pmap.h revision 1.41 1 1.41 chs /* $NetBSD: pmap.h,v 1.41 1999/07/18 21:33:21 chs Exp $ */
2 1.38 mycroft
3 1.40 thorpej /*
4 1.40 thorpej *
5 1.40 thorpej * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 1.38 mycroft * All rights reserved.
7 1.38 mycroft *
8 1.38 mycroft * Redistribution and use in source and binary forms, with or without
9 1.38 mycroft * modification, are permitted provided that the following conditions
10 1.38 mycroft * are met:
11 1.38 mycroft * 1. Redistributions of source code must retain the above copyright
12 1.38 mycroft * notice, this list of conditions and the following disclaimer.
13 1.38 mycroft * 2. Redistributions in binary form must reproduce the above copyright
14 1.38 mycroft * notice, this list of conditions and the following disclaimer in the
15 1.38 mycroft * documentation and/or other materials provided with the distribution.
16 1.38 mycroft * 3. All advertising materials mentioning features or use of this software
17 1.40 thorpej * must display the following acknowledgment:
18 1.40 thorpej * This product includes software developed by Charles D. Cranor and
19 1.40 thorpej * Washington University.
20 1.40 thorpej * 4. The name of the author may not be used to endorse or promote products
21 1.40 thorpej * derived from this software without specific prior written permission.
22 1.1 cgd *
23 1.40 thorpej * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.40 thorpej * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.40 thorpej * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.40 thorpej * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.40 thorpej * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 1.40 thorpej * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 1.40 thorpej * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 1.40 thorpej * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 1.40 thorpej * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 1.40 thorpej * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.1 cgd /*
36 1.40 thorpej * pmap.h: see pmap.c for the history of this pmap module.
37 1.1 cgd */
38 1.34 mrg
39 1.40 thorpej #ifndef _I386_PMAP_H_
40 1.40 thorpej #define _I386_PMAP_H_
41 1.40 thorpej
42 1.34 mrg #if defined(_KERNEL) && !defined(_LKM)
43 1.39 thorpej #include "opt_user_ldt.h"
44 1.34 mrg #endif
45 1.1 cgd
46 1.14 mycroft #include <machine/cpufunc.h>
47 1.6 mycroft #include <machine/pte.h>
48 1.39 thorpej #include <machine/segments.h>
49 1.40 thorpej #include <uvm/uvm_object.h>
50 1.1 cgd
51 1.1 cgd /*
52 1.40 thorpej * see pte.h for a description of i386 MMU terminology and hardware
53 1.40 thorpej * interface.
54 1.40 thorpej *
55 1.40 thorpej * a pmap describes a processes' 4GB virtual address space. this
56 1.40 thorpej * virtual address space can be broken up into 1024 4MB regions which
57 1.41 chs * are described by PDEs in the PDP. the PDEs are defined as follows:
58 1.40 thorpej *
59 1.40 thorpej * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
60 1.40 thorpej * (the following assumes that KERNBASE is 0xf0000000)
61 1.40 thorpej *
62 1.40 thorpej * PDE#s VA range usage
63 1.40 thorpej * 0->959 0x0 -> 0xefc00000 user address space, note that the
64 1.40 thorpej * max user address is 0xefbfe000
65 1.40 thorpej * the final two pages in the last 4MB
66 1.40 thorpej * used to be reserved for the UAREA
67 1.40 thorpej * but now are no longer used
68 1.40 thorpej * 959 0xefc00000-> recursive mapping of PDP (used for
69 1.40 thorpej * 0xf0000000 linear mapping of PTPs)
70 1.40 thorpej * 960->1023 0xf0000000-> kernel address space (constant
71 1.40 thorpej * 0xffc00000 across all pmap's/processes)
72 1.40 thorpej * 1023 0xffc00000-> "alternate" recursive PDP mapping
73 1.40 thorpej * <end> (for other pmaps)
74 1.40 thorpej *
75 1.40 thorpej *
76 1.40 thorpej * note: a recursive PDP mapping provides a way to map all the PTEs for
77 1.41 chs * a 4GB address space into a linear chunk of virtual memory. in other
78 1.41 chs * words, the PTE for page 0 is the first int mapped into the 4MB recursive
79 1.41 chs * area. the PTE for page 1 is the second int. the very last int in the
80 1.40 thorpej * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
81 1.40 thorpej * address).
