Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.65
      1  1.65     fvdl /*	$NetBSD: pmap.h,v 1.65 2002/10/01 12:57:08 fvdl Exp $	*/
      2  1.38  mycroft 
      3  1.40  thorpej /*
      4  1.40  thorpej  *
      5  1.40  thorpej  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  1.38  mycroft  * All rights reserved.
      7  1.38  mycroft  *
      8  1.38  mycroft  * Redistribution and use in source and binary forms, with or without
      9  1.38  mycroft  * modification, are permitted provided that the following conditions
     10  1.38  mycroft  * are met:
     11  1.38  mycroft  * 1. Redistributions of source code must retain the above copyright
     12  1.38  mycroft  *    notice, this list of conditions and the following disclaimer.
     13  1.38  mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.38  mycroft  *    notice, this list of conditions and the following disclaimer in the
     15  1.38  mycroft  *    documentation and/or other materials provided with the distribution.
     16  1.38  mycroft  * 3. All advertising materials mentioning features or use of this software
     17  1.40  thorpej  *    must display the following acknowledgment:
     18  1.40  thorpej  *      This product includes software developed by Charles D. Cranor and
     19  1.40  thorpej  *      Washington University.
     20  1.40  thorpej  * 4. The name of the author may not be used to endorse or promote products
     21  1.40  thorpej  *    derived from this software without specific prior written permission.
     22   1.1      cgd  *
     23  1.40  thorpej  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  1.40  thorpej  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  1.40  thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  1.40  thorpej  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  1.40  thorpej  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  1.40  thorpej  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  1.40  thorpej  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  1.40  thorpej  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  1.40  thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  1.40  thorpej  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33   1.1      cgd  */
     34   1.1      cgd 
     35   1.1      cgd /*
     36  1.40  thorpej  * pmap.h: see pmap.c for the history of this pmap module.
     37   1.1      cgd  */
     38  1.34      mrg 
     39  1.40  thorpej #ifndef	_I386_PMAP_H_
     40  1.40  thorpej #define	_I386_PMAP_H_
     41  1.40  thorpej 
     42  1.58      mrg #if defined(_KERNEL_OPT)
     43  1.39  thorpej #include "opt_user_ldt.h"
     44  1.48  thorpej #include "opt_largepages.h"
     45  1.34      mrg #endif
     46   1.1      cgd 
     47  1.14  mycroft #include <machine/cpufunc.h>
     48   1.6  mycroft #include <machine/pte.h>
     49  1.39  thorpej #include <machine/segments.h>
     50  1.40  thorpej #include <uvm/uvm_object.h>
     51   1.1      cgd 
     52   1.1      cgd /*
     53  1.40  thorpej  * see pte.h for a description of i386 MMU terminology and hardware
     54  1.40  thorpej  * interface.
     55  1.40  thorpej  *
     56  1.40  thorpej  * a pmap describes a processes' 4GB virtual address space.  this
     57  1.40  thorpej  * virtual address space can be broken up into 1024 4MB regions which
     58  1.41      chs  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     59  1.40  thorpej  *
     60  1.40  thorpej  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     61  1.43  thorpej  * (the following assumes that KERNBASE is 0xc0000000)
     62  1.40  thorpej  *
     63  1.40  thorpej  * PDE#s	VA range		usage
     64  1.65     fvdl  * 0->766	0x0 -> 0xbfc00000	user address space, note that the
     65  1.43  thorpej  *					max user address is 0xbfbfe000
     66  1.40  thorpej  *					the final two pages in the last 4MB
     67  1.40  thorpej  *					used to be reserved for the UAREA
     68  1.40  thorpej  *					but now are no longer used
     69  1.61     yamt  * 767		0xbfc00000->		recursive mapping of PDP (used for
     70  1.43  thorpej  *			0xc0000000	linear mapping of PTPs)
     71  1.43  thorpej  * 768->1023	0xc0000000->		kernel address space (constant
     72  1.40  thorpej  *			0xffc00000	across all pmap's/processes)
     73  1.40  thorpej  * 1023		0xffc00000->		"alternate" recursive PDP mapping
     74  1.40  thorpej  *			<end>		(for other pmaps)
     75  1.40  thorpej  *
     76  1.40  thorpej  *
     77  1.40  thorpej  * note: a recursive PDP mapping provides a way to map all the PTEs for
     78  1.41      chs  * a 4GB address space into a linear chunk of virtual memory.  in other
     79  1.41      chs  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
     80  1.41      chs  * area.  the PTE for page 1 is the second int.  the very last int in the
     81  1.40  thorpej  * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
     82  1.40  thorpej  * address).
