pmap.h revision 1.43.2.5 1 1.43.2.5 sommerfe /* $NetBSD: pmap.h,v 1.43.2.5 2000/09/06 03:28:35 sommerfeld Exp $ */
2 1.38 mycroft
3 1.40 thorpej /*
4 1.40 thorpej *
5 1.40 thorpej * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 1.38 mycroft * All rights reserved.
7 1.38 mycroft *
8 1.38 mycroft * Redistribution and use in source and binary forms, with or without
9 1.38 mycroft * modification, are permitted provided that the following conditions
10 1.38 mycroft * are met:
11 1.38 mycroft * 1. Redistributions of source code must retain the above copyright
12 1.38 mycroft * notice, this list of conditions and the following disclaimer.
13 1.38 mycroft * 2. Redistributions in binary form must reproduce the above copyright
14 1.38 mycroft * notice, this list of conditions and the following disclaimer in the
15 1.38 mycroft * documentation and/or other materials provided with the distribution.
16 1.38 mycroft * 3. All advertising materials mentioning features or use of this software
17 1.40 thorpej * must display the following acknowledgment:
18 1.40 thorpej * This product includes software developed by Charles D. Cranor and
19 1.40 thorpej * Washington University.
20 1.40 thorpej * 4. The name of the author may not be used to endorse or promote products
21 1.40 thorpej * derived from this software without specific prior written permission.
22 1.1 cgd *
23 1.40 thorpej * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.40 thorpej * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.40 thorpej * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.40 thorpej * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.40 thorpej * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 1.40 thorpej * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 1.40 thorpej * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 1.40 thorpej * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 1.40 thorpej * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 1.40 thorpej * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.1 cgd /*
36 1.40 thorpej * pmap.h: see pmap.c for the history of this pmap module.
37 1.1 cgd */
38 1.34 mrg
39 1.40 thorpej #ifndef _I386_PMAP_H_
40 1.40 thorpej #define _I386_PMAP_H_
41 1.40 thorpej
42 1.34 mrg #if defined(_KERNEL) && !defined(_LKM)
43 1.39 thorpej #include "opt_user_ldt.h"
44 1.34 mrg #endif
45 1.1 cgd
46 1.14 mycroft #include <machine/cpufunc.h>
47 1.6 mycroft #include <machine/pte.h>
48 1.39 thorpej #include <machine/segments.h>
49 1.40 thorpej #include <uvm/uvm_object.h>
50 1.1 cgd
51 1.1 cgd /*
52 1.40 thorpej * see pte.h for a description of i386 MMU terminology and hardware
53 1.40 thorpej * interface.
54 1.40 thorpej *
55 1.40 thorpej * a pmap describes a processes' 4GB virtual address space. this
56 1.40 thorpej * virtual address space can be broken up into 1024 4MB regions which
57 1.41 chs * are described by PDEs in the PDP. the PDEs are defined as follows:
58 1.40 thorpej *
59 1.40 thorpej * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
60 1.43 thorpej * (the following assumes that KERNBASE is 0xc0000000)
61 1.40 thorpej *
62 1.40 thorpej * PDE#s VA range usage
63 1.43.2.5 sommerfe * 0->766 0x0 -> 0xbfc00000 user address space, note that the
64 1.43 thorpej * max user address is 0xbfbfe000
65 1.40 thorpej * the final two pages in the last 4MB
66 1.40 thorpej * used to be reserved for the UAREA
67 1.40 thorpej * but now are no longer used
68 1.43.2.5 sommerfe * 767 0xbfc00000-> recursive mapping of PDP (used for
69 1.43 thorpej * 0xc0000000 linear mapping of PTPs)
70 1.43 thorpej * 768->1023 0xc0000000-> kernel address space (constant
71 1.40 thorpej * 0xffc00000 across all pmap's/processes)
72 1.40 thorpej * 1023 0xffc00000-> "alternate" recursive PDP mapping
73 1.40 thorpej * <end> (for other pmaps)
74 1.40 thorpej *
75 1.40 thorpej *
76 1.40 thorpej * note: a recursive PDP mapping provides a way to map all the PTEs for
77 1.41 chs * a 4GB address space into a linear chunk of virtual memory. in other
78 1.41 chs * words, the PTE for page 0 is the first int mapped into the 4MB recursive
79 1.41 chs * area. the PTE for page 1 is the second int. the very last int in the
80 1.40 thorpej * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
81 1.40 thorpej * address).
