Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.122
      1  1.122    cherry /*	$NetBSD: pmap.h,v 1.122 2019/02/11 14:59:32 cherry Exp $	*/
      2   1.38   mycroft 
      3   1.40   thorpej /*
      4   1.40   thorpej  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.38   mycroft  * All rights reserved.
      6   1.38   mycroft  *
      7   1.38   mycroft  * Redistribution and use in source and binary forms, with or without
      8   1.38   mycroft  * modification, are permitted provided that the following conditions
      9   1.38   mycroft  * are met:
     10   1.38   mycroft  * 1. Redistributions of source code must retain the above copyright
     11   1.38   mycroft  *    notice, this list of conditions and the following disclaimer.
     12   1.38   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.38   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14   1.38   mycroft  *    documentation and/or other materials provided with the distribution.
     15    1.1       cgd  *
     16   1.40   thorpej  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17   1.40   thorpej  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18   1.40   thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19   1.40   thorpej  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20   1.40   thorpej  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21   1.40   thorpej  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22   1.40   thorpej  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23   1.40   thorpej  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24   1.40   thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25   1.40   thorpej  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26    1.1       cgd  */
     27    1.1       cgd 
     28    1.1       cgd /*
     29   1.94      yamt  * Copyright (c) 2001 Wasabi Systems, Inc.
     30   1.94      yamt  * All rights reserved.
     31   1.94      yamt  *
     32   1.94      yamt  * Written by Frank van der Linden for Wasabi Systems, Inc.
     33   1.94      yamt  *
     34   1.94      yamt  * Redistribution and use in source and binary forms, with or without
     35   1.94      yamt  * modification, are permitted provided that the following conditions
     36   1.94      yamt  * are met:
     37   1.94      yamt  * 1. Redistributions of source code must retain the above copyright
     38   1.94      yamt  *    notice, this list of conditions and the following disclaimer.
     39   1.94      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     40   1.94      yamt  *    notice, this list of conditions and the following disclaimer in the
     41   1.94      yamt  *    documentation and/or other materials provided with the distribution.
     42   1.94      yamt  * 3. All advertising materials mentioning features or use of this software
     43   1.94      yamt  *    must display the following acknowledgement:
     44   1.94      yamt  *      This product includes software developed for the NetBSD Project by
     45   1.94      yamt  *      Wasabi Systems, Inc.
     46   1.94      yamt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     47   1.94      yamt  *    or promote products derived from this software without specific prior
     48   1.94      yamt  *    written permission.
     49   1.94      yamt  *
     50   1.94      yamt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     51   1.94      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     52   1.94      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     53   1.94      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     54   1.94      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55   1.94      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56   1.94      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57   1.94      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58   1.94      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59   1.94      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     60   1.94      yamt  * POSSIBILITY OF SUCH DAMAGE.
     61    1.1       cgd  */
     62   1.34       mrg 
     63   1.40   thorpej #ifndef	_I386_PMAP_H_
     64   1.40   thorpej #define	_I386_PMAP_H_
     65   1.40   thorpej 
     66   1.58       mrg #if defined(_KERNEL_OPT)
     67   1.39   thorpej #include "opt_user_ldt.h"
     68   1.98    bouyer #include "opt_xen.h"
     69   1.34       mrg #endif
     70    1.1       cgd 
     71   1.96        ad #include <sys/atomic.h>
     72   1.96        ad 
     73  1.103       mrg #include <i386/pte.h>
     74   1.39   thorpej #include <machine/segments.h>
     75   1.92        ad #if defined(_KERNEL)
     76   1.91        ad #include <machine/cpufunc.h>
     77   1.91        ad #endif
     78   1.90        ad 
     79   1.40   thorpej #include <uvm/uvm_object.h>
     80  1.122    cherry #ifdef XENPV
     81   1.98    bouyer #include <xen/xenfunc.h>
     82   1.98    bouyer #include <xen/xenpmap.h>
     83  1.122    cherry #endif /* XENPV */
     84    1.1       cgd 
     85    1.1       cgd /*
     86   1.40   thorpej  * see pte.h for a description of i386 MMU terminology and hardware
     87   1.40   thorpej  * interface.
