Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.117.8.1
      1  1.117.8.1  pgoyette /*	$NetBSD: pmap.h,v 1.117.8.1 2016/11/04 14:49:01 pgoyette Exp $	*/
      2       1.38   mycroft 
      3       1.40   thorpej /*
      4       1.40   thorpej  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5       1.38   mycroft  * All rights reserved.
      6       1.38   mycroft  *
      7       1.38   mycroft  * Redistribution and use in source and binary forms, with or without
      8       1.38   mycroft  * modification, are permitted provided that the following conditions
      9       1.38   mycroft  * are met:
     10       1.38   mycroft  * 1. Redistributions of source code must retain the above copyright
     11       1.38   mycroft  *    notice, this list of conditions and the following disclaimer.
     12       1.38   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.38   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14       1.38   mycroft  *    documentation and/or other materials provided with the distribution.
     15        1.1       cgd  *
     16       1.40   thorpej  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17       1.40   thorpej  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18       1.40   thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19       1.40   thorpej  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20       1.40   thorpej  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21       1.40   thorpej  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22       1.40   thorpej  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23       1.40   thorpej  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24       1.40   thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25       1.40   thorpej  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26        1.1       cgd  */
     27        1.1       cgd 
     28        1.1       cgd /*
     29       1.94      yamt  * Copyright (c) 2001 Wasabi Systems, Inc.
     30       1.94      yamt  * All rights reserved.
     31       1.94      yamt  *
     32       1.94      yamt  * Written by Frank van der Linden for Wasabi Systems, Inc.
     33       1.94      yamt  *
     34       1.94      yamt  * Redistribution and use in source and binary forms, with or without
     35       1.94      yamt  * modification, are permitted provided that the following conditions
     36       1.94      yamt  * are met:
     37       1.94      yamt  * 1. Redistributions of source code must retain the above copyright
     38       1.94      yamt  *    notice, this list of conditions and the following disclaimer.
     39       1.94      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     40       1.94      yamt  *    notice, this list of conditions and the following disclaimer in the
     41       1.94      yamt  *    documentation and/or other materials provided with the distribution.
     42       1.94      yamt  * 3. All advertising materials mentioning features or use of this software
     43       1.94      yamt  *    must display the following acknowledgement:
     44       1.94      yamt  *      This product includes software developed for the NetBSD Project by
     45       1.94      yamt  *      Wasabi Systems, Inc.
     46       1.94      yamt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     47       1.94      yamt  *    or promote products derived from this software without specific prior
     48       1.94      yamt  *    written permission.
     49       1.94      yamt  *
     50       1.94      yamt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     51       1.94      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     52       1.94      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     53       1.94      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     54       1.94      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55       1.94      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56       1.94      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57       1.94      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58       1.94      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59       1.94      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     60       1.94      yamt  * POSSIBILITY OF SUCH DAMAGE.
     61        1.1       cgd  */
     62       1.34       mrg 
     63       1.40   thorpej #ifndef	_I386_PMAP_H_
     64       1.40   thorpej #define	_I386_PMAP_H_
     65       1.40   thorpej 
     66       1.58       mrg #if defined(_KERNEL_OPT)
     67       1.39   thorpej #include "opt_user_ldt.h"
     68       1.98    bouyer #include "opt_xen.h"
     69       1.34       mrg #endif
     70        1.1       cgd 
     71       1.96        ad #include <sys/atomic.h>
     72       1.96        ad 
     73      1.103       mrg #include <i386/pte.h>
     74       1.39   thorpej #include <machine/segments.h>
     75       1.92        ad #if defined(_KERNEL)
     76       1.91        ad #include <machine/cpufunc.h>
     77       1.91        ad #endif
     78       1.90        ad 
     79       1.40   thorpej #include <uvm/uvm_object.h>
     80       1.98    bouyer #ifdef XEN
     81       1.98    bouyer #include <xen/xenfunc.h>
     82       1.98    bouyer #include <xen/xenpmap.h>
     83       1.98    bouyer #endif /* XEN */
     84        1.1       cgd 
     85        1.1       cgd /*
     86       1.40   thorpej  * see pte.h for a description of i386 MMU terminology and hardware
     87       1.40   thorpej  * interface.