82 1.40 thorpej *
83 1.43 thorpej * all pmap's PD's must have the same values in slots 768->1023 so that
84 1.41 chs * the kernel is always mapped in every process. these values are loaded
85 1.40 thorpej * into the PD at pmap creation time.
86 1.40 thorpej *
87 1.41 chs * at any one time only one pmap can be active on a processor. this is
88 1.41 chs * the pmap whose PDP is pointed to by processor register %cr3. this pmap
89 1.40 thorpej * will have all its PTEs mapped into memory at the recursive mapping
90 1.43 thorpej * point (slot #767 as show above). when the pmap code wants to find the
91 1.40 thorpej * PTE for a virtual address, all it has to do is the following:
92 1.40 thorpej *
93 1.43 thorpej * address of PTE = (767 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
94 1.43 thorpej * = 0xbfc00000 + (VA / 4096) * 4
95 1.40 thorpej *
96 1.40 thorpej * what happens if the pmap layer is asked to perform an operation
97 1.41 chs * on a pmap that is not the one which is currently active? in that
98 1.41 chs * case we take the PA of the PDP of non-active pmap and put it in
99 1.41 chs * slot 1023 of the active pmap. this causes the non-active pmap's
100 1.40 thorpej * PTEs to get mapped in the final 4MB of the 4GB address space
101 1.40 thorpej * (e.g. starting at 0xffc00000).
102 1.40 thorpej *
103 1.40 thorpej * the following figure shows the effects of the recursive PDP mapping:
104 1.40 thorpej *
105 1.40 thorpej * PDP (%cr3)
106 1.40 thorpej * +----+
107 1.40 thorpej * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
108 1.40 thorpej * | |
109 1.40 thorpej * | |
110 1.43 thorpej * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
111 1.43 thorpej * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
112 1.40 thorpej * | |
113 1.40 thorpej * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
114 1.40 thorpej * +----+
115 1.40 thorpej *
116 1.43 thorpej * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
117 1.40 thorpej * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
118 1.40 thorpej *
119 1.43 thorpej * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
120 1.40 thorpej * PTP:
121 1.40 thorpej *
122 1.43 thorpej * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
123 1.40 thorpej * +----+
124 1.43 thorpej * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
125 1.40 thorpej * | |
126 1.40 thorpej * | |
127 1.43 thorpej * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbffbf000
128 1.43 thorpej * | 768| -> maps contents of first kernel PTP
129 1.40 thorpej * | |
130 1.40 thorpej * |1023|
131 1.40 thorpej * +----+
132 1.40 thorpej *
133 1.41 chs * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
134 1.40 thorpej * defined as "PDP_BASE".... within that mapping there are two
135 1.41 chs * defines:
136 1.40 thorpej * "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
137 1.41 chs * which points back to itself.
138 1.40 thorpej * "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
139 1.40 thorpej * establishes the recursive mapping of the alternate pmap.
140 1.40 thorpej * to set the alternate PDP, one just has to put the correct
141 1.40 thorpej * PA info in *APDP_PDE.
142 1.40 thorpej *
143 1.41 chs * note that in the APTE_BASE space, the APDP appears at VA
144 1.40 thorpej * "APDP_BASE" (0xfffff000).
145 1.1 cgd */
146 1.43.2.1 sommerfe /* XXX MP should we allocate one APDP_PDE per processor?? */
147 1.33 mrg
148 1.33 mrg /*
149 1.40 thorpej * the following defines identify the slots used as described above.
150 1.33 mrg */
151 1.33 mrg
152 1.43 thorpej #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
153 1.43 thorpej #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
154 1.40 thorpej #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
155 1.1 cgd
156 1.1 cgd /*
157 1.41 chs * the following defines give the virtual addresses of various MMU
158 1.40 thorpej * data structures:
159 1.40 thorpej * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
160 1.40 thorpej * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
161 1.40 thorpej * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
162 1.1 cgd */
163 1.29 fvdl
164 1.40 thorpej #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
165 1.40 thorpej #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
166 1.41 chs #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
167 1.41 chs #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
168 1.40 thorpej #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
169 1.40 thorpej #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
170 1.1 cgd
171 1.1 cgd /*
172 1.40 thorpej * XXXCDC: tmp xlate from old names:
173 1.40 thorpej * PTDPTDI -> PDSLOT_PTE
174 1.40 thorpej * KPTDI -> PDSLOT_KERN
175 1.40 thorpej * APTDPTDI -> PDSLOT_APTE
176 1.1 cgd */
177 1.40 thorpej
178 1.40 thorpej /*
179 1.40 thorpej * the follow define determines how many PTPs should be set up for the
180 1.41 chs * kernel by locore.s at boot time. this should be large enough to
181 1.41 chs * get the VM system running. once the VM system is running, the
182 1.40 thorpej * pmap module can add more PTPs to the kernel area on demand.
