pmap.h revision 1.118.16.1 1 1.118.16.1 christos /* $NetBSD: pmap.h,v 1.118.16.1 2019/06/10 22:06:20 christos Exp $ */
2 1.38 mycroft
3 1.40 thorpej /*
4 1.40 thorpej * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.38 mycroft * All rights reserved.
6 1.38 mycroft *
7 1.38 mycroft * Redistribution and use in source and binary forms, with or without
8 1.38 mycroft * modification, are permitted provided that the following conditions
9 1.38 mycroft * are met:
10 1.38 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.38 mycroft * notice, this list of conditions and the following disclaimer.
12 1.38 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.38 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.38 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 cgd *
16 1.40 thorpej * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.40 thorpej * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.40 thorpej * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.40 thorpej * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.40 thorpej * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 1.40 thorpej * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 1.40 thorpej * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 1.40 thorpej * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 1.40 thorpej * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 1.40 thorpej * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 1.1 cgd */
27 1.1 cgd
28 1.1 cgd /*
29 1.94 yamt * Copyright (c) 2001 Wasabi Systems, Inc.
30 1.94 yamt * All rights reserved.
31 1.94 yamt *
32 1.94 yamt * Written by Frank van der Linden for Wasabi Systems, Inc.
33 1.94 yamt *
34 1.94 yamt * Redistribution and use in source and binary forms, with or without
35 1.94 yamt * modification, are permitted provided that the following conditions
36 1.94 yamt * are met:
37 1.94 yamt * 1. Redistributions of source code must retain the above copyright
38 1.94 yamt * notice, this list of conditions and the following disclaimer.
39 1.94 yamt * 2. Redistributions in binary form must reproduce the above copyright
40 1.94 yamt * notice, this list of conditions and the following disclaimer in the
41 1.94 yamt * documentation and/or other materials provided with the distribution.
42 1.94 yamt * 3. All advertising materials mentioning features or use of this software
43 1.94 yamt * must display the following acknowledgement:
44 1.94 yamt * This product includes software developed for the NetBSD Project by
45 1.94 yamt * Wasabi Systems, Inc.
46 1.94 yamt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
47 1.94 yamt * or promote products derived from this software without specific prior
48 1.94 yamt * written permission.
49 1.94 yamt *
50 1.94 yamt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
51 1.94 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52 1.94 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 1.94 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
54 1.94 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 1.94 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 1.94 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 1.94 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 1.94 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 1.94 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60 1.94 yamt * POSSIBILITY OF SUCH DAMAGE.
61 1.1 cgd */
62 1.34 mrg
63 1.40 thorpej #ifndef _I386_PMAP_H_
64 1.40 thorpej #define _I386_PMAP_H_
65 1.40 thorpej
66 1.58 mrg #if defined(_KERNEL_OPT)
67 1.39 thorpej #include "opt_user_ldt.h"
68 1.98 bouyer #include "opt_xen.h"
69 1.34 mrg #endif
70 1.1 cgd
71 1.96 ad #include <sys/atomic.h>
72 1.96 ad
73 1.103 mrg #include <i386/pte.h>
74 1.39 thorpej #include <machine/segments.h>
75 1.92 ad #if defined(_KERNEL)
76 1.91 ad #include <machine/cpufunc.h>
77 1.91 ad #endif
78 1.90 ad
79 1.40 thorpej #include <uvm/uvm_object.h>
80 1.118.16.1 christos #ifdef XENPV
81 1.98 bouyer #include <xen/xenfunc.h>
82 1.98 bouyer #include <xen/xenpmap.h>
83 1.118.16.1 christos #endif /* XENPV */
84 1.1 cgd
85 1.1 cgd /*
86 1.40 thorpej * see pte.h for a description of i386 MMU terminology and hardware
87 1.40 thorpej * interface.
