Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.41
      1  1.41      chs /*	$NetBSD: pmap.h,v 1.41 1999/07/18 21:33:21 chs Exp $	*/
      2  1.38  mycroft 
      3  1.40  thorpej /*
      4  1.40  thorpej  *
      5  1.40  thorpej  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  1.38  mycroft  * All rights reserved.
      7  1.38  mycroft  *
      8  1.38  mycroft  * Redistribution and use in source and binary forms, with or without
      9  1.38  mycroft  * modification, are permitted provided that the following conditions
     10  1.38  mycroft  * are met:
     11  1.38  mycroft  * 1. Redistributions of source code must retain the above copyright
     12  1.38  mycroft  *    notice, this list of conditions and the following disclaimer.
     13  1.38  mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.38  mycroft  *    notice, this list of conditions and the following disclaimer in the
     15  1.38  mycroft  *    documentation and/or other materials provided with the distribution.
     16  1.38  mycroft  * 3. All advertising materials mentioning features or use of this software
     17  1.40  thorpej  *    must display the following acknowledgment:
     18  1.40  thorpej  *      This product includes software developed by Charles D. Cranor and
     19  1.40  thorpej  *      Washington University.
     20  1.40  thorpej  * 4. The name of the author may not be used to endorse or promote products
     21  1.40  thorpej  *    derived from this software without specific prior written permission.
     22   1.1      cgd  *
     23  1.40  thorpej  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  1.40  thorpej  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  1.40  thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  1.40  thorpej  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  1.40  thorpej  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  1.40  thorpej  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  1.40  thorpej  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  1.40  thorpej  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  1.40  thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  1.40  thorpej  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33   1.1      cgd  */
     34   1.1      cgd 
     35   1.1      cgd /*
     36  1.40  thorpej  * pmap.h: see pmap.c for the history of this pmap module.
     37   1.1      cgd  */
     38  1.34      mrg 
     39  1.40  thorpej #ifndef	_I386_PMAP_H_
     40  1.40  thorpej #define	_I386_PMAP_H_
     41  1.40  thorpej 
     42  1.34      mrg #if defined(_KERNEL) && !defined(_LKM)
     43  1.39  thorpej #include "opt_user_ldt.h"
     44  1.34      mrg #endif
     45   1.1      cgd 
     46  1.14  mycroft #include <machine/cpufunc.h>
     47   1.6  mycroft #include <machine/pte.h>
     48  1.39  thorpej #include <machine/segments.h>
     49  1.40  thorpej #include <uvm/uvm_object.h>
     50   1.1      cgd 
     51   1.1      cgd /*
     52  1.40  thorpej  * see pte.h for a description of i386 MMU terminology and hardware
     53  1.40  thorpej  * interface.
     54  1.40  thorpej  *
     55  1.40  thorpej  * a pmap describes a processes' 4GB virtual address space.  this
     56  1.40  thorpej  * virtual address space can be broken up into 1024 4MB regions which
     57  1.41      chs  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     58  1.40  thorpej  *
     59  1.40  thorpej  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     60  1.40  thorpej  * (the following assumes that KERNBASE is 0xf0000000)
     61  1.40  thorpej  *
     62  1.40  thorpej  * PDE#s	VA range		usage
     63  1.40  thorpej  * 0->959	0x0 -> 0xefc00000	user address space, note that the
     64  1.40  thorpej  *					max user address is 0xefbfe000
     65  1.40  thorpej  *					the final two pages in the last 4MB
     66  1.40  thorpej  *					used to be reserved for the UAREA
     67  1.40  thorpej  *					but now are no longer used
     68  1.40  thorpej  * 959		0xefc00000->		recursive mapping of PDP (used for
     69  1.40  thorpej  *			0xf0000000	linear mapping of PTPs)
     70  1.40  thorpej  * 960->1023	0xf0000000->		kernel address space (constant
     71  1.40  thorpej  *			0xffc00000	across all pmap's/processes)
     72  1.40  thorpej  * 1023		0xffc00000->		"alternate" recursive PDP mapping
     73  1.40  thorpej  *			<end>		(for other pmaps)
     74  1.40  thorpej  *
     75  1.40  thorpej  *
     76  1.40  thorpej  * note: a recursive PDP mapping provides a way to map all the PTEs for
     77  1.41      chs  * a 4GB address space into a linear chunk of virtual memory.  in other
     78  1.41      chs  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
     79  1.41      chs  * area.  the PTE for page 1 is the second int.  the very last int in the
     80  1.40  thorpej  * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
     81  1.40  thorpej  * address).