183 1.40 thorpej */
184 1.40 thorpej
185 1.40 thorpej #ifndef NKPTP
186 1.40 thorpej #define NKPTP 4 /* 16MB to start */
187 1.1 cgd #endif
188 1.40 thorpej #define NKPTP_MIN 4 /* smallest value we allow */
189 1.40 thorpej #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
190 1.40 thorpej /* largest value (-1 for APTP space) */
191 1.1 cgd
192 1.1 cgd /*
193 1.40 thorpej * various address macros
194 1.40 thorpej *
195 1.40 thorpej * vtopte: return a pointer to the PTE mapping a VA
196 1.40 thorpej * kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
197 1.40 thorpej * ptetov: given a pointer to a PTE, return the VA that it maps
198 1.40 thorpej * vtophys: translate a VA to the PA mapped to it
199 1.40 thorpej *
200 1.40 thorpej * plus alternative versions of the above
201 1.1 cgd */
202 1.1 cgd
203 1.40 thorpej #define vtopte(VA) (PTE_BASE + i386_btop(VA))
204 1.40 thorpej #define kvtopte(VA) vtopte(VA)
205 1.40 thorpej #define ptetov(PT) (i386_ptob(PT - PTE_BASE))
206 1.41 chs #define vtophys(VA) ((*vtopte(VA) & PG_FRAME) | \
207 1.41 chs ((unsigned)(VA) & ~PG_FRAME))
208 1.40 thorpej #define avtopte(VA) (APTE_BASE + i386_btop(VA))
209 1.41 chs #define ptetoav(PT) (i386_ptob(PT - APTE_BASE))
210 1.41 chs #define avtophys(VA) ((*avtopte(VA) & PG_FRAME) | \
211 1.41 chs ((unsigned)(VA) & ~PG_FRAME))
212 1.1 cgd
213 1.1 cgd /*
214 1.40 thorpej * pdei/ptei: generate index into PDP/PTP from a VA
215 1.1 cgd */
216 1.40 thorpej #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
217 1.40 thorpej #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
218 1.1 cgd
219 1.1 cgd /*
220 1.40 thorpej * PTP macros:
221 1.40 thorpej * a PTP's index is the PD index of the PDE that points to it
222 1.40 thorpej * a PTP's offset is the byte-offset in the PTE space that this PTP is at
223 1.40 thorpej * a PTP's VA is the first VA mapped by that PTP
224 1.40 thorpej *
225 1.40 thorpej * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
226 1.40 thorpej * NBPD == number of bytes a PTP can map (4MB)
227 1.1 cgd */
228 1.39 thorpej
229 1.40 thorpej #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
230 1.40 thorpej #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
231 1.40 thorpej #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
232 1.40 thorpej #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
233 1.39 thorpej
234 1.40 thorpej /*
235 1.40 thorpej * PG_AVAIL usage: we make use of the ignored bits of the PTE
236 1.40 thorpej */
237 1.40 thorpej
238 1.40 thorpej #define PG_W PG_AVAIL1 /* "wired" mapping */
239 1.40 thorpej #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
240 1.40 thorpej /* PG_AVAIL3 not used */
241 1.43.2.5 sommerfe
242 1.43.2.5 sommerfe /*
243 1.43.2.5 sommerfe * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
244 1.43.2.5 sommerfe * Used to avoid false sharing of cache lines.
245 1.43.2.5 sommerfe */
246 1.43.2.5 sommerfe #define NPTECL 8
247 1.40 thorpej
248 1.40 thorpej #ifdef _KERNEL
249 1.40 thorpej /*
250 1.40 thorpej * pmap data structures: see pmap.c for details of locking.
251 1.40 thorpej */
252 1.40 thorpej
253 1.40 thorpej struct pmap;
254 1.40 thorpej typedef struct pmap *pmap_t;
255 1.40 thorpej
256 1.40 thorpej /*
257 1.40 thorpej * we maintain a list of all non-kernel pmaps
258 1.40 thorpej */
259 1.40 thorpej
260 1.40 thorpej LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
261 1.40 thorpej
262 1.40 thorpej /*
263 1.40 thorpej * the pmap structure
264 1.40 thorpej *
265 1.40 thorpej * note that the pm_obj contains the simple_lock, the reference count,
266 1.40 thorpej * page list, and number of PTPs within the pmap.