82 1.40 thorpej *
83 1.40 thorpej * all pmap's PD's must have the same values in slots 960->1023 so that
84 1.41 chs * the kernel is always mapped in every process. these values are loaded
85 1.40 thorpej * into the PD at pmap creation time.
86 1.40 thorpej *
87 1.41 chs * at any one time only one pmap can be active on a processor. this is
88 1.41 chs * the pmap whose PDP is pointed to by processor register %cr3. this pmap
89 1.40 thorpej * will have all its PTEs mapped into memory at the recursive mapping
90 1.41 chs * point (slot #959 as show above). when the pmap code wants to find the
91 1.40 thorpej * PTE for a virtual address, all it has to do is the following:
92 1.40 thorpej *
93 1.40 thorpej * address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
94 1.41 chs * = 0xefc00000 + (VA / 4096) * 4
95 1.40 thorpej *
96 1.40 thorpej * what happens if the pmap layer is asked to perform an operation
97 1.41 chs * on a pmap that is not the one which is currently active? in that
98 1.41 chs * case we take the PA of the PDP of non-active pmap and put it in
99 1.41 chs * slot 1023 of the active pmap. this causes the non-active pmap's
100 1.40 thorpej * PTEs to get mapped in the final 4MB of the 4GB address space
101 1.40 thorpej * (e.g. starting at 0xffc00000).
102 1.40 thorpej *
103 1.40 thorpej * the following figure shows the effects of the recursive PDP mapping:
104 1.40 thorpej *
105 1.40 thorpej * PDP (%cr3)
106 1.40 thorpej * +----+
107 1.40 thorpej * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
108 1.40 thorpej * | |
109 1.40 thorpej * | |
110 1.40 thorpej * | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
111 1.40 thorpej * | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
112 1.40 thorpej * | |
113 1.40 thorpej * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
114 1.40 thorpej * +----+
115 1.40 thorpej *
116 1.40 thorpej * note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
117 1.40 thorpej * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
118 1.40 thorpej *
119 1.40 thorpej * starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
120 1.40 thorpej * PTP:
121 1.40 thorpej *
122 1.40 thorpej * PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
123 1.40 thorpej * +----+
124 1.40 thorpej * | 0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
125 1.40 thorpej * | |
126 1.40 thorpej * | |
127 1.40 thorpej * | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
128 1.41 chs * | 960| -> maps contents of first kernel PTP
129 1.40 thorpej * | |
130 1.40 thorpej * |1023|
131 1.40 thorpej * +----+
132 1.40 thorpej *
133 1.41 chs * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
134 1.40 thorpej * defined as "PDP_BASE".... within that mapping there are two
135 1.41 chs * defines:
136 1.40 thorpej * "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
137 1.41 chs * which points back to itself.
138 1.40 thorpej * "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
139 1.40 thorpej * establishes the recursive mapping of the alternate pmap.
140 1.40 thorpej * to set the alternate PDP, one just has to put the correct
141 1.40 thorpej * PA info in *APDP_PDE.
142 1.40 thorpej *
143 1.41 chs * note that in the APTE_BASE space, the APDP appears at VA
144 1.40 thorpej * "APDP_BASE" (0xfffff000).
145 1.1 cgd */
146 1.33 mrg
147 1.33 mrg /*
148 1.40 thorpej * the following defines identify the slots used as described above.
149 1.33 mrg */
150 1.33 mrg
151 1.40 thorpej #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 959: for recursive PDP map */
152 1.40 thorpej #define PDSLOT_KERN (KERNBASE/NBPD) /* 960: start of kernel space */
153 1.40 thorpej #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
154 1.1 cgd
155 1.1 cgd /*
156 1.41 chs * the following defines give the virtual addresses of various MMU
157 1.40 thorpej * data structures:
158 1.40 thorpej * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
159 1.40 thorpej * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
160 1.40 thorpej * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
161 1.1 cgd */
162 1.29 fvdl
163 1.40 thorpej #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
164 1.40 thorpej #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
165 1.41 chs #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
166 1.41 chs #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
167 1.40 thorpej #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
168 1.40 thorpej #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
169 1.1 cgd
170 1.1 cgd /*
171 1.40 thorpej * XXXCDC: tmp xlate from old names:
172 1.40 thorpej * PTDPTDI -> PDSLOT_PTE
173 1.40 thorpej * KPTDI -> PDSLOT_KERN
174 1.40 thorpej * APTDPTDI -> PDSLOT_APTE
175 1.1 cgd */
176 1.40 thorpej
177 1.40 thorpej /*
178 1.40 thorpej * the follow define determines how many PTPs should be set up for the
179 1.41 chs * kernel by locore.s at boot time. this should be large enough to
180 1.41 chs * get the VM system running. once the VM system is running, the
181 1.40 thorpej * pmap module can add more PTPs to the kernel area on demand.