     82  1.40  thorpej  *
     83  1.40  thorpej  * all pmap's PD's must have the same values in slots 960->1023 so that
     84  1.41      chs  * the kernel is always mapped in every process.  these values are loaded
     85  1.40  thorpej  * into the PD at pmap creation time.
     86  1.40  thorpej  *
     87  1.41      chs  * at any one time only one pmap can be active on a processor.  this is
     88  1.41      chs  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
     89  1.40  thorpej  * will have all its PTEs mapped into memory at the recursive mapping
     90  1.41      chs  * point (slot #959 as show above).  when the pmap code wants to find the
     91  1.40  thorpej  * PTE for a virtual address, all it has to do is the following:
     92  1.40  thorpej  *
     93  1.40  thorpej  * address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
     94  1.41      chs  *                = 0xefc00000 + (VA / 4096) * 4
     95  1.40  thorpej  *
     96  1.40  thorpej  * what happens if the pmap layer is asked to perform an operation
     97  1.41      chs  * on a pmap that is not the one which is currently active?  in that
     98  1.41      chs  * case we take the PA of the PDP of non-active pmap and put it in
     99  1.41      chs  * slot 1023 of the active pmap.  this causes the non-active pmap's
    100  1.40  thorpej  * PTEs to get mapped in the final 4MB of the 4GB address space
    101  1.40  thorpej  * (e.g. starting at 0xffc00000).
    102  1.40  thorpej  *
    103  1.40  thorpej  * the following figure shows the effects of the recursive PDP mapping:
    104  1.40  thorpej  *
    105  1.40  thorpej  *   PDP (%cr3)
    106  1.40  thorpej  *   +----+
    107  1.40  thorpej  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    108  1.40  thorpej  *   |    |
    109  1.40  thorpej  *   |    |
    110  1.40  thorpej  *   | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
    111  1.40  thorpej  *   | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
    112  1.40  thorpej  *   |    |
    113  1.40  thorpej  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    114  1.40  thorpej  *   +----+
    115  1.40  thorpej  *
    116  1.40  thorpej  * note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
    117  1.40  thorpej  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    118  1.40  thorpej  *
    119  1.40  thorpej  * starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
    120  1.40  thorpej  * PTP:
    121  1.40  thorpej  *
    122  1.40  thorpej  * PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
    123  1.40  thorpej  *   +----+
    124  1.40  thorpej  *   |   0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
    125  1.40  thorpej  *   |    |
    126  1.40  thorpej  *   |    |
    127  1.40  thorpej  *   | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
    128  1.41      chs  *   | 960| -> maps contents of first kernel PTP
    129  1.40  thorpej  *   |    |
    130  1.40  thorpej  *   |1023|
    131  1.40  thorpej  *   +----+
    132  1.40  thorpej  *
    133  1.41      chs  * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
    134  1.40  thorpej  * defined as "PDP_BASE".... within that mapping there are two
    135  1.41      chs  * defines:
    136  1.40  thorpej  *   "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
    137  1.41      chs  *      which points back to itself.
    138  1.40  thorpej  *   "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
    139  1.40  thorpej  *      establishes the recursive mapping of the alternate pmap.
    140  1.40  thorpej  *      to set the alternate PDP, one just has to put the correct
    141  1.40  thorpej  *	PA info in *APDP_PDE.
    142  1.40  thorpej  *
    143  1.41      chs  * note that in the APTE_BASE space, the APDP appears at VA
    144  1.40  thorpej  * "APDP_BASE" (0xfffff000).
    145   1.1      cgd  */
    146  1.33      mrg 
    147  1.33      mrg /*
    148  1.40  thorpej  * the following defines identify the slots used as described above.