267 1.40 thorpej */
268 1.40 thorpej
269 1.40 thorpej struct pmap {
270 1.41 chs struct uvm_object pm_obj; /* object (lck by object lock) */
271 1.40 thorpej #define pm_lock pm_obj.vmobjlock
272 1.41 chs LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
273 1.41 chs pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
274 1.41 chs u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
275 1.41 chs struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
276 1.41 chs struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
277 1.41 chs
278 1.41 chs int pm_flags; /* see below */
279 1.41 chs
280 1.41 chs union descriptor *pm_ldt; /* user-set LDT */
281 1.41 chs int pm_ldt_len; /* number of LDT entries */
282 1.41 chs int pm_ldt_sel; /* LDT selector */
283 1.40 thorpej };
284 1.1 cgd
285 1.39 thorpej /* pm_flags */
286 1.39 thorpej #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
287 1.39 thorpej
288 1.1 cgd /*
289 1.40 thorpej * for each managed physical page we maintain a list of <PMAP,VA>'s
290 1.41 chs * which it is mapped at. the list is headed by a pv_head structure.
291 1.40 thorpej * there is one pv_head per managed phys page (allocated at boot time).
292 1.40 thorpej * the pv_head structure points to a list of pv_entry structures (each
293 1.40 thorpej * describes one mapping).
294 1.1 cgd */
295 1.40 thorpej
296 1.40 thorpej struct pv_entry;
297 1.40 thorpej
298 1.40 thorpej struct pv_head {
299 1.41 chs simple_lock_data_t pvh_lock; /* locks every pv on this list */
300 1.41 chs struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
301 1.40 thorpej };
302 1.40 thorpej
303 1.41 chs struct pv_entry { /* locked by its list's pvh_lock */
304 1.41 chs struct pv_entry *pv_next; /* next entry */
305 1.41 chs struct pmap *pv_pmap; /* the pmap */
306 1.41 chs vaddr_t pv_va; /* the virtual address */
307 1.41 chs struct vm_page *pv_ptp; /* the vm_page of the PTP */
308 1.11 mycroft };
309 1.11 mycroft
310 1.40 thorpej /*
311 1.40 thorpej * pv_entrys are dynamically allocated in chunks from a single page.
312 1.40 thorpej * we keep track of how many pv_entrys are in use for each page and
313 1.41 chs * we can free pv_entry pages if needed. there is one lock for the
314 1.40 thorpej * entire allocation system.
315 1.40 thorpej */
316 1.11 mycroft
317 1.11 mycroft struct pv_page_info {
318 1.41 chs TAILQ_ENTRY(pv_page) pvpi_list;
319 1.41 chs struct pv_entry *pvpi_pvfree;
320 1.41 chs int pvpi_nfree;
321 1.11 mycroft };
322 1.1 cgd
323 1.11 mycroft /*
324 1.40 thorpej * number of pv_entry's in a pv_page
325 1.40 thorpej * (note: won't work on systems where NPBG isn't a constant)
326 1.40 thorpej */
327 1.40 thorpej
328 1.41 chs #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
329 1.41 chs sizeof(struct pv_entry))
330 1.40 thorpej
331 1.40 thorpej /*
332 1.40 thorpej * a pv_page: where pv_entrys are allocated from
333 1.11 mycroft */
334 1.1 cgd
335 1.11 mycroft struct pv_page {
336 1.41 chs struct pv_page_info pvinfo;
337 1.41 chs struct pv_entry pvents[PVE_PER_PVPAGE];
338 1.40 thorpej };
339 1.40 thorpej
340 1.40 thorpej /*
341 1.40 thorpej * pmap_remove_record: a record of VAs that have been unmapped, used to
342 1.41 chs * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
343 1.40 thorpej */
344 1.40 thorpej
345 1.40 thorpej #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
346 1.43.2.1 sommerfe #if 0
347 1.40 thorpej struct pmap_remove_record {
348 1.41 chs int prr_npages;
349 1.41 chs vaddr_t prr_vas[PMAP_RR_MAX];
350 1.40 thorpej };
351 1.43.2.1 sommerfe #endif
352 1.40 thorpej
353 1.43.2.3 sommerfe #if 0
354 1.40 thorpej /*
355 1.40 thorpej * pmap_transfer_location: used to pass the current location in the
356 1.40 thorpej * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
357 1.40 thorpej * a pmap_copy].