88 1.40 thorpej *
89 1.102 bouyer * a pmap describes a processes' 4GB virtual address space. when PAE
90 1.102 bouyer * is not in use, this virtual address space can be broken up into 1024 4MB
91 1.102 bouyer * regions which are described by PDEs in the PDP. the PDEs are defined as
92 1.102 bouyer * follows:
93 1.40 thorpej *
94 1.40 thorpej * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
95 1.43 thorpej * (the following assumes that KERNBASE is 0xc0000000)
96 1.40 thorpej *
97 1.40 thorpej * PDE#s VA range usage
98 1.68 drochner * 0->766 0x0 -> 0xbfc00000 user address space
99 1.61 yamt * 767 0xbfc00000-> recursive mapping of PDP (used for
100 1.43 thorpej * 0xc0000000 linear mapping of PTPs)
101 1.43 thorpej * 768->1023 0xc0000000-> kernel address space (constant
102 1.40 thorpej * 0xffc00000 across all pmap's/processes)
103 1.115 cherry * <end>
104 1.40 thorpej *
105 1.40 thorpej *
106 1.40 thorpej * note: a recursive PDP mapping provides a way to map all the PTEs for
107 1.41 chs * a 4GB address space into a linear chunk of virtual memory. in other
108 1.41 chs * words, the PTE for page 0 is the first int mapped into the 4MB recursive
109 1.41 chs * area. the PTE for page 1 is the second int. the very last int in the
110 1.81 junyoung * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
111 1.40 thorpej * address).
112 1.40 thorpej *
113 1.43 thorpej * all pmap's PD's must have the same values in slots 768->1023 so that
114 1.41 chs * the kernel is always mapped in every process. these values are loaded
115 1.40 thorpej * into the PD at pmap creation time.
116 1.40 thorpej *
117 1.41 chs * at any one time only one pmap can be active on a processor. this is
118 1.41 chs * the pmap whose PDP is pointed to by processor register %cr3. this pmap
119 1.40 thorpej * will have all its PTEs mapped into memory at the recursive mapping
120 1.43 thorpej * point (slot #767 as show above). when the pmap code wants to find the
121 1.40 thorpej * PTE for a virtual address, all it has to do is the following:
122 1.40 thorpej *
123 1.71 thorpej * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
124 1.43 thorpej * = 0xbfc00000 + (VA / 4096) * 4
125 1.40 thorpej *
126 1.40 thorpej * what happens if the pmap layer is asked to perform an operation
127 1.41 chs * on a pmap that is not the one which is currently active? in that
128 1.115 cherry * case we temporarily load this pmap, perform the operation, and mark
129 1.115 cherry * the currently active one as pending lazy reload.
130 1.40 thorpej *
131 1.40 thorpej * the following figure shows the effects of the recursive PDP mapping:
132 1.40 thorpej *
133 1.40 thorpej * PDP (%cr3)
134 1.40 thorpej * +----+
135 1.40 thorpej * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
136 1.40 thorpej * | |
137 1.40 thorpej * | |
138 1.43 thorpej * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
139 1.83 junyoung * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
140 1.40 thorpej * | |
141 1.40 thorpej * +----+
142 1.40 thorpej *
143 1.43 thorpej * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
144 1.40 thorpej *
145 1.43 thorpej * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
146 1.40 thorpej * PTP:
147 1.40 thorpej *
148 1.43 thorpej * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
149 1.40 thorpej * +----+
150 1.43 thorpej * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
151 1.40 thorpej * | |
152 1.40 thorpej * | |
153 1.81 junyoung * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
154 1.43 thorpej * | 768| -> maps contents of first kernel PTP
155 1.40 thorpej * | |
156 1.40 thorpej * |1023|
157 1.40 thorpej * +----+
158 1.40 thorpej *
159 1.81 junyoung * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
160 1.40 thorpej * defined as "PDP_BASE".... within that mapping there are two
161 1.41 chs * defines:
162 1.59 chs * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
163 1.41 chs * which points back to itself.
164 1.102 bouyer *
165 1.107 jym * - PAE support -
166 1.107 jym * ---------------
167 1.107 jym *
168 1.107 jym * PAE adds another layer of indirection during address translation, breaking
169 1.107 jym * up the translation process in 3 different levels:
170 1.107 jym * - L3 page directory, containing 4 * 64-bits addresses (index determined by
171 1.107 jym * bits [31:30] from the virtual address). This breaks up the address space
172 1.107 jym * in 4 1GB regions.