    149  1.33      mrg  */
    150  1.33      mrg 
    151  1.40  thorpej #define PDSLOT_PTE	((KERNBASE/NBPD)-1) /* 959: for recursive PDP map */
    152  1.40  thorpej #define PDSLOT_KERN	(KERNBASE/NBPD)	    /* 960: start of kernel space */
    153  1.40  thorpej #define PDSLOT_APTE	((unsigned)1023) /* 1023: alternative recursive slot */
    154   1.1      cgd 
    155   1.1      cgd /*
    156  1.41      chs  * the following defines give the virtual addresses of various MMU
    157  1.40  thorpej  * data structures:
    158  1.40  thorpej  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    159  1.40  thorpej  * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
    160  1.40  thorpej  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    161   1.1      cgd  */
    162  1.29     fvdl 
    163  1.40  thorpej #define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
    164  1.40  thorpej #define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
    165  1.41      chs #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
    166  1.41      chs #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
    167  1.40  thorpej #define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
    168  1.40  thorpej #define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
    169   1.1      cgd 
    170   1.1      cgd /*
    171  1.40  thorpej  * XXXCDC: tmp xlate from old names:
    172  1.40  thorpej  * PTDPTDI -> PDSLOT_PTE
    173  1.40  thorpej  * KPTDI -> PDSLOT_KERN
    174  1.40  thorpej  * APTDPTDI -> PDSLOT_APTE
    175   1.1      cgd  */
    176  1.40  thorpej 
    177  1.40  thorpej /*
    178  1.40  thorpej  * the follow define determines how many PTPs should be set up for the
    179  1.41      chs  * kernel by locore.s at boot time.  this should be large enough to
    180  1.41      chs  * get the VM system running.  once the VM system is running, the
    181  1.40  thorpej  * pmap module can add more PTPs to the kernel area on demand.
    182  1.40  thorpej  */
    183  1.40  thorpej 
    184  1.40  thorpej #ifndef NKPTP
    185  1.40  thorpej #define NKPTP		4	/* 16MB to start */
    186   1.1      cgd #endif
    187  1.40  thorpej #define NKPTP_MIN	4	/* smallest value we allow */
    188  1.40  thorpej #define NKPTP_MAX	(1024 - (KERNBASE/NBPD) - 1)
    189  1.40  thorpej 				/* largest value (-1 for APTP space) */
    190   1.1      cgd 
    191   1.1      cgd /*
    192  1.40  thorpej  * various address macros
    193  1.40  thorpej  *
    194  1.40  thorpej  *  vtopte: return a pointer to the PTE mapping a VA
    195  1.40  thorpej  *  kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
    196  1.40  thorpej  *  ptetov: given a pointer to a PTE, return the VA that it maps
    197  1.40  thorpej  *  vtophys: translate a VA to the PA mapped to it
    198  1.40  thorpej  *
    199  1.40  thorpej  * plus alternative versions of the above
    200   1.1      cgd  */
    201   1.1      cgd 
    202  1.40  thorpej #define vtopte(VA)	(PTE_BASE + i386_btop(VA))
    203  1.40  thorpej #define kvtopte(VA)	vtopte(VA)
    204  1.40  thorpej #define ptetov(PT)	(i386_ptob(PT - PTE_BASE))
    205  1.41      chs #define	vtophys(VA)	((*vtopte(VA) & PG_FRAME) | \
    206  1.41      chs 			 ((unsigned)(VA) & ~PG_FRAME))
    207  1.40  thorpej #define	avtopte(VA)	(APTE_BASE + i386_btop(VA))
    208  1.41      chs #define	ptetoav(PT)	(i386_ptob(PT - APTE_BASE))
    209  1.41      chs #define	avtophys(VA)	((*avtopte(VA) & PG_FRAME) | \
    210  1.41      chs 			 ((unsigned)(VA) & ~PG_FRAME))
    211   1.1      cgd 
    212   1.1      cgd /*
    213  1.40  thorpej  * pdei/ptei: generate index into PDP/PTP from a VA
    214   1.1      cgd  */
    215  1.40  thorpej #define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
    216  1.40  thorpej #define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
    217   1.1      cgd 
    218   1.1      cgd /*
    219  1.40  thorpej  * PTP macros:
    220  1.40  thorpej  *   a PTP's index is the PD index of the PDE that points to it
    221  1.40  thorpej  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    222  1.40  thorpej  *   a PTP's VA is the first VA mapped by that PTP
    223  1.40  thorpej  *
    224  1.40  thorpej  * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
    225  1.40  thorpej  *           NBPD == number of bytes a PTP can map (4MB)
    226   1.1      cgd  */
    227  1.39  thorpej 
    228  1.40  thorpej #define ptp_i2o(I)	((I) * NBPG)	/* index => offset */
    229  1.40  thorpej #define ptp_o2i(O)	((O) / NBPG)	/* offset => index */
    230  1.40  thorpej #define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
    231  1.40  thorpej #define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
    232  1.39  thorpej 
    233  1.40  thorpej /*
    234  1.40  thorpej  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    235  1.40  thorpej  */
    236  1.40  thorpej 
    237  1.40  thorpej #define PG_W		PG_AVAIL1	/* "wired" mapping */
    238  1.40  thorpej #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    239  1.40  thorpej /* PG_AVAIL3 not used */
    240  1.40  thorpej 
    241  1.40  thorpej #ifdef _KERNEL
    242  1.40  thorpej /*
    243  1.40  thorpej  * pmap data structures: see pmap.c for details of locking.
