym * count on this page to be exactly one), so we use a shadow PD page for
221 1.107 jym * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
222 1.107 jym * contiguous we'll allocate/copy one page per pmap.
223 1.1 cgd */
224 1.65 fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
225 1.33 mrg
226 1.33 mrg /*
227 1.94 yamt * Mask to get rid of the sign-extended part of addresses.
228 1.94 yamt */
229 1.94 yamt #define VA_SIGN_MASK 0
230 1.94 yamt #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
231 1.94 yamt /*
232 1.94 yamt * XXXfvdl this one's not right.
233 1.94 yamt */
234 1.94 yamt #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
235 1.94 yamt
236 1.94 yamt /*
237 1.40 thorpej * the following defines identify the slots used as described above.
238 1.33 mrg */
239 1.102 bouyer #ifdef PAE
240 1.102 bouyer #define L2_SLOT_PTE (KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
241 1.102 bouyer #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 1536: start of kernel space */
242 1.107 jym #ifndef XEN
243 1.107 jym #define L2_SLOT_APTE 2044 /* 2044: alternative recursive slot */
244 1.107 jym #else
245 1.107 jym #define L2_SLOT_APTE 1960 /* 1964-2047 reserved by Xen */
246 1.107 jym #endif
247 1.102 bouyer #else /* PAE */
248 1.102 bouyer #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
249 1.102 bouyer #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */
250 1.98 bouyer #ifndef XEN
251 1.107 jym #define L2_SLOT_APTE 1023 /* 1023: alternative recursive slot */
252 1.98 bouyer #else
253 1.98 bouyer #define L2_SLOT_APTE 1007 /* 1008-1023 reserved by Xen */
254 1.98 bouyer #endif
255 1.102 bouyer #endif /* PAE */
256 1.98 bouyer
257 1.106 jym #define L2_SLOT_KERNBASE L2_SLOT_KERN
258 1.94 yamt
259 1.94 yamt #define PDIR_SLOT_KERN L2_SLOT_KERN
260 1.94 yamt #define PDIR_SLOT_PTE L2_SLOT_PTE
261 1.94 yamt #define PDIR_SLOT_APTE L2_SLOT_APTE
262 1.1 cgd
263 1.1 cgd /*
264 1.41 chs * the following defines give the virtual addresses of various MMU
265 1.40 thorpej * data structures:
266 1.40 thorpej * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
267 1.81 junyoung * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
268 1.40 thorpej * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
269 1.1 cgd */
270 1.29 fvdl
271 1.102 bouyer #define PTE_BASE ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
272 1.102 bouyer #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
273 1.40 thorpej
274 1.94 yamt #define L1_BASE PTE_BASE
275 1.94 yamt #define AL1_BASE APTE_BASE
276 1.40 thorpej
277 1.94 yamt #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
278 1.94 yamt #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
279 1.40 thorpej
280 1.94 yamt #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
281 1.107 jym #if defined(PAE) && defined(XEN)
282 1.102 bouyer /*
283 1.107 jym * when PAE is in use under Xen, we can't write APDP_PDE through the recursive
284 1.107 jym * mapping, because it points to the shadow PD. Use the kernel PD instead,
285 1.107 jym * which is static
286 1.102 bouyer */
287 1.102 bouyer #define APDP_PDE (&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
288 1.102 bouyer #define APDP_PDE_SHADOW (L2_BASE + PDIR_SLOT_APTE)
289 1.107 jym #else /* PAE && XEN */
290 1.94 yamt #define APDP_PDE (L2_BASE + PDIR_SLOT_APTE)
291 1.107 jym #endif /* PAE && XEN */
292 1.40 thorpej
293 1.94 yamt #define PDP_BASE L2_BASE
294 1.94 yamt #define APDP_BASE AL2_BASE
295 1.1 cgd
296 1.94 yamt /* largest value (-1 for APTP space) */
297 1.94 yamt #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
298 1.94 yamt #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
299 1.39 thorpej
300 1.94 yamt #define NKL2_KIMG_ENTRIES 0 /* XXX unused */
301 1.40 thorpej
302 1.94 yamt #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */
303 1.94 yamt #define NKL1_START_ENTRIES 0 /* XXX unused */
304 1.11 mycroft
305 1.105 jym #define NTOPLEVEL_PDES (PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
306 1.11 mycroft
307 1.94 yamt #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
308 1.1 cgd
309 1.94 yamt #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME }
310 1.94 yamt #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
311 1.94 yamt #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
312 1.94 yamt #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
313 1.94 yamt #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
314 1.94 yamt #define PDES_INITIALIZER { L2_BASE }
315 1.94 yamt #define APDES_INITIALIZER { AL2_BASE }
316 1.40 thorpej
317 1.94 yamt #define PTP_LEVELS 2
318 1.40 thorpej
319 1.40 thorpej /*
320 1.94 yamt * PG_AVAIL usage: we make use of the ignored bits of the PTE
321 1.11 mycroft */
322 1.1 cgd
323 1.94 yamt #define PG_W PG_AVAIL1 /* "wired" mapping */
324 1.94 yamt #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
325 1.94 yamt #define PG_X PG_AVAIL3 /* executable mapping */
326 1.40 thorpej
327 1.40 thorpej /*
328 1.94 yamt * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
329 1.94 yamt * Used to avoid false sharing of cache lines.