358 1.40 thorpej */
359 1.40 thorpej
360 1.40 thorpej struct pmap_transfer_location {
361 1.41 chs vaddr_t addr; /* the address (page-aligned) */
362 1.41 chs pt_entry_t *pte; /* the PTE that maps address */
363 1.41 chs struct vm_page *ptp; /* the PTP that the PTE lives in */
364 1.11 mycroft };
365 1.43.2.3 sommerfe #endif
366 1.1 cgd
367 1.40 thorpej /*
368 1.40 thorpej * global kernel variables
369 1.40 thorpej */
370 1.40 thorpej
371 1.40 thorpej /* PTDpaddr: is the physical address of the kernel's PDP */
372 1.40 thorpej extern u_long PTDpaddr;
373 1.40 thorpej
374 1.40 thorpej extern struct pmap kernel_pmap_store; /* kernel pmap */
375 1.40 thorpej extern int nkpde; /* current # of PDEs for kernel */
376 1.40 thorpej extern int pmap_pg_g; /* do we support PG_G? */
377 1.40 thorpej
378 1.40 thorpej /*
379 1.40 thorpej * macros
380 1.40 thorpej */
381 1.1 cgd
382 1.18 mycroft #define pmap_kernel() (&kernel_pmap_store)
383 1.1 cgd #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
384 1.13 mycroft #define pmap_update() tlbflush()
385 1.11 mycroft
386 1.40 thorpej #define pmap_clear_modify(pg) pmap_change_attrs(pg, 0, PG_M)
387 1.40 thorpej #define pmap_clear_reference(pg) pmap_change_attrs(pg, 0, PG_U)
388 1.43.2.3 sommerfe #define pmap_copy(DP,SP,D,L,S)
389 1.40 thorpej #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
390 1.40 thorpej #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
391 1.43.2.3 sommerfe #define pmap_move(DP,SP,D,L,S)
392 1.40 thorpej #define pmap_phys_address(ppn) i386_ptob(ppn)
393 1.40 thorpej #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
394 1.40 thorpej
395 1.40 thorpej
396 1.40 thorpej /*
397 1.40 thorpej * prototypes
398 1.40 thorpej */
399 1.40 thorpej
400 1.40 thorpej void pmap_activate __P((struct proc *));
401 1.40 thorpej void pmap_bootstrap __P((vaddr_t));
402 1.40 thorpej boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
403 1.40 thorpej void pmap_deactivate __P((struct proc *));
404 1.40 thorpej static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
405 1.40 thorpej void pmap_page_remove __P((struct vm_page *));
406 1.41 chs static void pmap_protect __P((struct pmap *, vaddr_t,
407 1.40 thorpej vaddr_t, vm_prot_t));
408 1.40 thorpej void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
409 1.40 thorpej boolean_t pmap_test_attrs __P((struct vm_page *, int));
410 1.41 chs void pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
411 1.40 thorpej vsize_t, vaddr_t, boolean_t));
412 1.40 thorpej static void pmap_update_pg __P((vaddr_t));
413 1.40 thorpej static void pmap_update_2pg __P((vaddr_t,vaddr_t));
414 1.41 chs void pmap_write_protect __P((struct pmap *, vaddr_t,
415 1.40 thorpej vaddr_t, vm_prot_t));
416 1.40 thorpej
417 1.40 thorpej vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
418 1.43.2.1 sommerfe
419 1.43.2.1 sommerfe #if defined(MULTIPROCESSOR)
420 1.43.2.1 sommerfe void pmap_tlb_shootdown __P((pmap_t, vaddr_t, pt_entry_t));
421 1.43.2.1 sommerfe #endif /* MULTIPROCESSOR */
422 1.43.2.1 sommerfe void pmap_tlb_dshootdown __P((pmap_t, vaddr_t, pt_entry_t));
423 1.43.2.4 sommerfe void pmap_do_tlb_shootdown __P((struct cpu_info *));
424 1.40 thorpej
425 1.40 thorpej #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
426 1.43.2.2 sommerfe
427 1.43.2.2 sommerfe /*
428 1.43.2.2 sommerfe * Do idle page zero'ing uncached to avoid polluting the cache.