     88   1.40   thorpej  *
     89  1.102    bouyer  * a pmap describes a processes' 4GB virtual address space.  when PAE
     90  1.102    bouyer  * is not in use, this virtual address space can be broken up into 1024 4MB
     91  1.102    bouyer  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     92  1.102    bouyer  * follows:
     93   1.40   thorpej  *
     94   1.40   thorpej  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     95   1.43   thorpej  * (the following assumes that KERNBASE is 0xc0000000)
     96   1.40   thorpej  *
     97   1.40   thorpej  * PDE#s	VA range		usage
     98   1.68  drochner  * 0->766	0x0 -> 0xbfc00000	user address space
     99   1.61      yamt  * 767		0xbfc00000->		recursive mapping of PDP (used for
    100   1.43   thorpej  *			0xc0000000	linear mapping of PTPs)
    101   1.43   thorpej  * 768->1023	0xc0000000->		kernel address space (constant
    102   1.40   thorpej  *			0xffc00000	across all pmap's/processes)
    103  1.115    cherry  *			<end>
    104   1.40   thorpej  *
    105   1.40   thorpej  *
    106   1.40   thorpej  * note: a recursive PDP mapping provides a way to map all the PTEs for
    107   1.41       chs  * a 4GB address space into a linear chunk of virtual memory.  in other
    108   1.41       chs  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    109   1.41       chs  * area.  the PTE for page 1 is the second int.  the very last int in the
    110   1.81  junyoung  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    111   1.40   thorpej  * address).
    112   1.40   thorpej  *
    113   1.43   thorpej  * all pmap's PD's must have the same values in slots 768->1023 so that
    114   1.41       chs  * the kernel is always mapped in every process.  these values are loaded
    115   1.40   thorpej  * into the PD at pmap creation time.
    116   1.40   thorpej  *
    117   1.41       chs  * at any one time only one pmap can be active on a processor.  this is
    118   1.41       chs  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    119   1.40   thorpej  * will have all its PTEs mapped into memory at the recursive mapping
    120   1.43   thorpej  * point (slot #767 as show above).  when the pmap code wants to find the
    121   1.40   thorpej  * PTE for a virtual address, all it has to do is the following:
    122   1.40   thorpej  *
    123   1.71   thorpej  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    124   1.43   thorpej  *                = 0xbfc00000 + (VA / 4096) * 4
    125   1.40   thorpej  *
    126   1.40   thorpej  * what happens if the pmap layer is asked to perform an operation
    127   1.41       chs  * on a pmap that is not the one which is currently active?  in that
    128  1.115    cherry  * case we temporarily load this pmap, perform the operation, and mark
    129  1.115    cherry  * the currently active one as pending lazy reload.
    130   1.40   thorpej  *
    131   1.40   thorpej  * the following figure shows the effects of the recursive PDP mapping:
    132   1.40   thorpej  *
    133   1.40   thorpej  *   PDP (%cr3)
    134   1.40   thorpej  *   +----+
    135   1.40   thorpej  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    136   1.40   thorpej  *   |    |
    137   1.40   thorpej  *   |    |
    138   1.43   thorpej  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    139   1.83  junyoung  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    140   1.40   thorpej  *   |    |
    141   1.40   thorpej  *   +----+
    142   1.40   thorpej  *
    143   1.43   thorpej  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    144   1.40   thorpej  *
    145   1.43   thorpej  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    146   1.40   thorpej  * PTP:
    147   1.40   thorpej  *
    148   1.43   thorpej  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    149   1.40   thorpej  *   +----+
    150   1.43   thorpej  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    151   1.40   thorpej  *   |    |
    152   1.40   thorpej  *   |    |
    153   1.81  junyoung  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    154   1.43   thorpej  *   | 768| -> maps contents of first kernel PTP
    155   1.40   thorpej  *   |    |
    156   1.40   thorpej  *   |1023|
    157   1.40   thorpej  *   +----+
    158   1.40   thorpej  *
    159   1.81  junyoung  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    160   1.40   thorpej  * defined as "PDP_BASE".... within that mapping there are two
    161   1.41       chs  * defines:
    162   1.59       chs  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    163   1.41       chs  *      which points back to itself.