330 1.40 thorpej */
331 1.102 bouyer #ifdef PAE
332 1.102 bouyer #define NPTECL 4
333 1.102 bouyer #else
334 1.94 yamt #define NPTECL 8
335 1.102 bouyer #endif
336 1.70 fvdl
337 1.98 bouyer #include <x86/pmap.h>
338 1.98 bouyer
339 1.98 bouyer #ifndef XEN
340 1.95 bouyer #define pmap_pa2pte(a) (a)
341 1.95 bouyer #define pmap_pte2pa(a) ((a) & PG_FRAME)
342 1.95 bouyer #define pmap_pte_set(p, n) do { *(p) = (n); } while (0)
343 1.107 jym #define pmap_pte_flush() /* nothing */
344 1.107 jym
345 1.107 jym #ifdef PAE
346 1.107 jym #define pmap_pte_cas(p, o, n) atomic_cas_64((p), (o), (n))
347 1.107 jym #define pmap_pte_testset(p, n) \
348 1.107 jym atomic_swap_64((volatile uint64_t *)p, n)
349 1.107 jym #define pmap_pte_setbits(p, b) \
350 1.107 jym atomic_or_64((volatile uint64_t *)p, b)
351 1.107 jym #define pmap_pte_clearbits(p, b) \
352 1.107 jym atomic_and_64((volatile uint64_t *)p, ~(b))
353 1.107 jym #else /* PAE */
354 1.100 yamt #define pmap_pte_cas(p, o, n) atomic_cas_32((p), (o), (n))
355 1.96 ad #define pmap_pte_testset(p, n) \
356 1.96 ad atomic_swap_ulong((volatile unsigned long *)p, n)
357 1.96 ad #define pmap_pte_setbits(p, b) \
358 1.96 ad atomic_or_ulong((volatile unsigned long *)p, b)
359 1.96 ad #define pmap_pte_clearbits(p, b) \
360 1.96 ad atomic_and_ulong((volatile unsigned long *)p, ~(b))
361 1.107 jym #endif /* PAE */
362 1.107 jym
363 1.107 jym #else /* XEN */
364 1.98 bouyer static __inline pt_entry_t
365 1.98 bouyer pmap_pa2pte(paddr_t pa)
366 1.98 bouyer {
367 1.98 bouyer return (pt_entry_t)xpmap_ptom_masked(pa);
368 1.98 bouyer }
369 1.98 bouyer
370 1.98 bouyer static __inline paddr_t
371 1.98 bouyer pmap_pte2pa(pt_entry_t pte)
372 1.98 bouyer {
373 1.98 bouyer return xpmap_mtop_masked(pte & PG_FRAME);
374 1.98 bouyer }
375 1.98 bouyer static __inline void
376 1.98 bouyer pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
377 1.98 bouyer {
378 1.98 bouyer int s = splvm();
379 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
380 1.98 bouyer splx(s);
381 1.98 bouyer }
382 1.98 bouyer
383 1.98 bouyer static __inline pt_entry_t
384 1.101 bouyer pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
385 1.100 yamt {
386 1.100 yamt int s = splvm();
387 1.100 yamt pt_entry_t opte = *ptep;
388 1.100 yamt
389 1.100 yamt if (opte == o) {
390 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
391 1.100 yamt xpq_flush_queue();
392 1.100 yamt }
393 1.100 yamt splx(s);
394 1.100 yamt return opte;
395 1.100 yamt }
396 1.100 yamt
397 1.100 yamt static __inline pt_entry_t
398 1.98 bouyer pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
399 1.98 bouyer {
400 1.98 bouyer int s = splvm();
401 1.98 bouyer pt_entry_t opte = *pte;
402 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
403 1.98 bouyer npte);
404 1.98 bouyer xpq_flush_queue();
405 1.98 bouyer splx(s);
406 1.98 bouyer return opte;
407 1.98 bouyer }
408 1.98 bouyer
409 1.98 bouyer static __inline void
410 1.98 bouyer pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
411 1.98 bouyer {
412 1.98 bouyer int s = splvm();
413 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
414 1.98 bouyer xpq_flush_queue();
415 1.98 bouyer splx(s);
416 1.98 bouyer }
417 1.98 bouyer
418 1.98 bouyer static __inline void
419 1.98 bouyer pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
420 1.98 bouyer {
421 1.98 bouyer int s = splvm();
422 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
423 1.98 bouyer (*pte) & ~bits);
424 1.98 bouyer xpq_flush_queue();
425 1.98 bouyer splx(s);
426 1.98 bouyer }
427 1.98 bouyer
428 1.98 bouyer static __inline void
429 1.98 bouyer pmap_pte_flush(void)
430 1.98 bouyer {
431 1.98 bouyer int s = splvm();
432 1.98 bouyer xpq_flush_queue();
433 1.98 bouyer splx(s);
434 1.98 bouyer }
435 1.102 bouyer
436 1.98 bouyer #endif
437 1.73 thorpej
438 1.102 bouyer #ifdef PAE
439 1.107 jym /* Address of the static kernel's L2 page */
440 1.102 bouyer pd_entry_t *pmap_kl2pd;
441 1.102 bouyer paddr_t pmap_kl2paddr;
442 1.102 bouyer #endif
443 1.102 bouyer
444 1.102 bouyer
445 1.94 yamt struct trapframe;
446 1.1 cgd
447 1.94 yamt int pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
448 1.94 yamt void pmap_ldt_cleanup(struct lwp *);
449 1.90 ad
450 1.108 uebayasi #include <x86/pmap_pv.h>
451 1.108 uebayasi
452 1.108 uebayasi #define __HAVE_VM_PAGE_MD
453 1.108 uebayasi #define VM_MDPAGE_INIT(pg) \
454 1.108 uebayasi memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
455 1.108 uebayasi PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
456 1.108 uebayasi
457 1.108 uebayasi struct vm_page_md {
458 1.108 uebayasi struct pmap_page mp_pp;
459 1.108 uebayasi };
460 1.108 uebayasi
461 1.40 thorpej #endif /* _I386_PMAP_H_ */
462