     83  1.40  thorpej  *
     84  1.43  thorpej  * all pmap's PD's must have the same values in slots 768->1023 so that
     85  1.41      chs  * the kernel is always mapped in every process.  these values are loaded
     86  1.40  thorpej  * into the PD at pmap creation time.
     87  1.40  thorpej  *
     88  1.41      chs  * at any one time only one pmap can be active on a processor.  this is
     89  1.41      chs  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
     90  1.40  thorpej  * will have all its PTEs mapped into memory at the recursive mapping
     91  1.43  thorpej  * point (slot #767 as show above).  when the pmap code wants to find the
     92  1.40  thorpej  * PTE for a virtual address, all it has to do is the following:
     93  1.40  thorpej  *
     94  1.43  thorpej  * address of PTE = (767 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
     95  1.43  thorpej  *                = 0xbfc00000 + (VA / 4096) * 4
     96  1.40  thorpej  *
     97  1.40  thorpej  * what happens if the pmap layer is asked to perform an operation
     98  1.41      chs  * on a pmap that is not the one which is currently active?  in that
     99  1.41      chs  * case we take the PA of the PDP of non-active pmap and put it in
    100  1.41      chs  * slot 1023 of the active pmap.  this causes the non-active pmap's
    101  1.40  thorpej  * PTEs to get mapped in the final 4MB of the 4GB address space
    102  1.40  thorpej  * (e.g. starting at 0xffc00000).
    103  1.40  thorpej  *
    104  1.40  thorpej  * the following figure shows the effects of the recursive PDP mapping:
    105  1.40  thorpej  *
    106  1.40  thorpej  *   PDP (%cr3)
    107  1.40  thorpej  *   +----+
    108  1.40  thorpej  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    109  1.40  thorpej  *   |    |
    110  1.40  thorpej  *   |    |
    111  1.43  thorpej  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    112  1.43  thorpej  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
    113  1.40  thorpej  *   |    |
    114  1.40  thorpej  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    115  1.40  thorpej  *   +----+
    116  1.40  thorpej  *
    117  1.43  thorpej  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    118  1.40  thorpej  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    119  1.40  thorpej  *
    120  1.43  thorpej  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    121  1.40  thorpej  * PTP:
    122  1.40  thorpej  *
    123  1.43  thorpej  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    124  1.40  thorpej  *   +----+
    125  1.43  thorpej  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    126  1.40  thorpej  *   |    |
    127  1.40  thorpej  *   |    |
    128  1.43  thorpej  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbffbf000
    129  1.43  thorpej  *   | 768| -> maps contents of first kernel PTP
    130  1.40  thorpej  *   |    |
    131  1.40  thorpej  *   |1023|
    132  1.40  thorpej  *   +----+
    133  1.40  thorpej  *
    134  1.65     fvdl  * note that mapping of the PDP at PTP#767's VA (0xbffbf000) is
    135  1.40  thorpej  * defined as "PDP_BASE".... within that mapping there are two
    136  1.41      chs  * defines:
    137  1.59      chs  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    138  1.41      chs  *      which points back to itself.
    139  1.59      chs  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    140  1.40  thorpej  *      establishes the recursive mapping of the alternate pmap.
    141  1.40  thorpej  *      to set the alternate PDP, one just has to put the correct
    142  1.40  thorpej  *	PA info in *APDP_PDE.
    143  1.40  thorpej  *
    144  1.41      chs  * note that in the APTE_BASE space, the APDP appears at VA
    145  1.40  thorpej  * "APDP_BASE" (0xfffff000).
    146   1.1      cgd  */
    147  1.65     fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
    148  1.33      mrg 
    149  1.33      mrg /*
    150  1.40  thorpej  * the following defines identify the slots used as described above.