182 1.40 thorpej */
183 1.40 thorpej
184 1.40 thorpej #ifndef NKPTP
185 1.40 thorpej #define NKPTP 4 /* 16MB to start */
186 1.1 cgd #endif
187 1.40 thorpej #define NKPTP_MIN 4 /* smallest value we allow */
188 1.40 thorpej #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
189 1.40 thorpej /* largest value (-1 for APTP space) */
190 1.1 cgd
191 1.1 cgd /*
192 1.40 thorpej * various address macros
193 1.40 thorpej *
194 1.40 thorpej * vtopte: return a pointer to the PTE mapping a VA
195 1.40 thorpej * kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
196 1.40 thorpej * ptetov: given a pointer to a PTE, return the VA that it maps
197 1.40 thorpej * vtophys: translate a VA to the PA mapped to it
198 1.40 thorpej *
199 1.40 thorpej * plus alternative versions of the above
200 1.1 cgd */
201 1.1 cgd
202 1.40 thorpej #define vtopte(VA) (PTE_BASE + i386_btop(VA))
203 1.40 thorpej #define kvtopte(VA) vtopte(VA)
204 1.40 thorpej #define ptetov(PT) (i386_ptob(PT - PTE_BASE))
205 1.41 chs #define vtophys(VA) ((*vtopte(VA) & PG_FRAME) | \
206 1.41 chs ((unsigned)(VA) & ~PG_FRAME))
207 1.40 thorpej #define avtopte(VA) (APTE_BASE + i386_btop(VA))
208 1.41 chs #define ptetoav(PT) (i386_ptob(PT - APTE_BASE))
209 1.41 chs #define avtophys(VA) ((*avtopte(VA) & PG_FRAME) | \
210 1.41 chs ((unsigned)(VA) & ~PG_FRAME))
211 1.1 cgd
212 1.1 cgd /*
213 1.40 thorpej * pdei/ptei: generate index into PDP/PTP from a VA
214 1.1 cgd */
215 1.40 thorpej #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
216 1.40 thorpej #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
217 1.1 cgd
218 1.1 cgd /*
219 1.40 thorpej * PTP macros:
220 1.40 thorpej * a PTP's index is the PD index of the PDE that points to it
221 1.40 thorpej * a PTP's offset is the byte-offset in the PTE space that this PTP is at
222 1.40 thorpej * a PTP's VA is the first VA mapped by that PTP
223 1.40 thorpej *
224 1.40 thorpej * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
225 1.40 thorpej * NBPD == number of bytes a PTP can map (4MB)
226 1.1 cgd */
227 1.39 thorpej
228 1.40 thorpej #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
229 1.40 thorpej #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
230 1.40 thorpej #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
231 1.40 thorpej #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
232 1.39 thorpej
233 1.40 thorpej /*
234 1.40 thorpej * PG_AVAIL usage: we make use of the ignored bits of the PTE
235 1.40 thorpej */
236 1.40 thorpej
237 1.40 thorpej #define PG_W PG_AVAIL1 /* "wired" mapping */
238 1.40 thorpej #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
239 1.40 thorpej /* PG_AVAIL3 not used */
240 1.40 thorpej
241 1.40 thorpej #ifdef _KERNEL
242 1.40 thorpej /*
243 1.40 thorpej * pmap data structures: see pmap.c for details of locking.
244 1.40 thorpej */
245 1.40 thorpej
246 1.40 thorpej struct pmap;
247 1.40 thorpej typedef struct pmap *pmap_t;
248 1.40 thorpej
249 1.40 thorpej /*
250 1.40 thorpej * we maintain a list of all non-kernel pmaps
251 1.40 thorpej */
252 1.40 thorpej
253 1.40 thorpej LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
254 1.40 thorpej
255 1.40 thorpej /*
256 1.40 thorpej * the pmap structure
257 1.40 thorpej *
258 1.40 thorpej * note that the pm_obj contains the simple_lock, the reference count,
259 1.40 thorpej * page list, and number of PTPs within the pmap.
