pmap.h revision 1.109 1 1.109 chuck /* $NetBSD: pmap.h,v 1.109 2011/02/01 20:09:08 chuck Exp $ */
2 1.38 mycroft
3 1.40 thorpej /*
4 1.40 thorpej * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.38 mycroft * All rights reserved.
6 1.38 mycroft *
7 1.38 mycroft * Redistribution and use in source and binary forms, with or without
8 1.38 mycroft * modification, are permitted provided that the following conditions
9 1.38 mycroft * are met:
10 1.38 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.38 mycroft * notice, this list of conditions and the following disclaimer.
12 1.38 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.38 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.38 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 cgd *
16 1.40 thorpej * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.40 thorpej * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.40 thorpej * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.40 thorpej * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.40 thorpej * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 1.40 thorpej * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 1.40 thorpej * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 1.40 thorpej * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 1.40 thorpej * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 1.40 thorpej * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 1.1 cgd */
27 1.1 cgd
28 1.1 cgd /*
29 1.94 yamt * Copyright (c) 2001 Wasabi Systems, Inc.
30 1.94 yamt * All rights reserved.
31 1.94 yamt *
32 1.94 yamt * Written by Frank van der Linden for Wasabi Systems, Inc.
33 1.94 yamt *
34 1.94 yamt * Redistribution and use in source and binary forms, with or without
35 1.94 yamt * modification, are permitted provided that the following conditions
36 1.94 yamt * are met:
37 1.94 yamt * 1. Redistributions of source code must retain the above copyright
38 1.94 yamt * notice, this list of conditions and the following disclaimer.
39 1.94 yamt * 2. Redistributions in binary form must reproduce the above copyright
40 1.94 yamt * notice, this list of conditions and the following disclaimer in the
41 1.94 yamt * documentation and/or other materials provided with the distribution.
42 1.94 yamt * 3. All advertising materials mentioning features or use of this software
43 1.94 yamt * must display the following acknowledgement:
44 1.94 yamt * This product includes software developed for the NetBSD Project by
45 1.94 yamt * Wasabi Systems, Inc.
46 1.94 yamt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
47 1.94 yamt * or promote products derived from this software without specific prior
48 1.94 yamt * written permission.
49 1.94 yamt *
50 1.94 yamt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
51 1.94 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52 1.94 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 1.94 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
54 1.94 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 1.94 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 1.94 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 1.94 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 1.94 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 1.94 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60 1.94 yamt * POSSIBILITY OF SUCH DAMAGE.
61 1.1 cgd */
62 1.34 mrg
63 1.40 thorpej #ifndef _I386_PMAP_H_
64 1.40 thorpej #define _I386_PMAP_H_
65 1.40 thorpej
66 1.58 mrg #if defined(_KERNEL_OPT)
67 1.39 thorpej #include "opt_user_ldt.h"
68 1.98 bouyer #include "opt_xen.h"
69 1.34 mrg #endif
70 1.1 cgd
71 1.96 ad #include <sys/atomic.h>
72 1.96 ad
73 1.103 mrg #include <i386/pte.h>
74 1.39 thorpej #include <machine/segments.h>
75 1.92 ad #if defined(_KERNEL)
76 1.91 ad #include <machine/cpufunc.h>
77 1.91 ad #endif
78 1.90 ad
79 1.40 thorpej #include <uvm/uvm_object.h>
80 1.98 bouyer #ifdef XEN
81 1.98 bouyer #include <xen/xenfunc.h>
82 1.98 bouyer #include <xen/xenpmap.h>
83 1.98 bouyer #endif /* XEN */
84 1.1 cgd
85 1.1 cgd /*
86 1.40 thorpej * see pte.h for a description of i386 MMU terminology and hardware
87 1.40 thorpej * interface.