    164  1.102    bouyer  *
    165  1.107       jym  * - PAE support -
    166  1.107       jym  * ---------------
    167  1.107       jym  *
    168  1.107       jym  * PAE adds another layer of indirection during address translation, breaking
    169  1.107       jym  * up the translation process in 3 different levels:
    170  1.107       jym  * - L3 page directory, containing 4 * 64-bits addresses (index determined by
    171  1.107       jym  * bits [31:30] from the virtual address). This breaks up the address space
    172  1.107       jym  * in 4 1GB regions.
    173  1.107       jym  * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
    174  1.107       jym  * in 512 * 2MB regions.
    175  1.107       jym  * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
    176  1.107       jym  * the pages is still 4K).
    177  1.107       jym  *
    178  1.102    bouyer  * The kernel virtual space is mapped by the last entry in the L3 page,
    179  1.102    bouyer  * the first 3 entries mapping the user VA space.
    180  1.107       jym  *
    181  1.102    bouyer  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    182  1.115    cherry  * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB
    183  1.115    cherry  * virtual space). There are also restrictions imposed by Xen on the
    184  1.115    cherry  * last entry of the L3 PD (reference count to this page cannot be
    185  1.115    cherry  * bigger than 1), which makes it hard to use one L3 page per pmap to
    186  1.115    cherry  * switch between pmaps using %cr3.
    187  1.107       jym  *
    188  1.107       jym  * As such, each CPU gets its own L3 page that is always loaded into its %cr3
    189  1.107       jym  * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
    190  1.107       jym  * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
    191  1.107       jym  * pages long (corresponding to the 4 entries of the L3), and the different
    192  1.107       jym  * index/slots (like PDP_PDE) are adapted accordingly.
    193  1.107       jym  *
    194  1.107       jym  * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
    195  1.107       jym  * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
    196  1.107       jym  *
    197  1.115    cherry  * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages
    198  1.115    cherry  * recursively.
    199  1.107       jym  *
    200  1.107       jym  * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
    201  1.107       jym  * count on this page to be exactly one), so we use a shadow PD page for
    202  1.107       jym  * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
    203  1.107       jym  * contiguous we'll allocate/copy one page per pmap.
    204    1.1       cgd  */
    205   1.33       mrg 
    206   1.33       mrg /*
    207   1.94      yamt  * Mask to get rid of the sign-extended part of addresses.
    208   1.94      yamt  */
    209   1.94      yamt #define VA_SIGN_MASK		0
    210   1.94      yamt #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    211   1.94      yamt /*
    212   1.94      yamt  * XXXfvdl this one's not right.
    213   1.94      yamt  */
    214   1.94      yamt #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    215   1.94      yamt 
    216   1.94      yamt /*
    217   1.40   thorpej  * the following defines identify the slots used as described above.
    218   1.33       mrg  */
    219  1.102    bouyer #ifdef PAE
    220  1.102    bouyer #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
    221  1.102    bouyer #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
    222  1.102    bouyer #else /* PAE */
    223  1.102    bouyer #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
    224  1.102    bouyer #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 768: start of kernel space */
    225  1.102    bouyer #endif /* PAE */
    226   1.98    bouyer 
    227  1.106       jym #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    228   1.94      yamt 
    229   1.94      yamt #define PDIR_SLOT_KERN	L2_SLOT_KERN
    230   1.94      yamt #define PDIR_SLOT_PTE	L2_SLOT_PTE
    231    1.1       cgd 
    232    1.1       cgd /*
    233   1.41       chs  * the following defines give the virtual addresses of various MMU
    234   1.40   thorpej  * data structures:
    235  1.115    cherry  * PTE_BASE: the base VA of the linear PTE mappings
    236  1.115    cherry  * PDP_BASE: the base VA of the recursive mapping of the PDP
    237  1.115    cherry  * PDP_PDE: the VA of the PDE that points back to the PDP
    238    1.1       cgd  */
    239   1.29      fvdl 
    240  1.102    bouyer #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    241   1.40   thorpej 
    242   1.94      yamt #define L1_BASE		PTE_BASE
    243   1.40   thorpej 
    244   1.94      yamt #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    245   1.40   thorpej 
    246   1.94      yamt #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    247   1.40   thorpej 
    248   1.94      yamt #define PDP_BASE	L2_BASE
    249    1.1       cgd 
    250   1.94      yamt /* largest value (-1 for APTP space) */
    251   1.94      yamt #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    252   1.94      yamt #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    253   1.39   thorpej 
    254   1.94      yamt #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    255   1.40   thorpej 
    256   1.94      yamt #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    257   1.94      yamt #define NKL1_START_ENTRIES	0	/* XXX unused */
    258   1.11   mycroft 
    259  1.122    cherry #ifndef XENPV
    260  1.105       jym #define NTOPLEVEL_PDES		(PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
    261  1.122    cherry #else	/* !XENPV */
    262  1.115    cherry #ifdef  PAE
    263  1.115    cherry #define NTOPLEVEL_PDES		1964	/* 1964-2047 reserved by Xen */
    264  1.115    cherry #else	/* PAE */
    265  1.115    cherry #define NTOPLEVEL_PDES		1008	/* 1008-1023 reserved by Xen */
    266  1.115    cherry #endif	/* PAE */
    267  1.122    cherry #endif  /* !XENPV */
    268   1.94      yamt #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    269    1.1       cgd 
    270  1.121      maxv #define PTP_MASK_INITIALIZER	{ L1_MASK, L2_MASK }
    271  1.120      maxv #define PTP_FRAME_INITIALIZER	{ L1_FRAME, L2_FRAME }
    272   1.94      yamt #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    273   1.94      yamt #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    274   1.94      yamt #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    275   1.94      yamt #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    276   1.94      yamt #define PDES_INITIALIZER	{ L2_BASE }
    277   1.40   thorpej 
    278   1.94      yamt #define PTP_LEVELS	2
    279   1.40   thorpej 
    280   1.40   thorpej /*
    281   1.94      yamt  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    282   1.11   mycroft  */
    283    1.1       cgd 
    284   1.94      yamt #define PG_W		PG_AVAIL1	/* "wired" mapping */
    285   1.94      yamt #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    286   1.94      yamt #define PG_X		PG_AVAIL3	/* executable mapping */
    287   1.40   thorpej 
    288   1.98    bouyer #include <x86/pmap.h>
    289   1.98    bouyer 
    290  1.122    cherry #ifndef XENPV
    291   1.95    bouyer #define pmap_pa2pte(a)			(a)
    292   1.95    bouyer #define pmap_pte2pa(a)			((a) & PG_FRAME)
    293   1.95    bouyer #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    294  1.107       jym #define pmap_pte_flush()		/* nothing */
    295  1.107       jym 
    296  1.107       jym #ifdef PAE
    297  1.107       jym #define pmap_pte_cas(p, o, n)		atomic_cas_64((p), (o), (n))
    298  1.107       jym #define pmap_pte_testset(p, n)		\
    299  1.107       jym     atomic_swap_64((volatile uint64_t *)p, n)
    300  1.107       jym #define pmap_pte_setbits(p, b)		\
    301  1.107       jym     atomic_or_64((volatile uint64_t *)p, b)
    302  1.107       jym #define pmap_pte_clearbits(p, b)	\
    303  1.107       jym     atomic_and_64((volatile uint64_t *)p, ~(b))
    304  1.107       jym #else /* PAE */
    305  1.100      yamt #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    306   1.96        ad #define pmap_pte_testset(p, n)		\
    307   1.96        ad     atomic_swap_ulong((volatile unsigned long *)p, n)
    308   1.96        ad #define pmap_pte_setbits(p, b)		\
    309   1.96        ad     atomic_or_ulong((volatile unsigned long *)p, b)
    310   1.96        ad #define pmap_pte_clearbits(p, b)	\