     88       1.40   thorpej  *
     89      1.102    bouyer  * a pmap describes a processes' 4GB virtual address space.  when PAE
     90      1.102    bouyer  * is not in use, this virtual address space can be broken up into 1024 4MB
     91      1.102    bouyer  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     92      1.102    bouyer  * follows:
     93       1.40   thorpej  *
     94       1.40   thorpej  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     95       1.43   thorpej  * (the following assumes that KERNBASE is 0xc0000000)
     96       1.40   thorpej  *
     97       1.40   thorpej  * PDE#s	VA range		usage
     98       1.68  drochner  * 0->766	0x0 -> 0xbfc00000	user address space
     99       1.61      yamt  * 767		0xbfc00000->		recursive mapping of PDP (used for
    100       1.43   thorpej  *			0xc0000000	linear mapping of PTPs)
    101       1.43   thorpej  * 768->1023	0xc0000000->		kernel address space (constant
    102       1.40   thorpej  *			0xffc00000	across all pmap's/processes)
    103      1.115    cherry  *			<end>
    104       1.40   thorpej  *
    105       1.40   thorpej  *
    106       1.40   thorpej  * note: a recursive PDP mapping provides a way to map all the PTEs for
    107       1.41       chs  * a 4GB address space into a linear chunk of virtual memory.  in other
    108       1.41       chs  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    109       1.41       chs  * area.  the PTE for page 1 is the second int.  the very last int in the
    110       1.81  junyoung  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    111       1.40   thorpej  * address).
    112       1.40   thorpej  *
    113       1.43   thorpej  * all pmap's PD's must have the same values in slots 768->1023 so that
    114       1.41       chs  * the kernel is always mapped in every process.  these values are loaded
    115       1.40   thorpej  * into the PD at pmap creation time.
    116       1.40   thorpej  *
    117       1.41       chs  * at any one time only one pmap can be active on a processor.  this is
    118       1.41       chs  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    119       1.40   thorpej  * will have all its PTEs mapped into memory at the recursive mapping
    120       1.43   thorpej  * point (slot #767 as show above).  when the pmap code wants to find the
    121       1.40   thorpej  * PTE for a virtual address, all it has to do is the following:
    122       1.40   thorpej  *
    123       1.71   thorpej  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    124       1.43   thorpej  *                = 0xbfc00000 + (VA / 4096) * 4
    125       1.40   thorpej  *
    126       1.40   thorpej  * what happens if the pmap layer is asked to perform an operation
    127       1.41       chs  * on a pmap that is not the one which is currently active?  in that
    128      1.115    cherry  * case we temporarily load this pmap, perform the operation, and mark
    129      1.115    cherry  * the currently active one as pending lazy reload.
    130       1.40   thorpej  *
    131       1.40   thorpej  * the following figure shows the effects of the recursive PDP mapping:
    132       1.40   thorpej  *
    133       1.40   thorpej  *   PDP (%cr3)
    134       1.40   thorpej  *   +----+
    135       1.40   thorpej  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    136       1.40   thorpej  *   |    |
    137       1.40   thorpej  *   |    |
    138       1.43   thorpej  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    139       1.83  junyoung  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    140       1.40   thorpej  *   |    |
    141       1.40   thorpej  *   +----+
    142       1.40   thorpej  *
    143       1.43   thorpej  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    144       1.40   thorpej  *
    145       1.43   thorpej  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    146       1.40   thorpej  * PTP:
    147       1.40   thorpej  *
    148       1.43   thorpej  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    149       1.40   thorpej  *   +----+
    150       1.43   thorpej  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    151       1.40   thorpej  *   |    |
    152       1.40   thorpej  *   |    |
    153       1.81  junyoung  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    154       1.43   thorpej  *   | 768| -> maps contents of first kernel PTP
    155       1.40   thorpej  *   |    |
    156       1.40   thorpej  *   |1023|
    157       1.40   thorpej  *   +----+
    158       1.40   thorpej  *
    159       1.81  junyoung  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    160       1.40   thorpej  * defined as "PDP_BASE".... within that mapping there are two
    161       1.41       chs  * defines:
    162       1.59       chs  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    163       1.41       chs  *      which points back to itself.