260 1.40 thorpej */
261 1.40 thorpej
262 1.40 thorpej struct pmap {
263 1.41 chs struct uvm_object pm_obj; /* object (lck by object lock) */
264 1.40 thorpej #define pm_lock pm_obj.vmobjlock
265 1.41 chs LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
266 1.41 chs pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
267 1.41 chs u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
268 1.41 chs struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
269 1.41 chs struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
270 1.41 chs
271 1.41 chs int pm_flags; /* see below */
272 1.41 chs
273 1.41 chs union descriptor *pm_ldt; /* user-set LDT */
274 1.41 chs int pm_ldt_len; /* number of LDT entries */
275 1.41 chs int pm_ldt_sel; /* LDT selector */
276 1.40 thorpej };
277 1.1 cgd
278 1.39 thorpej /* pm_flags */
279 1.39 thorpej #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
280 1.39 thorpej
281 1.1 cgd /*
282 1.40 thorpej * for each managed physical page we maintain a list of <PMAP,VA>'s
283 1.41 chs * which it is mapped at. the list is headed by a pv_head structure.
284 1.40 thorpej * there is one pv_head per managed phys page (allocated at boot time).
285 1.40 thorpej * the pv_head structure points to a list of pv_entry structures (each
286 1.40 thorpej * describes one mapping).
287 1.1 cgd */
288 1.40 thorpej
289 1.40 thorpej struct pv_entry;
290 1.40 thorpej
291 1.40 thorpej struct pv_head {
292 1.41 chs simple_lock_data_t pvh_lock; /* locks every pv on this list */
293 1.41 chs struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
294 1.40 thorpej };
295 1.40 thorpej
296 1.41 chs struct pv_entry { /* locked by its list's pvh_lock */
297 1.41 chs struct pv_entry *pv_next; /* next entry */
298 1.41 chs struct pmap *pv_pmap; /* the pmap */
299 1.41 chs vaddr_t pv_va; /* the virtual address */
300 1.41 chs struct vm_page *pv_ptp; /* the vm_page of the PTP */
301 1.11 mycroft };
302 1.11 mycroft
303 1.40 thorpej /*
304 1.40 thorpej * pv_entrys are dynamically allocated in chunks from a single page.
305 1.40 thorpej * we keep track of how many pv_entrys are in use for each page and
306 1.41 chs * we can free pv_entry pages if needed. there is one lock for the
307 1.40 thorpej * entire allocation system.
308 1.40 thorpej */
309 1.11 mycroft
310 1.11 mycroft struct pv_page_info {
311 1.41 chs TAILQ_ENTRY(pv_page) pvpi_list;
312 1.41 chs struct pv_entry *pvpi_pvfree;
313 1.41 chs int pvpi_nfree;
314 1.11 mycroft };
315 1.1 cgd
316 1.11 mycroft /*
317 1.40 thorpej * number of pv_entry's in a pv_page
318 1.40 thorpej * (note: won't work on systems where NPBG isn't a constant)
319 1.40 thorpej */
320 1.40 thorpej
321 1.41 chs #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
322 1.41 chs sizeof(struct pv_entry))
323 1.40 thorpej
324 1.40 thorpej /*
325 1.40 thorpej * a pv_page: where pv_entrys are allocated from
326 1.11 mycroft */
327 1.1 cgd
328 1.11 mycroft struct pv_page {
329 1.41 chs struct pv_page_info pvinfo;
330 1.41 chs struct pv_entry pvents[PVE_PER_PVPAGE];
331 1.40 thorpej };
332 1.40 thorpej
333 1.40 thorpej /*
334 1.40 thorpej * pmap_remove_record: a record of VAs that have been unmapped, used to
335 1.41 chs * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
336 1.40 thorpej */
337 1.40 thorpej
338 1.40 thorpej #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
339 1.40 thorpej
340 1.40 thorpej struct pmap_remove_record {
341 1.41 chs int prr_npages;
342 1.41 chs vaddr_t prr_vas[PMAP_RR_MAX];
343 1.40 thorpej };
344 1.40 thorpej
345 1.40 thorpej /*
346 1.40 thorpej * pmap_transfer_location: used to pass the current location in the
347 1.40 thorpej * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
348 1.40 thorpej * a pmap_copy].