173 1.107 jym * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
174 1.107 jym * in 512 * 2MB regions.
175 1.107 jym * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
176 1.107 jym * the pages is still 4K).
177 1.107 jym *
178 1.102 bouyer * The kernel virtual space is mapped by the last entry in the L3 page,
179 1.102 bouyer * the first 3 entries mapping the user VA space.
180 1.107 jym *
181 1.102 bouyer * Because the L3 has only 4 entries of 1GB each, we can't use recursive
182 1.115 cherry * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB
183 1.115 cherry * virtual space). There are also restrictions imposed by Xen on the
184 1.115 cherry * last entry of the L3 PD (reference count to this page cannot be
185 1.115 cherry * bigger than 1), which makes it hard to use one L3 page per pmap to
186 1.115 cherry * switch between pmaps using %cr3.
187 1.107 jym *
188 1.107 jym * As such, each CPU gets its own L3 page that is always loaded into its %cr3
189 1.107 jym * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
190 1.107 jym * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
191 1.107 jym * pages long (corresponding to the 4 entries of the L3), and the different
192 1.107 jym * index/slots (like PDP_PDE) are adapted accordingly.
193 1.107 jym *
194 1.107 jym * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
195 1.107 jym * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
196 1.107 jym *
197 1.115 cherry * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages
198 1.115 cherry * recursively.
199 1.107 jym *
200 1.107 jym * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
201 1.107 jym * count on this page to be exactly one), so we use a shadow PD page for
202 1.107 jym * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
203 1.107 jym * contiguous we'll allocate/copy one page per pmap.
204 1.1 cgd */
205 1.33 mrg
206 1.33 mrg /*
207 1.94 yamt * Mask to get rid of the sign-extended part of addresses.
208 1.94 yamt */
209 1.94 yamt #define VA_SIGN_MASK 0
210 1.94 yamt #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
211 1.94 yamt /*
212 1.94 yamt * XXXfvdl this one's not right.
213 1.94 yamt */
214 1.94 yamt #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
215 1.94 yamt
216 1.94 yamt /*
217 1.40 thorpej * the following defines identify the slots used as described above.
218 1.33 mrg */
219 1.102 bouyer #ifdef PAE
220 1.102 bouyer #define L2_SLOT_PTE (KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
221 1.102 bouyer #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 1536: start of kernel space */
222 1.102 bouyer #else /* PAE */
223 1.102 bouyer #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
224 1.102 bouyer #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */
225 1.102 bouyer #endif /* PAE */
226 1.98 bouyer
227 1.118.16.1 christos #define L2_SLOT_KERNBASE L2_SLOT_KERN
228 1.94 yamt
229 1.94 yamt #define PDIR_SLOT_KERN L2_SLOT_KERN
230 1.94 yamt #define PDIR_SLOT_PTE L2_SLOT_PTE
231 1.1 cgd
232 1.1 cgd /*
233 1.41 chs * the following defines give the virtual addresses of various MMU
234 1.40 thorpej * data structures:
235 1.115 cherry * PTE_BASE: the base VA of the linear PTE mappings
236 1.115 cherry * PDP_BASE: the base VA of the recursive mapping of the PDP
237 1.115 cherry * PDP_PDE: the VA of the PDE that points back to the PDP
238 1.1 cgd */
239 1.29 fvdl
240 1.102 bouyer #define PTE_BASE ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
241 1.40 thorpej