    164      1.102    bouyer  *
    165      1.107       jym  * - PAE support -
    166      1.107       jym  * ---------------
    167      1.107       jym  *
    168      1.107       jym  * PAE adds another layer of indirection during address translation, breaking
    169      1.107       jym  * up the translation process in 3 different levels:
    170      1.107       jym  * - L3 page directory, containing 4 * 64-bits addresses (index determined by
    171      1.107       jym  * bits [31:30] from the virtual address). This breaks up the address space
    172      1.107       jym  * in 4 1GB regions.
    173      1.107       jym  * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
    174      1.107       jym  * in 512 * 2MB regions.
    175      1.107       jym  * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
    176      1.107       jym  * the pages is still 4K).
    177      1.107       jym  *
    178      1.102    bouyer  * The kernel virtual space is mapped by the last entry in the L3 page,
    179      1.102    bouyer  * the first 3 entries mapping the user VA space.
    180      1.107       jym  *
    181      1.102    bouyer  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    182      1.115    cherry  * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB
    183      1.115    cherry  * virtual space). There are also restrictions imposed by Xen on the
    184      1.115    cherry  * last entry of the L3 PD (reference count to this page cannot be
    185      1.115    cherry  * bigger than 1), which makes it hard to use one L3 page per pmap to
    186      1.115    cherry  * switch between pmaps using %cr3.
    187      1.107       jym  *
    188      1.107       jym  * As such, each CPU gets its own L3 page that is always loaded into its %cr3
    189      1.107       jym  * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
    190      1.107       jym  * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
    191      1.107       jym  * pages long (corresponding to the 4 entries of the L3), and the different
    192      1.107       jym  * index/slots (like PDP_PDE) are adapted accordingly.
    193      1.107       jym  *
    194      1.107       jym  * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
    195      1.107       jym  * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
    196      1.107       jym  *
    197      1.115    cherry  * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages
    198      1.115    cherry  * recursively.
    199      1.107       jym  *
    200      1.107       jym  * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
    201      1.107       jym  * count on this page to be exactly one), so we use a shadow PD page for
    202      1.107       jym  * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
    203      1.107       jym  * contiguous we'll allocate/copy one page per pmap.
    204        1.1       cgd  */
    205       1.33       mrg 
    206       1.33       mrg /*
    207       1.94      yamt  * Mask to get rid of the sign-extended part of addresses.
    208       1.94      yamt  */
    209       1.94      yamt #define VA_SIGN_MASK		0
    210       1.94      yamt #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    211       1.94      yamt /*
    212       1.94      yamt  * XXXfvdl this one's not right.
    213       1.94      yamt  */
    214       1.94      yamt #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    215       1.94      yamt 
    216       1.94      yamt /*
    217       1.40   thorpej  * the following defines identify the slots used as described above.
    218       1.33       mrg  */
    219      1.102    bouyer #ifdef PAE
    220      1.102    bouyer #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
    221      1.102    bouyer #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
    222      1.102    bouyer #else /* PAE */
    223      1.102    bouyer #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
    224      1.102    bouyer #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 768: start of kernel space */
    225      1.102    bouyer #endif /* PAE */
    226       1.98    bouyer 
    227      1.106       jym #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    228       1.94      yamt 
    229       1.94      yamt #define PDIR_SLOT_KERN	L2_SLOT_KERN
    230       1.94      yamt #define PDIR_SLOT_PTE	L2_SLOT_PTE
    231        1.1       cgd 
    232        1.1       cgd /*
    233       1.41       chs  * the following defines give the virtual addresses of various MMU
    234       1.40   thorpej  * data structures:
    235      1.115    cherry  * PTE_BASE: the base VA of the linear PTE mappings
    236      1.115    cherry  * PDP_BASE: the base VA of the recursive mapping of the PDP