88 1.40 thorpej *
89 1.102 bouyer * a pmap describes a processes' 4GB virtual address space. when PAE
90 1.102 bouyer * is not in use, this virtual address space can be broken up into 1024 4MB
91 1.102 bouyer * regions which are described by PDEs in the PDP. the PDEs are defined as
92 1.102 bouyer * follows:
93 1.40 thorpej *
94 1.40 thorpej * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
95 1.43 thorpej * (the following assumes that KERNBASE is 0xc0000000)
96 1.40 thorpej *
97 1.40 thorpej * PDE#s VA range usage
98 1.68 drochner * 0->766 0x0 -> 0xbfc00000 user address space
99 1.61 yamt * 767 0xbfc00000-> recursive mapping of PDP (used for
100 1.43 thorpej * 0xc0000000 linear mapping of PTPs)
101 1.43 thorpej * 768->1023 0xc0000000-> kernel address space (constant
102 1.40 thorpej * 0xffc00000 across all pmap's/processes)
103 1.40 thorpej * 1023 0xffc00000-> "alternate" recursive PDP mapping
104 1.40 thorpej * <end> (for other pmaps)
105 1.40 thorpej *
106 1.40 thorpej *
107 1.40 thorpej * note: a recursive PDP mapping provides a way to map all the PTEs for
108 1.41 chs * a 4GB address space into a linear chunk of virtual memory. in other
109 1.41 chs * words, the PTE for page 0 is the first int mapped into the 4MB recursive
110 1.41 chs * area. the PTE for page 1 is the second int. the very last int in the
111 1.81 junyoung * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
112 1.40 thorpej * address).
113 1.40 thorpej *
114 1.43 thorpej * all pmap's PD's must have the same values in slots 768->1023 so that
115 1.41 chs * the kernel is always mapped in every process. these values are loaded
116 1.40 thorpej * into the PD at pmap creation time.
117 1.40 thorpej *
118 1.41 chs * at any one time only one pmap can be active on a processor. this is
119 1.41 chs * the pmap whose PDP is pointed to by processor register %cr3. this pmap
120 1.40 thorpej * will have all its PTEs mapped into memory at the recursive mapping
121 1.43 thorpej * point (slot #767 as show above). when the pmap code wants to find the
122 1.40 thorpej * PTE for a virtual address, all it has to do is the following:
123 1.40 thorpej *
124 1.71 thorpej * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
125 1.43 thorpej * = 0xbfc00000 + (VA / 4096) * 4
126 1.40 thorpej *
127 1.40 thorpej * what happens if the pmap layer is asked to perform an operation
128 1.41 chs * on a pmap that is not the one which is currently active? in that
129 1.41 chs * case we take the PA of the PDP of non-active pmap and put it in
130 1.41 chs * slot 1023 of the active pmap. this causes the non-active pmap's
131 1.40 thorpej * PTEs to get mapped in the final 4MB of the 4GB address space
132 1.40 thorpej * (e.g. starting at 0xffc00000).
133 1.40 thorpej *
134 1.40 thorpej * the following figure shows the effects of the recursive PDP mapping:
135 1.40 thorpej *
136 1.40 thorpej * PDP (%cr3)
137 1.40 thorpej * +----+
138 1.40 thorpej * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
139 1.40 thorpej * | |
140 1.40 thorpej * | |
141 1.43 thorpej * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
142 1.83 junyoung * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
143 1.40 thorpej * | |
144 1.40 thorpej * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
145 1.40 thorpej * +----+
146 1.40 thorpej *
147 1.43 thorpej * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
148 1.40 thorpej * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
149 1.40 thorpej *
150 1.43 thorpej * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
151 1.40 thorpej * PTP:
152 1.40 thorpej *
153 1.43 thorpej * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
154 1.40 thorpej * +----+
155 1.43 thorpej * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
156 1.40 thorpej * | |
157 1.40 thorpej * | |
158 1.81 junyoung * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
159 1.43 thorpej * | 768| -> maps contents of first kernel PTP
160 1.40 thorpej * | |
161 1.40 thorpej * |1023|
162 1.40 thorpej * +----+
163 1.40 thorpej *
164 1.81 junyoung * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
165 1.40 thorpej * defined as "PDP_BASE".... within that mapping there are two
166 1.41 chs * defines:
167 1.59 chs * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
168 1.41 chs * which points back to itself.
169 1.59 chs * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
170 1.40 thorpej * establishes the recursive mapping of the alternate pmap.
171 1.40 thorpej * to set the alternate PDP, one just has to put the correct
172 1.40 thorpej * PA info in *APDP_PDE.
173 1.40 thorpej *
174 1.41 chs * note that in the APTE_BASE space, the APDP appears at VA
175 1.40 thorpej * "APDP_BASE" (0xfffff000).
176 1.102 bouyer *
177 1.107 jym * - PAE support -
178 1.107 jym * ---------------
179 1.107 jym *
180 1.107 jym * PAE adds another layer of indirection during address translation, breaking
181 1.107 jym * up the translation process in 3 different levels:
182 1.107 jym * - L3 page directory, containing 4 * 64-bits addresses (index determined by
183 1.107 jym * bits [31:30] from the virtual address). This breaks up the address space
184 1.107 jym * in 4 1GB regions.