349 1.40 thorpej */
350 1.40 thorpej
351 1.40 thorpej struct pmap_transfer_location {
352 1.41 chs vaddr_t addr; /* the address (page-aligned) */
353 1.41 chs pt_entry_t *pte; /* the PTE that maps address */
354 1.41 chs struct vm_page *ptp; /* the PTP that the PTE lives in */
355 1.11 mycroft };
356 1.1 cgd
357 1.40 thorpej /*
358 1.40 thorpej * global kernel variables
359 1.40 thorpej */
360 1.40 thorpej
361 1.40 thorpej /* PTDpaddr: is the physical address of the kernel's PDP */
362 1.40 thorpej extern u_long PTDpaddr;
363 1.40 thorpej
364 1.40 thorpej extern struct pmap kernel_pmap_store; /* kernel pmap */
365 1.40 thorpej extern int nkpde; /* current # of PDEs for kernel */
366 1.40 thorpej extern int pmap_pg_g; /* do we support PG_G? */
367 1.40 thorpej
368 1.40 thorpej /*
369 1.40 thorpej * macros
370 1.40 thorpej */
371 1.1 cgd
372 1.18 mycroft #define pmap_kernel() (&kernel_pmap_store)
373 1.1 cgd #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
374 1.13 mycroft #define pmap_update() tlbflush()
375 1.11 mycroft
376 1.40 thorpej #define pmap_clear_modify(pg) pmap_change_attrs(pg, 0, PG_M)
377 1.40 thorpej #define pmap_clear_reference(pg) pmap_change_attrs(pg, 0, PG_U)
378 1.40 thorpej #define pmap_copy(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, FALSE)
379 1.40 thorpej #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
380 1.40 thorpej #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
381 1.40 thorpej #define pmap_move(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, TRUE)
382 1.40 thorpej #define pmap_phys_address(ppn) i386_ptob(ppn)
383 1.40 thorpej #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
384 1.40 thorpej
385 1.40 thorpej
386 1.40 thorpej /*
387 1.40 thorpej * prototypes
388 1.40 thorpej */
389 1.40 thorpej
390 1.40 thorpej void pmap_activate __P((struct proc *));
391 1.40 thorpej void pmap_bootstrap __P((vaddr_t));
392 1.40 thorpej boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
393 1.40 thorpej void pmap_deactivate __P((struct proc *));
394 1.40 thorpej static void pmap_kenter_pa __P((vaddr_t, paddr_t, vm_prot_t));
395 1.40 thorpej static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
396 1.40 thorpej void pmap_page_remove __P((struct vm_page *));
397 1.41 chs static void pmap_protect __P((struct pmap *, vaddr_t,
398 1.40 thorpej vaddr_t, vm_prot_t));
399 1.40 thorpej void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
400 1.40 thorpej boolean_t pmap_test_attrs __P((struct vm_page *, int));
401 1.41 chs void pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
402 1.40 thorpej vsize_t, vaddr_t, boolean_t));
403 1.40 thorpej static void pmap_update_pg __P((vaddr_t));
404 1.40 thorpej static void pmap_update_2pg __P((vaddr_t,vaddr_t));
405 1.41 chs void pmap_write_protect __P((struct pmap *, vaddr_t,
406 1.40 thorpej vaddr_t, vm_prot_t));
407 1.40 thorpej
408 1.40 thorpej vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
409 1.40 thorpej
410 1.40 thorpej #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
411 1.40 thorpej
412 1.40 thorpej /*
413 1.40 thorpej * inline functions
414 1.40 thorpej */
415 1.40 thorpej
416 1.40 thorpej /*
417 1.40 thorpej * pmap_update_pg: flush one page from the TLB (or flush the whole thing
418 1.40 thorpej * if hardware doesn't support one-page flushing)
419 1.40 thorpej */
420 1.40 thorpej
421 1.41 chs __inline static void
422 1.41 chs pmap_update_pg(va)
423 1.41 chs vaddr_t va;
424 1.11 mycroft {
425 1.40 thorpej #if defined(I386_CPU)
426 1.41 chs if (cpu_class == CPUCLASS_386)
427 1.41 chs pmap_update();
428 1.41 chs else
429 1.40 thorpej #endif
430 1.41 chs invlpg((u_int) va);
431 1.11 mycroft }
432 1.11 mycroft
433 1.40 thorpej /*
434 1.40 thorpej * pmap_update_2pg: flush two pages from the TLB
435 1.40 thorpej */
436 1.40 thorpej
437 1.41 chs __inline static void
438 1.41 chs pmap_update_2pg(va, vb)
439 1.41 chs vaddr_t va, vb;
440 1.11 mycroft {
441 1.40 thorpej #if defined(I386_CPU)
442 1.41 chs if (cpu_class == CPUCLASS_386)
443 1.41 chs pmap_update();
444 1.41 chs else
445 1.40 thorpej #endif
446 1.41 chs {
447 1.41 chs invlpg((u_int) va);
448 1.41 chs invlpg((u_int) vb);
449 1.41 chs }
450 1.11 mycroft }
451 1.11 mycroft
452 1.40 thorpej /*
453 1.40 thorpej * pmap_page_protect: change the protection of all recorded mappings
454 1.40 thorpej * of a managed page
455 1.40 thorpej *
456 1.40 thorpej * => this function is a frontend for pmap_page_remove/pmap_change_attrs
457 1.40 thorpej * => we only have to worry about making the page more protected.