242 1.94 yamt #define L1_BASE PTE_BASE
243 1.40 thorpej
244 1.94 yamt #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
245 1.40 thorpej
246 1.94 yamt #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
247 1.40 thorpej
248 1.94 yamt #define PDP_BASE L2_BASE
249 1.1 cgd
250 1.94 yamt /* largest value (-1 for APTP space) */
251 1.94 yamt #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
252 1.94 yamt #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
253 1.39 thorpej
254 1.94 yamt #define NKL2_KIMG_ENTRIES 0 /* XXX unused */
255 1.40 thorpej
256 1.94 yamt #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */
257 1.94 yamt #define NKL1_START_ENTRIES 0 /* XXX unused */
258 1.11 mycroft
259 1.118.16.1 christos #ifndef XENPV
260 1.105 jym #define NTOPLEVEL_PDES (PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
261 1.118.16.1 christos #else /* !XENPV */
262 1.115 cherry #ifdef PAE
263 1.115 cherry #define NTOPLEVEL_PDES 1964 /* 1964-2047 reserved by Xen */
264 1.115 cherry #else /* PAE */
265 1.115 cherry #define NTOPLEVEL_PDES 1008 /* 1008-1023 reserved by Xen */
266 1.115 cherry #endif /* PAE */
267 1.118.16.1 christos #endif /* !XENPV */
268 1.94 yamt #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
269 1.1 cgd
270 1.118.16.1 christos #define PTP_MASK_INITIALIZER { L1_MASK, L2_MASK }
271 1.118.16.1 christos #define PTP_FRAME_INITIALIZER { L1_FRAME, L2_FRAME }
272 1.94 yamt #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
273 1.94 yamt #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
274 1.94 yamt #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
275 1.94 yamt #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
276 1.94 yamt #define PDES_INITIALIZER { L2_BASE }
277 1.40 thorpej
278 1.94 yamt #define PTP_LEVELS 2
279 1.40 thorpej
280 1.40 thorpej /*
281 1.118.16.1 christos * PTE_AVL usage: we make use of the ignored bits of the PTE
282 1.11 mycroft */
283 1.118.16.1 christos #define PTE_WIRED PTE_AVL1 /* Wired Mapping */
284 1.118.16.1 christos #define PTE_PVLIST PTE_AVL2 /* Mapping has entry on pvlist */
285 1.118.16.1 christos #define PTE_X PTE_AVL3 /* Executable */
286 1.118.16.1 christos
287 1.118.16.1 christos /* XXX To be deleted. */
288 1.118.16.1 christos #define PG_W PTE_WIRED
289 1.118.16.1 christos #define PG_PVLIST PTE_PVLIST
290 1.118.16.1 christos #define PG_X PTE_X
291 1.70 fvdl
292 1.98 bouyer #include <x86/pmap.h>
293 1.98 bouyer
294 1.118.16.1 christos #ifndef XENPV
295 1.95 bouyer #define pmap_pa2pte(a) (a)
296 1.118.16.1 christos #define pmap_pte2pa(a) ((a) & PTE_FRAME)
297 1.95 bouyer #define pmap_pte_set(p, n) do { *(p) = (n); } while (0)
298 1.107 jym #define pmap_pte_flush() /* nothing */
299 1.107 jym
300 1.107 jym #ifdef PAE
301 1.107 jym #define pmap_pte_cas(p, o, n) atomic_cas_64((p), (o), (n))
302 1.107 jym #define pmap_pte_testset(p, n) \
303 1.107 jym atomic_swap_64((volatile uint64_t *)p, n)
304 1.107 jym #define pmap_pte_setbits(p, b) \
305 1.107 jym atomic_or_64((volatile uint64_t *)p, b)
306 1.107 jym #define pmap_pte_clearbits(p, b) \
307 1.107 jym atomic_and_64((volatile uint64_t *)p, ~(b))
308 1.107 jym #else /* PAE */
309 1.100 yamt #define pmap_pte_cas(p, o, n) atomic_cas_32((p), (o), (n))
310 1.96 ad #define pmap_pte_testset(p, n) \
311 1.96 ad atomic_swap_ulong((volatile unsigned long *)p, n)
312 1.96 ad #define pmap_pte_setbits(p, b) \
313 1.96 ad atomic_or_ulong((volatile unsigned long *)p, b)
314 1.96 ad #define pmap_pte_clearbits(p, b) \