185 1.107 jym * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
186 1.107 jym * in 512 * 2MB regions.
187 1.107 jym * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
188 1.107 jym * the pages is still 4K).
189 1.107 jym *
190 1.102 bouyer * The kernel virtual space is mapped by the last entry in the L3 page,
191 1.102 bouyer * the first 3 entries mapping the user VA space.
192 1.107 jym *
193 1.102 bouyer * Because the L3 has only 4 entries of 1GB each, we can't use recursive
194 1.107 jym * mappings at this level for PDP_PDE and APDP_PDE (this would eat up 2 of
195 1.107 jym * the 4GB virtual space). There are also restrictions imposed by Xen on the
196 1.107 jym * last entry of the L3 PD (reference count to this page cannot be bigger
197 1.107 jym * than 1), which makes it hard to use one L3 page per pmap to switch
198 1.107 jym * between pmaps using %cr3.
199 1.107 jym *
200 1.107 jym * As such, each CPU gets its own L3 page that is always loaded into its %cr3
201 1.107 jym * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
202 1.107 jym * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
203 1.107 jym * pages long (corresponding to the 4 entries of the L3), and the different
204 1.107 jym * index/slots (like PDP_PDE) are adapted accordingly.
205 1.107 jym *
206 1.107 jym * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
207 1.107 jym * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
208 1.107 jym *
209 1.107 jym * PTE_BASE and APTE_BASE will need 4 entries in the L2 PD pages to map the
210 1.107 jym * L2 pages recursively.
211 1.107 jym *
212 1.107 jym * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
213 1.107 jym * count on this page to be exactly one), so we use a shadow PD page for
214 1.107 jym * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
215 1.107 jym * contiguous we'll allocate/copy one page per pmap.
216 1.1 cgd */
217 1.65 fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
218 1.33 mrg
219 1.33 mrg /*
220 1.94 yamt * Mask to get rid of the sign-extended part of addresses.
221 1.94 yamt */
222 1.94 yamt #define VA_SIGN_MASK 0
223 1.94 yamt #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
224 1.94 yamt /*
225 1.94 yamt * XXXfvdl this one's not right.
226 1.94 yamt */
227 1.94 yamt #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
228 1.94 yamt
229 1.94 yamt /*
230 1.40 thorpej * the following defines identify the slots used as described above.
231 1.33 mrg */
232 1.102 bouyer #ifdef PAE
233 1.102 bouyer #define L2_SLOT_PTE (KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
234 1.102 bouyer #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 1536: start of kernel space */
235 1.107 jym #ifndef XEN
236 1.107 jym #define L2_SLOT_APTE 2044 /* 2044: alternative recursive slot */
237 1.107 jym #else
238 1.107 jym #define L2_SLOT_APTE 1960 /* 1964-2047 reserved by Xen */
239 1.107 jym #endif
240 1.102 bouyer #else /* PAE */
241 1.102 bouyer #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
242 1.102 bouyer #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */
243 1.98 bouyer #ifndef XEN
244 1.107 jym #define L2_SLOT_APTE 1023 /* 1023: alternative recursive slot */
245 1.98 bouyer #else
246 1.98 bouyer #define L2_SLOT_APTE 1007 /* 1008-1023 reserved by Xen */
247 1.98 bouyer #endif
248 1.102 bouyer #endif /* PAE */
249 1.98 bouyer
250 1.106 jym #define L2_SLOT_KERNBASE L2_SLOT_KERN
251 1.94 yamt
252 1.94 yamt #define PDIR_SLOT_KERN L2_SLOT_KERN
253 1.94 yamt #define PDIR_SLOT_PTE L2_SLOT_PTE
254 1.94 yamt #define PDIR_SLOT_APTE L2_SLOT_APTE
255 1.1 cgd
256 1.1 cgd /*
257 1.41 chs * the following defines give the virtual addresses of various MMU
258 1.40 thorpej * data structures:
259 1.40 thorpej * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
260 1.81 junyoung * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