    237      1.115    cherry  * PDP_PDE: the VA of the PDE that points back to the PDP
    238        1.1       cgd  */
    239       1.29      fvdl 
    240      1.102    bouyer #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    241       1.40   thorpej 
    242       1.94      yamt #define L1_BASE		PTE_BASE
    243       1.40   thorpej 
    244       1.94      yamt #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    245       1.40   thorpej 
    246       1.94      yamt #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    247       1.40   thorpej 
    248       1.94      yamt #define PDP_BASE	L2_BASE
    249        1.1       cgd 
    250       1.94      yamt /* largest value (-1 for APTP space) */
    251       1.94      yamt #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    252       1.94      yamt #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    253       1.39   thorpej 
    254       1.94      yamt #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    255       1.40   thorpej 
    256       1.94      yamt #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    257       1.94      yamt #define NKL1_START_ENTRIES	0	/* XXX unused */
    258       1.11   mycroft 
    259      1.115    cherry #ifndef XEN
    260      1.105       jym #define NTOPLEVEL_PDES		(PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
    261      1.115    cherry #else	/* !XEN */
    262      1.115    cherry #ifdef  PAE
    263      1.115    cherry #define NTOPLEVEL_PDES		1964	/* 1964-2047 reserved by Xen */
    264      1.115    cherry #else	/* PAE */
    265      1.115    cherry #define NTOPLEVEL_PDES		1008	/* 1008-1023 reserved by Xen */
    266      1.115    cherry #endif	/* PAE */
    267      1.115    cherry #endif  /* !XEN */
    268       1.94      yamt #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    269        1.1       cgd 
    270       1.94      yamt #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    271       1.94      yamt #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    272       1.94      yamt #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    273       1.94      yamt #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    274       1.94      yamt #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    275       1.94      yamt #define PDES_INITIALIZER	{ L2_BASE }
    276       1.40   thorpej 
    277       1.94      yamt #define PTP_LEVELS	2
    278       1.40   thorpej 
    279       1.40   thorpej /*
    280       1.94      yamt  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    281       1.11   mycroft  */
    282        1.1       cgd 
    283       1.94      yamt #define PG_W		PG_AVAIL1	/* "wired" mapping */
    284       1.94      yamt #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    285       1.94      yamt #define PG_X		PG_AVAIL3	/* executable mapping */
    286       1.40   thorpej 
    287       1.40   thorpej /*
    288       1.94      yamt  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    289       1.94      yamt  * Used to avoid false sharing of cache lines.
    290       1.40   thorpej  */
    291      1.102    bouyer #ifdef PAE
    292      1.102    bouyer #define NPTECL		4
    293      1.102    bouyer #else
    294       1.94      yamt #define NPTECL		8
    295      1.102    bouyer #endif
    296       1.70      fvdl 
    297       1.98    bouyer #include <x86/pmap.h>
    298       1.98    bouyer 
    299       1.98    bouyer #ifndef XEN
    300       1.95    bouyer #define pmap_pa2pte(a)			(a)
    301       1.95    bouyer #define pmap_pte2pa(a)			((a) & PG_FRAME)
    302       1.95    bouyer #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    303      1.107       jym #define pmap_pte_flush()		/* nothing */
    304      1.107       jym 
    305      1.107       jym #ifdef PAE
    306      1.107       jym #define pmap_pte_cas(p, o, n)		atomic_cas_64((p), (o), (n))
    307      1.107       jym #define pmap_pte_testset(p, n)		\
    308      1.107       jym     atomic_swap_64((volatile uint64_t *)p, n)
    309      1.107       jym #define pmap_pte_setbits(p, b)		\
    310      1.107       jym     atomic_or_64((volatile uint64_t *)p, b)
    311      1.107       jym #define pmap_pte_clearbits(p, b)	\
    312      1.107       jym     atomic_and_64((volatile uint64_t *)p, ~(b))
    313      1.107       jym #else /* PAE */
    314      1.100      yamt #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    315       1.96        ad #define pmap_pte_testset(p, n)		\
    316       1.96        ad     atomic_swap_ulong((volatile unsigned long *)p, n)
    317       1.96        ad #define pmap_pte_setbits(p, b)		\
    318       1.96        ad     atomic_or_ulong((volatile unsigned long *)p, b)
    319       1.96        ad #define pmap_pte_clearbits(p, b)	\