    244  1.40  thorpej  */
    245  1.40  thorpej 
    246  1.40  thorpej struct pmap;
    247  1.40  thorpej typedef struct pmap *pmap_t;
    248  1.40  thorpej 
    249  1.40  thorpej /*
    250  1.40  thorpej  * we maintain a list of all non-kernel pmaps
    251  1.40  thorpej  */
    252  1.40  thorpej 
    253  1.40  thorpej LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    254  1.40  thorpej 
    255  1.40  thorpej /*
    256  1.40  thorpej  * the pmap structure
    257  1.40  thorpej  *
    258  1.40  thorpej  * note that the pm_obj contains the simple_lock, the reference count,
    259  1.40  thorpej  * page list, and number of PTPs within the pmap.
    260  1.40  thorpej  */
    261  1.40  thorpej 
    262  1.40  thorpej struct pmap {
    263  1.41      chs 	struct uvm_object pm_obj;	/* object (lck by object lock) */
    264  1.40  thorpej #define	pm_lock	pm_obj.vmobjlock
    265  1.41      chs 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    266  1.41      chs 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    267  1.41      chs 	u_int32_t pm_pdirpa;		/* PA of PD (read-only after create) */
    268  1.41      chs 	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
    269  1.41      chs 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    270  1.41      chs 
    271  1.41      chs 	int pm_flags;			/* see below */
    272  1.41      chs 
    273  1.41      chs 	union descriptor *pm_ldt;	/* user-set LDT */
    274  1.41      chs 	int pm_ldt_len;			/* number of LDT entries */
    275  1.41      chs 	int pm_ldt_sel;			/* LDT selector */
    276  1.40  thorpej };
    277   1.1      cgd 
    278  1.39  thorpej /* pm_flags */
    279  1.39  thorpej #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    280  1.39  thorpej 
    281   1.1      cgd /*
    282  1.40  thorpej  * for each managed physical page we maintain a list of <PMAP,VA>'s
    283  1.41      chs  * which it is mapped at.  the list is headed by a pv_head structure.
    284  1.40  thorpej  * there is one pv_head per managed phys page (allocated at boot time).
    285  1.40  thorpej  * the pv_head structure points to a list of pv_entry structures (each
    286  1.40  thorpej  * describes one mapping).
    287   1.1      cgd  */
    288  1.40  thorpej 
    289  1.40  thorpej struct pv_entry;
    290  1.40  thorpej 
    291  1.40  thorpej struct pv_head {
    292  1.41      chs 	simple_lock_data_t pvh_lock;	/* locks every pv on this list */
    293  1.41      chs 	struct pv_entry *pvh_list;	/* head of list (locked by pvh_lock) */
    294  1.40  thorpej };
    295  1.40  thorpej 
    296  1.41      chs struct pv_entry {			/* locked by its list's pvh_lock */
    297  1.41      chs 	struct pv_entry *pv_next;	/* next entry */
    298  1.41      chs 	struct pmap *pv_pmap;		/* the pmap */
    299  1.41      chs 	vaddr_t pv_va;			/* the virtual address */
    300  1.41      chs 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    301  1.11  mycroft };
    302  1.11  mycroft 
    303  1.40  thorpej /*
    304  1.40  thorpej  * pv_entrys are dynamically allocated in chunks from a single page.
    305  1.40  thorpej  * we keep track of how many pv_entrys are in use for each page and
    306  1.41      chs  * we can free pv_entry pages if needed.  there is one lock for the
    307  1.40  thorpej  * entire allocation system.