    151  1.33      mrg  */
    152  1.33      mrg 
    153  1.43  thorpej #define PDSLOT_PTE	((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
    154  1.43  thorpej #define PDSLOT_KERN	(KERNBASE/NBPD)	    /* 768: start of kernel space */
    155  1.40  thorpej #define PDSLOT_APTE	((unsigned)1023) /* 1023: alternative recursive slot */
    156   1.1      cgd 
    157   1.1      cgd /*
    158  1.41      chs  * the following defines give the virtual addresses of various MMU
    159  1.40  thorpej  * data structures:
    160  1.40  thorpej  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    161  1.40  thorpej  * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
    162  1.40  thorpej  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    163   1.1      cgd  */
    164  1.29     fvdl 
    165  1.40  thorpej #define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
    166  1.40  thorpej #define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
    167  1.41      chs #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
    168  1.41      chs #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
    169  1.40  thorpej #define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
    170  1.40  thorpej #define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
    171  1.40  thorpej 
    172  1.40  thorpej /*
    173  1.40  thorpej  * the follow define determines how many PTPs should be set up for the
    174  1.41      chs  * kernel by locore.s at boot time.  this should be large enough to
    175  1.41      chs  * get the VM system running.  once the VM system is running, the
    176  1.40  thorpej  * pmap module can add more PTPs to the kernel area on demand.
    177  1.40  thorpej  */
    178  1.40  thorpej 
    179  1.40  thorpej #ifndef NKPTP
    180  1.40  thorpej #define NKPTP		4	/* 16MB to start */
    181   1.1      cgd #endif
    182  1.40  thorpej #define NKPTP_MIN	4	/* smallest value we allow */
    183  1.40  thorpej #define NKPTP_MAX	(1024 - (KERNBASE/NBPD) - 1)
    184  1.40  thorpej 				/* largest value (-1 for APTP space) */
    185   1.1      cgd 
    186   1.1      cgd /*
    187  1.40  thorpej  * pdei/ptei: generate index into PDP/PTP from a VA
    188   1.1      cgd  */
    189  1.40  thorpej #define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
    190  1.40  thorpej #define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
    191   1.1      cgd 
    192   1.1      cgd /*
    193  1.40  thorpej  * PTP macros:
    194  1.40  thorpej  *   a PTP's index is the PD index of the PDE that points to it
    195  1.40  thorpej  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    196  1.40  thorpej  *   a PTP's VA is the first VA mapped by that PTP
    197  1.40  thorpej  *
    198  1.40  thorpej  * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
    199  1.40  thorpej  *           NBPD == number of bytes a PTP can map (4MB)
    200   1.1      cgd  */
    201  1.39  thorpej 
    202  1.40  thorpej #define ptp_i2o(I)	((I) * NBPG)	/* index => offset */
    203  1.40  thorpej #define ptp_o2i(O)	((O) / NBPG)	/* offset => index */
    204  1.40  thorpej #define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
    205  1.40  thorpej #define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
    206  1.39  thorpej 
    207  1.40  thorpej /*
    208  1.40  thorpej  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    209  1.40  thorpej  */
    210  1.40  thorpej 
    211  1.40  thorpej #define PG_W		PG_AVAIL1	/* "wired" mapping */
    212  1.40  thorpej #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    213  1.40  thorpej /* PG_AVAIL3 not used */
    214  1.40  thorpej 
    215  1.65     fvdl /*
    216  1.65     fvdl  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    217  1.65     fvdl  * Used to avoid false sharing of cache lines.
    218  1.65     fvdl  */
    219  1.65     fvdl #define NPTECL			8
    220  1.65     fvdl 
    221  1.40  thorpej #ifdef _KERNEL
    222  1.40  thorpej /*
    223  1.40  thorpej  * pmap data structures: see pmap.c for details of locking.
    224  1.40  thorpej  */
    225  1.40  thorpej 
    226  1.40  thorpej struct pmap;
    227  1.40  thorpej typedef struct pmap *pmap_t;
    228  1.40  thorpej 
    229  1.40  thorpej /*
    230  1.40  thorpej  * we maintain a list of all non-kernel pmaps
    231  1.40  thorpej  */
    232  1.40  thorpej 
    233  1.40  thorpej LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    234  1.40  thorpej 
    235  1.40  thorpej /*
    236  1.40  thorpej  * the pmap structure
    237  1.40  thorpej  *
    238  1.40  thorpej  * note that the pm_obj contains the simple_lock, the reference count,
    239  1.40  thorpej  * page list, and number of PTPs within the pmap.
    240  1.65     fvdl  *
    241  1.65     fvdl  * XXX If we ever support processor numbers higher than 31, we'll have
    242  1.65     fvdl  * XXX to rethink the CPU mask.