261 1.40 thorpej * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
262 1.1 cgd */
263 1.29 fvdl
264 1.102 bouyer #define PTE_BASE ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
265 1.102 bouyer #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
266 1.40 thorpej
267 1.94 yamt #define L1_BASE PTE_BASE
268 1.94 yamt #define AL1_BASE APTE_BASE
269 1.40 thorpej
270 1.94 yamt #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
271 1.94 yamt #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
272 1.40 thorpej
273 1.94 yamt #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
274 1.107 jym #if defined(PAE) && defined(XEN)
275 1.102 bouyer /*
276 1.107 jym * when PAE is in use under Xen, we can't write APDP_PDE through the recursive
277 1.107 jym * mapping, because it points to the shadow PD. Use the kernel PD instead,
278 1.107 jym * which is static
279 1.102 bouyer */
280 1.102 bouyer #define APDP_PDE (&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
281 1.102 bouyer #define APDP_PDE_SHADOW (L2_BASE + PDIR_SLOT_APTE)
282 1.107 jym #else /* PAE && XEN */
283 1.94 yamt #define APDP_PDE (L2_BASE + PDIR_SLOT_APTE)
284 1.107 jym #endif /* PAE && XEN */
285 1.40 thorpej
286 1.94 yamt #define PDP_BASE L2_BASE
287 1.94 yamt #define APDP_BASE AL2_BASE
288 1.1 cgd
289 1.94 yamt /* largest value (-1 for APTP space) */
290 1.94 yamt #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
291 1.94 yamt #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
292 1.39 thorpej
293 1.94 yamt #define NKL2_KIMG_ENTRIES 0 /* XXX unused */
294 1.40 thorpej
295 1.94 yamt #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */
296 1.94 yamt #define NKL1_START_ENTRIES 0 /* XXX unused */
297 1.11 mycroft
298 1.105 jym #define NTOPLEVEL_PDES (PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
299 1.11 mycroft
300 1.94 yamt #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
301 1.1 cgd
302 1.94 yamt #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME }
303 1.94 yamt #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
304 1.94 yamt #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
305 1.94 yamt #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
306 1.94 yamt #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
307 1.94 yamt #define PDES_INITIALIZER { L2_BASE }
308 1.94 yamt #define APDES_INITIALIZER { AL2_BASE }
309 1.40 thorpej
310 1.94 yamt #define PTP_LEVELS 2
311 1.40 thorpej
312 1.40 thorpej /*
313 1.94 yamt * PG_AVAIL usage: we make use of the ignored bits of the PTE
314 1.11 mycroft */
315 1.1 cgd
316 1.94 yamt #define PG_W PG_AVAIL1 /* "wired" mapping */
317 1.94 yamt #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
318 1.94 yamt #define PG_X PG_AVAIL3 /* executable mapping */
319 1.40 thorpej
320 1.40 thorpej /*
321 1.94 yamt * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
322 1.94 yamt * Used to avoid false sharing of cache lines.
323 1.40 thorpej */
324 1.102 bouyer #ifdef PAE
325 1.102 bouyer #define NPTECL 4
326 1.102 bouyer #else
327 1.94 yamt #define NPTECL 8
328 1.102 bouyer #endif
329 1.70 fvdl
330 1.98 bouyer #include <x86/pmap.h>
331 1.98 bouyer
332 1.98 bouyer #ifndef XEN
333 1.95 bouyer #define pmap_pa2pte(a) (a)
334 1.95 bouyer #define pmap_pte2pa(a) ((a) & PG_FRAME)
335 1.95 bouyer #define pmap_pte_set(p, n) do { *(p) = (n); } while (0)
336 1.107 jym #define pmap_pte_flush() /* nothing */
337 1.107 jym
338 1.107 jym #ifdef PAE
339 1.107 jym #define pmap_pte_cas(p, o, n) atomic_cas_64((p), (o), (n))
340 1.107 jym #define pmap_pte_testset(p, n) \
341 1.107 jym atomic_swap_64((volatile uint64_t *)p, n)
342 1.107 jym #define pmap_pte_setbits(p, b) \
343 1.107 jym atomic_or_64((volatile uint64_t *)p, b)
344 1.107 jym #define pmap_pte_clearbits(p, b) \
345 1.107 jym atomic_and_64((volatile uint64_t *)p, ~(b))