    308  1.40  thorpej  */
    309  1.11  mycroft 
    310  1.11  mycroft struct pv_page_info {
    311  1.41      chs 	TAILQ_ENTRY(pv_page) pvpi_list;
    312  1.41      chs 	struct pv_entry *pvpi_pvfree;
    313  1.41      chs 	int pvpi_nfree;
    314  1.11  mycroft };
    315   1.1      cgd 
    316  1.11  mycroft /*
    317  1.40  thorpej  * number of pv_entry's in a pv_page
    318  1.40  thorpej  * (note: won't work on systems where NPBG isn't a constant)
    319  1.40  thorpej  */
    320  1.40  thorpej 
    321  1.41      chs #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    322  1.41      chs 			sizeof(struct pv_entry))
    323  1.40  thorpej 
    324  1.40  thorpej /*
    325  1.40  thorpej  * a pv_page: where pv_entrys are allocated from
    326  1.11  mycroft  */
    327   1.1      cgd 
    328  1.11  mycroft struct pv_page {
    329  1.41      chs 	struct pv_page_info pvinfo;
    330  1.41      chs 	struct pv_entry pvents[PVE_PER_PVPAGE];
    331  1.40  thorpej };
    332  1.40  thorpej 
    333  1.40  thorpej /*
    334  1.40  thorpej  * pmap_remove_record: a record of VAs that have been unmapped, used to
    335  1.41      chs  * flush TLB.  if we have more than PMAP_RR_MAX then we stop recording.
    336  1.40  thorpej  */
    337  1.40  thorpej 
    338  1.40  thorpej #define PMAP_RR_MAX	16	/* max of 16 pages (64K) */
    339  1.40  thorpej 
    340  1.40  thorpej struct pmap_remove_record {
    341  1.41      chs 	int prr_npages;
    342  1.41      chs 	vaddr_t prr_vas[PMAP_RR_MAX];
    343  1.40  thorpej };
    344  1.40  thorpej 
    345  1.40  thorpej /*
    346  1.40  thorpej  * pmap_transfer_location: used to pass the current location in the
    347  1.40  thorpej  * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
    348  1.40  thorpej  * a pmap_copy].
    349  1.40  thorpej  */
    350  1.40  thorpej 
    351  1.40  thorpej struct pmap_transfer_location {
    352  1.41      chs 	vaddr_t addr;			/* the address (page-aligned) */
    353  1.41      chs 	pt_entry_t *pte;		/* the PTE that maps address */
    354  1.41      chs 	struct vm_page *ptp;		/* the PTP that the PTE lives in */
    355  1.11  mycroft };
    356   1.1      cgd 
    357  1.40  thorpej /*
    358  1.40  thorpej  * global kernel variables
    359  1.40  thorpej  */
    360  1.40  thorpej 
    361  1.40  thorpej /* PTDpaddr: is the physical address of the kernel's PDP */
    362  1.40  thorpej extern u_long PTDpaddr;
    363  1.40  thorpej 
    364  1.40  thorpej extern struct pmap kernel_pmap_store;	/* kernel pmap */
    365  1.40  thorpej extern int nkpde;			/* current # of PDEs for kernel */
    366  1.40  thorpej extern int pmap_pg_g;			/* do we support PG_G? */
    367  1.40  thorpej 
    368  1.40  thorpej /*
    369  1.40  thorpej  * macros
    370  1.40  thorpej  */
    371   1.1      cgd 
    372  1.18  mycroft #define	pmap_kernel()			(&kernel_pmap_store)
    373   1.1      cgd #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    374  1.13  mycroft #define	pmap_update()			tlbflush()
    375  1.11  mycroft 
    376  1.40  thorpej #define pmap_clear_modify(pg)		pmap_change_attrs(pg, 0, PG_M)
    377  1.40  thorpej #define pmap_clear_reference(pg)	pmap_change_attrs(pg, 0, PG_U)
    378  1.40  thorpej #define pmap_copy(DP,SP,D,L,S)		pmap_transfer(DP,SP,D,L,S, FALSE)
    379  1.40  thorpej #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    380  1.40  thorpej #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    381  1.40  thorpej #define pmap_move(DP,SP,D,L,S)		pmap_transfer(DP,SP,D,L,S, TRUE)
    382  1.40  thorpej #define pmap_phys_address(ppn)		i386_ptob(ppn)