458 1.40 thorpej * unprotecting a page is done on-demand at fault time.
459 1.40 thorpej */
460 1.40 thorpej
461 1.41 chs __inline static void
462 1.41 chs pmap_page_protect(pg, prot)
463 1.41 chs struct vm_page *pg;
464 1.41 chs vm_prot_t prot;
465 1.11 mycroft {
466 1.41 chs if ((prot & VM_PROT_WRITE) == 0) {
467 1.41 chs if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
468 1.41 chs (void) pmap_change_attrs(pg, PG_RO, PG_RW);
469 1.41 chs } else {
470 1.41 chs pmap_page_remove(pg);
471 1.41 chs }
472 1.41 chs }
473 1.11 mycroft }
474 1.11 mycroft
475 1.40 thorpej /*
476 1.40 thorpej * pmap_protect: change the protection of pages in a pmap
477 1.40 thorpej *
478 1.40 thorpej * => this function is a frontend for pmap_remove/pmap_write_protect
479 1.40 thorpej * => we only have to worry about making the page more protected.
480 1.40 thorpej * unprotecting a page is done on-demand at fault time.
481 1.40 thorpej */
482 1.40 thorpej
483 1.41 chs __inline static void
484 1.41 chs pmap_protect(pmap, sva, eva, prot)
485 1.41 chs struct pmap *pmap;
486 1.41 chs vaddr_t sva, eva;
487 1.41 chs vm_prot_t prot;
488 1.11 mycroft {
489 1.41 chs if ((prot & VM_PROT_WRITE) == 0) {
490 1.41 chs if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
491 1.41 chs pmap_write_protect(pmap, sva, eva, prot);
492 1.41 chs } else {
493 1.41 chs pmap_remove(pmap, sva, eva);
494 1.41 chs }
495 1.41 chs }
496 1.11 mycroft }
497 1.11 mycroft
498 1.40 thorpej /*
499 1.40 thorpej * pmap_kenter_pa: enter a kernel mapping without R/M (pv_entry) tracking
500 1.40 thorpej *
501 1.41 chs * => no need to lock anything, assume va is already allocated
502 1.40 thorpej * => should be faster than normal pmap enter function
503 1.40 thorpej */
504 1.41 chs
505 1.41 chs __inline static void
506 1.41 chs pmap_kenter_pa(va, pa, prot)
507 1.41 chs vaddr_t va;
508 1.41 chs paddr_t pa;
509 1.41 chs vm_prot_t prot;
510 1.11 mycroft {
511 1.41 chs struct pmap *pm = pmap_kernel();
512 1.41 chs pt_entry_t *pte, opte;
513 1.41 chs int s;
514 1.41 chs
515 1.41 chs s = splimp();
516 1.41 chs simple_lock(&pm->pm_obj.vmobjlock);
517 1.41 chs pm->pm_stats.resident_count++;
518 1.41 chs pm->pm_stats.wired_count++;
519 1.41 chs simple_unlock(&pm->pm_obj.vmobjlock);
520 1.41 chs splx(s);
521 1.41 chs
522 1.41 chs pte = vtopte(va);
523 1.41 chs opte = *pte;
524 1.41 chs *pte = pa | ((prot & VM_PROT_WRITE)? PG_RW : PG_RO) |
525 1.41 chs PG_V | pmap_pg_g; /* zap! */
526 1.41 chs if (pmap_valid_entry(opte))
527 1.41 chs pmap_update_pg(va);
528 1.41 chs }
529 1.35 cgd
530 1.41 chs vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
531 1.39 thorpej
532 1.39 thorpej #if defined(USER_LDT)
533 1.39 thorpej void pmap_ldt_cleanup __P((struct proc *));
534 1.39 thorpej #define PMAP_FORK
535 1.39 thorpej #endif /* USER_LDT */
536 1.1 cgd
537 1.40 thorpej #endif /* _KERNEL */
538 1.40 thorpej #endif /* _I386_PMAP_H_ */
539