    311   1.96        ad     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    312  1.107       jym #endif /* PAE */
    313  1.107       jym 
    314  1.122    cherry #else /* XENPV */
    315  1.113    cherry extern kmutex_t pte_lock;
    316  1.113    cherry 
    317   1.98    bouyer static __inline pt_entry_t
    318   1.98    bouyer pmap_pa2pte(paddr_t pa)
    319   1.98    bouyer {
    320   1.98    bouyer 	return (pt_entry_t)xpmap_ptom_masked(pa);
    321   1.98    bouyer }
    322   1.98    bouyer 
    323   1.98    bouyer static __inline paddr_t
    324   1.98    bouyer pmap_pte2pa(pt_entry_t pte)
    325   1.98    bouyer {
    326   1.98    bouyer 	return xpmap_mtop_masked(pte & PG_FRAME);
    327   1.98    bouyer }
    328   1.98    bouyer static __inline void
    329   1.98    bouyer pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    330   1.98    bouyer {
    331  1.114    bouyer 	int s = splvm();
    332  1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    333  1.114    bouyer 	splx(s);
    334   1.98    bouyer }
    335   1.98    bouyer 
    336   1.98    bouyer static __inline pt_entry_t
    337  1.101    bouyer pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    338  1.100      yamt {
    339  1.113    cherry 	pt_entry_t opte;
    340  1.100      yamt 
    341  1.113    cherry 	mutex_enter(&pte_lock);
    342  1.113    cherry 	opte = *ptep;
    343  1.100      yamt 	if (opte == o) {
    344  1.102    bouyer 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    345  1.100      yamt 		xpq_flush_queue();
    346  1.100      yamt 	}
    347  1.113    cherry 	mutex_exit(&pte_lock);
    348  1.100      yamt 	return opte;
    349  1.100      yamt }
    350  1.100      yamt 
    351  1.100      yamt static __inline pt_entry_t
    352   1.98    bouyer pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    353   1.98    bouyer {
    354  1.113    cherry 	pt_entry_t opte;
    355  1.113    cherry 
    356  1.113    cherry 	mutex_enter(&pte_lock);
    357  1.113    cherry 	opte = *pte;
    358  1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    359   1.98    bouyer 	    npte);
    360   1.98    bouyer 	xpq_flush_queue();
    361  1.113    cherry 	mutex_exit(&pte_lock);
    362   1.98    bouyer 	return opte;
    363   1.98    bouyer }
    364   1.98    bouyer 
    365   1.98    bouyer static __inline void
    366   1.98    bouyer pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    367   1.98    bouyer {
    368  1.113    cherry 	mutex_enter(&pte_lock);
    369  1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    370   1.98    bouyer 	xpq_flush_queue();
    371  1.113    cherry 	mutex_exit(&pte_lock);
    372   1.98    bouyer }
    373   1.98    bouyer 
    374   1.98    bouyer static __inline void
    375   1.98    bouyer pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    376   1.98    bouyer {
    377  1.113    cherry 	mutex_enter(&pte_lock);
    378  1.102    bouyer 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    379   1.98    bouyer 	    (*pte) & ~bits);
    380   1.98    bouyer 	xpq_flush_queue();
    381  1.113    cherry 	mutex_exit(&pte_lock);
    382   1.98    bouyer }
    383   1.98    bouyer 
    384   1.98    bouyer static __inline void
    385   1.98    bouyer pmap_pte_flush(void)
    386   1.98    bouyer {
    387   1.98    bouyer 	int s = splvm();
    388   1.98    bouyer 	xpq_flush_queue();
    389   1.98    bouyer 	splx(s);
    390   1.98    bouyer }
    391  1.102    bouyer 
    392   1.98    bouyer #endif
    393   1.73   thorpej 
    394  1.116      para struct vm_map;
    395   1.94      yamt struct trapframe;
    396  1.117  christos struct pcb;
    397    1.1       cgd 
    398   1.94      yamt int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    399   1.90        ad 
    400  1.108  uebayasi #include <x86/pmap_pv.h>
    401  1.108  uebayasi 
    402  1.108  uebayasi #define	__HAVE_VM_PAGE_MD
    403  1.108  uebayasi #define	VM_MDPAGE_INIT(pg) \
    404  1.108  uebayasi 	memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
    405  1.108  uebayasi 	PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
    406  1.108  uebayasi 
    407  1.108  uebayasi struct vm_page_md {
    408  1.108  uebayasi 	struct pmap_page mp_pp;
    409  1.108  uebayasi };
    410  1.108  uebayasi 
    411   1.40   thorpej #endif	/* _I386_PMAP_H_ */
    412