    320       1.96        ad     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    321      1.107       jym #endif /* PAE */
    322      1.107       jym 
    323      1.107       jym #else /* XEN */
    324      1.113    cherry extern kmutex_t pte_lock;
    325      1.113    cherry 
    326       1.98    bouyer static __inline pt_entry_t
    327       1.98    bouyer pmap_pa2pte(paddr_t pa)
    328       1.98    bouyer {
    329       1.98    bouyer 	return (pt_entry_t)xpmap_ptom_masked(pa);
    330       1.98    bouyer }
    331       1.98    bouyer 
    332       1.98    bouyer static __inline paddr_t
    333       1.98    bouyer pmap_pte2pa(pt_entry_t pte)
    334       1.98    bouyer {
    335       1.98    bouyer 	return xpmap_mtop_masked(pte & PG_FRAME);
    336       1.98    bouyer }
    337       1.98    bouyer static __inline void
    338       1.98    bouyer pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    339       1.98    bouyer {
    340      1.114    bouyer 	int s = splvm();
    341      1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    342      1.114    bouyer 	splx(s);
    343       1.98    bouyer }
    344       1.98    bouyer 
    345       1.98    bouyer static __inline pt_entry_t
    346      1.101    bouyer pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    347      1.100      yamt {
    348      1.113    cherry 	pt_entry_t opte;
    349      1.100      yamt 
    350      1.113    cherry 	mutex_enter(&pte_lock);
    351      1.113    cherry 	opte = *ptep;
    352      1.100      yamt 	if (opte == o) {
    353      1.102    bouyer 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    354      1.100      yamt 		xpq_flush_queue();
    355      1.100      yamt 	}
    356      1.113    cherry 	mutex_exit(&pte_lock);
    357      1.100      yamt 	return opte;
    358      1.100      yamt }
    359      1.100      yamt 
    360      1.100      yamt static __inline pt_entry_t
    361       1.98    bouyer pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    362       1.98    bouyer {
    363      1.113    cherry 	pt_entry_t opte;
    364      1.113    cherry 
    365      1.113    cherry 	mutex_enter(&pte_lock);
    366      1.113    cherry 	opte = *pte;
    367      1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    368       1.98    bouyer 	    npte);
    369       1.98    bouyer 	xpq_flush_queue();
    370      1.113    cherry 	mutex_exit(&pte_lock);
    371       1.98    bouyer 	return opte;
    372       1.98    bouyer }
    373       1.98    bouyer 
    374       1.98    bouyer static __inline void
    375       1.98    bouyer pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    376       1.98    bouyer {
    377      1.113    cherry 	mutex_enter(&pte_lock);
    378      1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    379       1.98    bouyer 	xpq_flush_queue();
    380      1.113    cherry 	mutex_exit(&pte_lock);
    381       1.98    bouyer }
    382       1.98    bouyer 
    383       1.98    bouyer static __inline void
    384       1.98    bouyer pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    385       1.98    bouyer {
    386      1.113    cherry 	mutex_enter(&pte_lock);
    387      1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    388       1.98    bouyer 	    (*pte) & ~bits);
    389       1.98    bouyer 	xpq_flush_queue();
    390      1.113    cherry 	mutex_exit(&pte_lock);
    391       1.98    bouyer }
    392       1.98    bouyer 
    393       1.98    bouyer static __inline void
    394       1.98    bouyer pmap_pte_flush(void)
    395       1.98    bouyer {
    396       1.98    bouyer 	int s = splvm();
    397       1.98    bouyer 	xpq_flush_queue();
    398       1.98    bouyer 	splx(s);
    399       1.98    bouyer }
    400      1.102    bouyer 
    401       1.98    bouyer #endif
    402       1.73   thorpej 
    403      1.116      para struct vm_map;
    404       1.94      yamt struct trapframe;
    405      1.117  christos struct pcb;
    406        1.1       cgd 
    407       1.94      yamt int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    408       1.90        ad 
    409      1.108  uebayasi #include <x86/pmap_pv.h>
    410      1.108  uebayasi 
    411      1.108  uebayasi #define	__HAVE_VM_PAGE_MD
    412      1.108  uebayasi #define	VM_MDPAGE_INIT(pg) \
    413      1.108  uebayasi 	memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
    414      1.108  uebayasi 	PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
    415      1.108  uebayasi 
    416      1.108  uebayasi struct vm_page_md {
    417      1.108  uebayasi 	struct pmap_page mp_pp;
    418      1.108  uebayasi };
    419      1.108  uebayasi 
    420       1.40   thorpej #endif	/* _I386_PMAP_H_ */
    421