    383  1.40  thorpej #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    384  1.40  thorpej 
    385  1.40  thorpej 
    386  1.40  thorpej /*
    387  1.40  thorpej  * prototypes
    388  1.40  thorpej  */
    389  1.40  thorpej 
    390  1.40  thorpej void		pmap_activate __P((struct proc *));
    391  1.40  thorpej void		pmap_bootstrap __P((vaddr_t));
    392  1.40  thorpej boolean_t	pmap_change_attrs __P((struct vm_page *, int, int));
    393  1.40  thorpej void		pmap_deactivate __P((struct proc *));
    394  1.40  thorpej static void	pmap_kenter_pa __P((vaddr_t, paddr_t, vm_prot_t));
    395  1.40  thorpej static void	pmap_page_protect __P((struct vm_page *, vm_prot_t));
    396  1.40  thorpej void		pmap_page_remove  __P((struct vm_page *));
    397  1.41      chs static void	pmap_protect __P((struct pmap *, vaddr_t,
    398  1.40  thorpej 				vaddr_t, vm_prot_t));
    399  1.40  thorpej void		pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
    400  1.40  thorpej boolean_t	pmap_test_attrs __P((struct vm_page *, int));
    401  1.41      chs void		pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
    402  1.40  thorpej 				   vsize_t, vaddr_t, boolean_t));
    403  1.40  thorpej static void	pmap_update_pg __P((vaddr_t));
    404  1.40  thorpej static void	pmap_update_2pg __P((vaddr_t,vaddr_t));
    405  1.41      chs void		pmap_write_protect __P((struct pmap *, vaddr_t,
    406  1.40  thorpej 				vaddr_t, vm_prot_t));
    407  1.40  thorpej 
    408  1.40  thorpej vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
    409  1.40  thorpej 
    410  1.40  thorpej #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    411  1.40  thorpej 
    412  1.40  thorpej /*
    413  1.40  thorpej  * inline functions
    414  1.40  thorpej  */
    415  1.40  thorpej 
    416  1.40  thorpej /*
    417  1.40  thorpej  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    418  1.40  thorpej  *	if hardware doesn't support one-page flushing)
    419  1.40  thorpej  */
    420  1.40  thorpej 
    421  1.41      chs __inline static void
    422  1.41      chs pmap_update_pg(va)
    423  1.41      chs 	vaddr_t va;
    424  1.11  mycroft {
    425  1.40  thorpej #if defined(I386_CPU)
    426  1.41      chs 	if (cpu_class == CPUCLASS_386)
    427  1.41      chs 		pmap_update();
    428  1.41      chs 	else
    429  1.40  thorpej #endif
    430  1.41      chs 		invlpg((u_int) va);
    431  1.11  mycroft }
    432  1.11  mycroft 
    433  1.40  thorpej /*
    434  1.40  thorpej  * pmap_update_2pg: flush two pages from the TLB
    435  1.40  thorpej  */
    436  1.40  thorpej 
    437  1.41      chs __inline static void
    438  1.41      chs pmap_update_2pg(va, vb)
    439  1.41      chs 	vaddr_t va, vb;
    440  1.11  mycroft {
    441  1.40  thorpej #if defined(I386_CPU)
    442  1.41      chs 	if (cpu_class == CPUCLASS_386)
    443  1.41      chs 		pmap_update();
    444  1.41      chs 	else
    445  1.40  thorpej #endif
    446  1.41      chs 	{
    447  1.41      chs 		invlpg((u_int) va);
    448  1.41      chs 		invlpg((u_int) vb);
    449  1.41      chs 	}
    450  1.11  mycroft }
    451  1.11  mycroft 
    452  1.40  thorpej /*
    453  1.40  thorpej  * pmap_page_protect: change the protection of all recorded mappings
    454  1.40  thorpej  *	of a managed page
    455  1.40  thorpej  *
    456  1.40  thorpej  * => this function is a frontend for pmap_page_remove/pmap_change_attrs
    457  1.40  thorpej  * => we only have to worry about making the page more protected.
    458  1.40  thorpej  *	unprotecting a page is done on-demand at fault time.