346 1.107 jym #else /* PAE */
347 1.100 yamt #define pmap_pte_cas(p, o, n) atomic_cas_32((p), (o), (n))
348 1.96 ad #define pmap_pte_testset(p, n) \
349 1.96 ad atomic_swap_ulong((volatile unsigned long *)p, n)
350 1.96 ad #define pmap_pte_setbits(p, b) \
351 1.96 ad atomic_or_ulong((volatile unsigned long *)p, b)
352 1.96 ad #define pmap_pte_clearbits(p, b) \
353 1.96 ad atomic_and_ulong((volatile unsigned long *)p, ~(b))
354 1.107 jym #endif /* PAE */
355 1.107 jym
356 1.107 jym #else /* XEN */
357 1.98 bouyer static __inline pt_entry_t
358 1.98 bouyer pmap_pa2pte(paddr_t pa)
359 1.98 bouyer {
360 1.98 bouyer return (pt_entry_t)xpmap_ptom_masked(pa);
361 1.98 bouyer }
362 1.98 bouyer
363 1.98 bouyer static __inline paddr_t
364 1.98 bouyer pmap_pte2pa(pt_entry_t pte)
365 1.98 bouyer {
366 1.98 bouyer return xpmap_mtop_masked(pte & PG_FRAME);
367 1.98 bouyer }
368 1.98 bouyer static __inline void
369 1.98 bouyer pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
370 1.98 bouyer {
371 1.98 bouyer int s = splvm();
372 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
373 1.98 bouyer splx(s);
374 1.98 bouyer }
375 1.98 bouyer
376 1.98 bouyer static __inline pt_entry_t
377 1.101 bouyer pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
378 1.100 yamt {
379 1.100 yamt int s = splvm();
380 1.100 yamt pt_entry_t opte = *ptep;
381 1.100 yamt
382 1.100 yamt if (opte == o) {
383 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
384 1.100 yamt xpq_flush_queue();
385 1.100 yamt }
386 1.100 yamt splx(s);
387 1.100 yamt return opte;
388 1.100 yamt }
389 1.100 yamt
390 1.100 yamt static __inline pt_entry_t
391 1.98 bouyer pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
392 1.98 bouyer {
393 1.98 bouyer int s = splvm();
394 1.98 bouyer pt_entry_t opte = *pte;
395 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
396 1.98 bouyer npte);
397 1.98 bouyer xpq_flush_queue();
398 1.98 bouyer splx(s);
399 1.98 bouyer return opte;
400 1.98 bouyer }
401 1.98 bouyer
402 1.98 bouyer static __inline void
403 1.98 bouyer pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
404 1.98 bouyer {
405 1.98 bouyer int s = splvm();
406 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
407 1.98 bouyer xpq_flush_queue();
408 1.98 bouyer splx(s);
409 1.98 bouyer }
410 1.98 bouyer
411 1.98 bouyer static __inline void
412 1.98 bouyer pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
413 1.98 bouyer {
414 1.98 bouyer int s = splvm();
415 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
416 1.98 bouyer (*pte) & ~bits);
417 1.98 bouyer xpq_flush_queue();
418 1.98 bouyer splx(s);
419 1.98 bouyer }
420 1.98 bouyer
421 1.98 bouyer static __inline void
422 1.98 bouyer pmap_pte_flush(void)
423 1.98 bouyer {
424 1.98 bouyer int s = splvm();
425 1.98 bouyer xpq_flush_queue();
426 1.98 bouyer splx(s);
427 1.98 bouyer }
428 1.102 bouyer
429 1.98 bouyer #endif
430 1.73 thorpej
431 1.102 bouyer #ifdef PAE
432 1.107 jym /* Address of the static kernel's L2 page */
433 1.102 bouyer pd_entry_t *pmap_kl2pd;
434 1.102 bouyer paddr_t pmap_kl2paddr;
435 1.102 bouyer #endif
436 1.102 bouyer
437 1.102 bouyer
438 1.94 yamt struct trapframe;
439 1.1 cgd
440 1.94 yamt int pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
441 1.94 yamt void pmap_ldt_cleanup(struct lwp *);
442 1.90 ad
443 1.108 uebayasi #include <x86/pmap_pv.h>
444 1.108 uebayasi
445 1.108 uebayasi #define __HAVE_VM_PAGE_MD
446 1.108 uebayasi #define VM_MDPAGE_INIT(pg) \
447 1.108 uebayasi memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
448 1.108 uebayasi PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
449 1.108 uebayasi
450 1.108 uebayasi struct vm_page_md {
451 1.108 uebayasi struct pmap_page mp_pp;
452 1.108 uebayasi };
453 1.108 uebayasi
454 1.40 thorpej #endif /* _I386_PMAP_H_ */
455