429 1.43.2.2 sommerfe */
430 1.43.2.2 sommerfe void pmap_zero_page_uncached __P((paddr_t));
431 1.43.2.2 sommerfe #define PMAP_PAGEIDLEZERO(pa) pmap_zero_page_uncached((pa))
432 1.40 thorpej
433 1.40 thorpej /*
434 1.40 thorpej * inline functions
435 1.40 thorpej */
436 1.40 thorpej
437 1.40 thorpej /*
438 1.40 thorpej * pmap_update_pg: flush one page from the TLB (or flush the whole thing
439 1.40 thorpej * if hardware doesn't support one-page flushing)
440 1.40 thorpej */
441 1.40 thorpej
442 1.41 chs __inline static void
443 1.41 chs pmap_update_pg(va)
444 1.41 chs vaddr_t va;
445 1.11 mycroft {
446 1.40 thorpej #if defined(I386_CPU)
447 1.41 chs if (cpu_class == CPUCLASS_386)
448 1.41 chs pmap_update();
449 1.41 chs else
450 1.40 thorpej #endif
451 1.41 chs invlpg((u_int) va);
452 1.11 mycroft }
453 1.11 mycroft
454 1.40 thorpej /*
455 1.40 thorpej * pmap_update_2pg: flush two pages from the TLB
456 1.40 thorpej */
457 1.40 thorpej
458 1.41 chs __inline static void
459 1.41 chs pmap_update_2pg(va, vb)
460 1.41 chs vaddr_t va, vb;
461 1.11 mycroft {
462 1.40 thorpej #if defined(I386_CPU)
463 1.41 chs if (cpu_class == CPUCLASS_386)
464 1.41 chs pmap_update();
465 1.41 chs else
466 1.40 thorpej #endif
467 1.41 chs {
468 1.41 chs invlpg((u_int) va);
469 1.41 chs invlpg((u_int) vb);
470 1.41 chs }
471 1.11 mycroft }
472 1.11 mycroft
473 1.40 thorpej /*
474 1.40 thorpej * pmap_page_protect: change the protection of all recorded mappings
475 1.40 thorpej * of a managed page
476 1.40 thorpej *
477 1.40 thorpej * => this function is a frontend for pmap_page_remove/pmap_change_attrs
478 1.40 thorpej * => we only have to worry about making the page more protected.
479 1.40 thorpej * unprotecting a page is done on-demand at fault time.
480 1.40 thorpej */
481 1.40 thorpej
482 1.41 chs __inline static void
483 1.41 chs pmap_page_protect(pg, prot)
484 1.41 chs struct vm_page *pg;
485 1.41 chs vm_prot_t prot;
486 1.11 mycroft {
487 1.41 chs if ((prot & VM_PROT_WRITE) == 0) {
488 1.41 chs if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
489 1.41 chs (void) pmap_change_attrs(pg, PG_RO, PG_RW);
490 1.41 chs } else {
491 1.41 chs pmap_page_remove(pg);
492 1.41 chs }
493 1.41 chs }
494 1.11 mycroft }
495 1.11 mycroft
496 1.40 thorpej /*
497 1.40 thorpej * pmap_protect: change the protection of pages in a pmap
498 1.40 thorpej *
499 1.40 thorpej * => this function is a frontend for pmap_remove/pmap_write_protect
500 1.40 thorpej * => we only have to worry about making the page more protected.
501 1.40 thorpej * unprotecting a page is done on-demand at fault time.
502 1.40 thorpej */
503 1.40 thorpej
504 1.41 chs __inline static void
505 1.41 chs pmap_protect(pmap, sva, eva, prot)
506 1.41 chs struct pmap *pmap;
507 1.41 chs vaddr_t sva, eva;
508 1.41 chs vm_prot_t prot;
509 1.11 mycroft {
510 1.41 chs if ((prot & VM_PROT_WRITE) == 0) {
511 1.41 chs if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
512 1.41 chs pmap_write_protect(pmap, sva, eva, prot);
513 1.41 chs } else {
514 1.41 chs pmap_remove(pmap, sva, eva);
515 1.41 chs }
516 1.41 chs }
517 1.41 chs }
518 1.35 cgd
519 1.41 chs vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
520 1.39 thorpej
521 1.39 thorpej #if defined(USER_LDT)
522 1.39 thorpej void pmap_ldt_cleanup __P((struct proc *));
523 1.39 thorpej #define PMAP_FORK
524 1.39 thorpej #endif /* USER_LDT */
525 1.1 cgd
526 1.40 thorpej #endif /* _KERNEL */
527 1.40 thorpej #endif /* _I386_PMAP_H_ */
528