315 1.96 ad atomic_and_ulong((volatile unsigned long *)p, ~(b))
316 1.107 jym #endif /* PAE */
317 1.107 jym
318 1.118.16.1 christos #else /* XENPV */
319 1.113 cherry extern kmutex_t pte_lock;
320 1.113 cherry
321 1.98 bouyer static __inline pt_entry_t
322 1.98 bouyer pmap_pa2pte(paddr_t pa)
323 1.98 bouyer {
324 1.98 bouyer return (pt_entry_t)xpmap_ptom_masked(pa);
325 1.98 bouyer }
326 1.98 bouyer
327 1.98 bouyer static __inline paddr_t
328 1.98 bouyer pmap_pte2pa(pt_entry_t pte)
329 1.98 bouyer {
330 1.118.16.1 christos return xpmap_mtop_masked(pte & PTE_FRAME);
331 1.98 bouyer }
332 1.98 bouyer static __inline void
333 1.98 bouyer pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
334 1.98 bouyer {
335 1.114 bouyer int s = splvm();
336 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
337 1.114 bouyer splx(s);
338 1.98 bouyer }
339 1.98 bouyer
340 1.98 bouyer static __inline pt_entry_t
341 1.101 bouyer pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
342 1.100 yamt {
343 1.113 cherry pt_entry_t opte;
344 1.100 yamt
345 1.113 cherry mutex_enter(&pte_lock);
346 1.113 cherry opte = *ptep;
347 1.100 yamt if (opte == o) {
348 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
349 1.100 yamt xpq_flush_queue();
350 1.100 yamt }
351 1.113 cherry mutex_exit(&pte_lock);
352 1.100 yamt return opte;
353 1.100 yamt }
354 1.100 yamt
355 1.100 yamt static __inline pt_entry_t
356 1.98 bouyer pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
357 1.98 bouyer {
358 1.113 cherry pt_entry_t opte;
359 1.113 cherry
360 1.113 cherry mutex_enter(&pte_lock);
361 1.113 cherry opte = *pte;
362 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
363 1.98 bouyer npte);
364 1.98 bouyer xpq_flush_queue();
365 1.113 cherry mutex_exit(&pte_lock);
366 1.98 bouyer return opte;
367 1.98 bouyer }
368 1.98 bouyer
369 1.98 bouyer static __inline void
370 1.98 bouyer pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
371 1.98 bouyer {
372 1.113 cherry mutex_enter(&pte_lock);
373 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
374 1.98 bouyer xpq_flush_queue();
375 1.113 cherry mutex_exit(&pte_lock);
376 1.98 bouyer }
377 1.98 bouyer
378 1.98 bouyer static __inline void
379 1.98 bouyer pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
380 1.98 bouyer {
381 1.113 cherry mutex_enter(&pte_lock);
382 1.102 bouyer xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
383 1.98 bouyer (*pte) & ~bits);
384 1.98 bouyer xpq_flush_queue();
385 1.113 cherry mutex_exit(&pte_lock);
386 1.98 bouyer }
387 1.98 bouyer
388 1.98 bouyer static __inline void
389 1.98 bouyer pmap_pte_flush(void)
390 1.98 bouyer {
391 1.98 bouyer int s = splvm();
392 1.98 bouyer xpq_flush_queue();
393 1.98 bouyer splx(s);
394 1.98 bouyer }
395 1.102 bouyer
396 1.98 bouyer #endif
397 1.73 thorpej
398 1.116 para struct vm_map;
399 1.94 yamt struct trapframe;
400 1.117 christos struct pcb;
401 1.1 cgd
402 1.94 yamt int pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
403 1.90 ad
404 1.108 uebayasi #include <x86/pmap_pv.h>
405 1.108 uebayasi
406 1.108 uebayasi #define __HAVE_VM_PAGE_MD
407 1.108 uebayasi #define VM_MDPAGE_INIT(pg) \
408 1.108 uebayasi memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
409 1.108 uebayasi PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
410 1.108 uebayasi
411 1.108 uebayasi struct vm_page_md {
412 1.108 uebayasi struct pmap_page mp_pp;
413 1.108 uebayasi };
414 1.108 uebayasi
415 1.40 thorpej #endif /* _I386_PMAP_H_ */
416