    459  1.40  thorpej  */
    460  1.40  thorpej 
    461  1.41      chs __inline static void
    462  1.41      chs pmap_page_protect(pg, prot)
    463  1.41      chs 	struct vm_page *pg;
    464  1.41      chs 	vm_prot_t prot;
    465  1.11  mycroft {
    466  1.41      chs 	if ((prot & VM_PROT_WRITE) == 0) {
    467  1.41      chs 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    468  1.41      chs 			(void) pmap_change_attrs(pg, PG_RO, PG_RW);
    469  1.41      chs 		} else {
    470  1.41      chs 			pmap_page_remove(pg);
    471  1.41      chs 		}
    472  1.41      chs 	}
    473  1.11  mycroft }
    474  1.11  mycroft 
    475  1.40  thorpej /*
    476  1.40  thorpej  * pmap_protect: change the protection of pages in a pmap
    477  1.40  thorpej  *
    478  1.40  thorpej  * => this function is a frontend for pmap_remove/pmap_write_protect
    479  1.40  thorpej  * => we only have to worry about making the page more protected.
    480  1.40  thorpej  *	unprotecting a page is done on-demand at fault time.
    481  1.40  thorpej  */
    482  1.40  thorpej 
    483  1.41      chs __inline static void
    484  1.41      chs pmap_protect(pmap, sva, eva, prot)
    485  1.41      chs 	struct pmap *pmap;
    486  1.41      chs 	vaddr_t sva, eva;
    487  1.41      chs 	vm_prot_t prot;
    488  1.11  mycroft {
    489  1.41      chs 	if ((prot & VM_PROT_WRITE) == 0) {
    490  1.41      chs 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    491  1.41      chs 			pmap_write_protect(pmap, sva, eva, prot);
    492  1.41      chs 		} else {
    493  1.41      chs 			pmap_remove(pmap, sva, eva);
    494  1.41      chs 		}
    495  1.41      chs 	}
    496  1.11  mycroft }
    497  1.11  mycroft 
    498  1.40  thorpej /*
    499  1.40  thorpej  * pmap_kenter_pa: enter a kernel mapping without R/M (pv_entry) tracking
    500  1.40  thorpej  *
    501  1.41      chs  * => no need to lock anything, assume va is already allocated
    502  1.40  thorpej  * => should be faster than normal pmap enter function
    503  1.40  thorpej  */
    504  1.41      chs 
    505  1.41      chs __inline static void
    506  1.41      chs pmap_kenter_pa(va, pa, prot)
    507  1.41      chs 	vaddr_t va;
    508  1.41      chs 	paddr_t pa;
    509  1.41      chs 	vm_prot_t prot;
    510  1.11  mycroft {
    511  1.41      chs 	struct pmap *pm = pmap_kernel();
    512  1.41      chs 	pt_entry_t *pte, opte;
    513  1.41      chs 	int s;
    514  1.41      chs 
    515  1.41      chs 	s = splimp();
    516  1.41      chs 	simple_lock(&pm->pm_obj.vmobjlock);
    517  1.41      chs 	pm->pm_stats.resident_count++;
    518  1.41      chs 	pm->pm_stats.wired_count++;
    519  1.41      chs 	simple_unlock(&pm->pm_obj.vmobjlock);
    520  1.41      chs 	splx(s);
    521  1.41      chs 
    522  1.41      chs 	pte = vtopte(va);
    523  1.41      chs 	opte = *pte;
    524  1.41      chs 	*pte = pa | ((prot & VM_PROT_WRITE)? PG_RW : PG_RO) |
    525  1.41      chs 		PG_V | pmap_pg_g;         /* zap! */
    526  1.41      chs 	if (pmap_valid_entry(opte))
    527  1.41      chs 		pmap_update_pg(va);
    528  1.41      chs }
    529  1.35      cgd 
    530  1.41      chs vaddr_t	pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
    531  1.39  thorpej 
    532  1.39  thorpej #if defined(USER_LDT)
    533  1.39  thorpej void	pmap_ldt_cleanup __P((struct proc *));
    534  1.39  thorpej #define	PMAP_FORK
    535  1.39  thorpej #endif /* USER_LDT */
    536   1.1      cgd 
    537  1.40  thorpej #endif /* _KERNEL */
    538  1.40  thorpej #endif	/* _I386_PMAP_H_ */
    539