    243  1.40  thorpej  */
    244  1.40  thorpej 
    245  1.40  thorpej struct pmap {
    246  1.41      chs 	struct uvm_object pm_obj;	/* object (lck by object lock) */
    247  1.40  thorpej #define	pm_lock	pm_obj.vmobjlock
    248  1.41      chs 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    249  1.41      chs 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    250  1.41      chs 	u_int32_t pm_pdirpa;		/* PA of PD (read-only after create) */
    251  1.41      chs 	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
    252  1.41      chs 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    253  1.41      chs 
    254  1.41      chs 	int pm_flags;			/* see below */
    255  1.41      chs 
    256  1.41      chs 	union descriptor *pm_ldt;	/* user-set LDT */
    257  1.41      chs 	int pm_ldt_len;			/* number of LDT entries */
    258  1.41      chs 	int pm_ldt_sel;			/* LDT selector */
    259  1.65     fvdl 	u_int32_t pm_cpus;		/* mask of CPUs using pmap */
    260  1.40  thorpej };
    261   1.1      cgd 
    262  1.39  thorpej /* pm_flags */
    263  1.39  thorpej #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    264  1.39  thorpej 
    265   1.1      cgd /*
    266  1.40  thorpej  * for each managed physical page we maintain a list of <PMAP,VA>'s
    267  1.41      chs  * which it is mapped at.  the list is headed by a pv_head structure.
    268  1.40  thorpej  * there is one pv_head per managed phys page (allocated at boot time).
    269  1.40  thorpej  * the pv_head structure points to a list of pv_entry structures (each
    270  1.40  thorpej  * describes one mapping).
    271   1.1      cgd  */
    272  1.40  thorpej 
    273  1.40  thorpej struct pv_entry;
    274  1.40  thorpej 
    275  1.40  thorpej struct pv_head {
    276  1.57      chs 	struct simplelock pvh_lock;	/* locks every pv on this list */
    277  1.41      chs 	struct pv_entry *pvh_list;	/* head of list (locked by pvh_lock) */
    278  1.40  thorpej };
    279  1.40  thorpej 
    280  1.41      chs struct pv_entry {			/* locked by its list's pvh_lock */
    281  1.41      chs 	struct pv_entry *pv_next;	/* next entry */
    282  1.41      chs 	struct pmap *pv_pmap;		/* the pmap */
    283  1.41      chs 	vaddr_t pv_va;			/* the virtual address */
    284  1.41      chs 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    285  1.11  mycroft };
    286  1.11  mycroft 
    287  1.40  thorpej /*
    288  1.40  thorpej  * pv_entrys are dynamically allocated in chunks from a single page.
    289  1.40  thorpej  * we keep track of how many pv_entrys are in use for each page and
    290  1.41      chs  * we can free pv_entry pages if needed.  there is one lock for the
    291  1.40  thorpej  * entire allocation system.
    292  1.40  thorpej  */
    293  1.11  mycroft 
    294  1.11  mycroft struct pv_page_info {
    295  1.41      chs 	TAILQ_ENTRY(pv_page) pvpi_list;
    296  1.41      chs 	struct pv_entry *pvpi_pvfree;
    297  1.41      chs 	int pvpi_nfree;
    298  1.11  mycroft };
    299   1.1      cgd 
    300  1.11  mycroft /*
    301  1.40  thorpej  * number of pv_entry's in a pv_page
    302  1.40  thorpej  * (note: won't work on systems where NPBG isn't a constant)
    303  1.40  thorpej  */
    304  1.40  thorpej 
    305  1.41      chs #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    306  1.41      chs 			sizeof(struct pv_entry))
    307  1.40  thorpej 
    308  1.40  thorpej /*
    309  1.40  thorpej  * a pv_page: where pv_entrys are allocated from
    310  1.11  mycroft  */
    311   1.1      cgd 
    312  1.11  mycroft struct pv_page {
    313  1.41      chs 	struct pv_page_info pvinfo;
    314  1.41      chs 	struct pv_entry pvents[PVE_PER_PVPAGE];
    315  1.40  thorpej };
    316  1.40  thorpej 
    317  1.40  thorpej /*
    318  1.40  thorpej  * global kernel variables
    319  1.40  thorpej  */
    320  1.40  thorpej 
    321  1.40  thorpej /* PTDpaddr: is the physical address of the kernel's PDP */
    322  1.40  thorpej extern u_long PTDpaddr;
    323  1.40  thorpej 
    324  1.40  thorpej extern struct pmap kernel_pmap_store;	/* kernel pmap */
    325  1.40  thorpej extern int nkpde;			/* current # of PDEs for kernel */
    326  1.40  thorpej extern int pmap_pg_g;			/* do we support PG_G? */
    327  1.40  thorpej 
    328  1.40  thorpej /*
    329  1.40  thorpej  * macros
    330  1.40  thorpej  */
    331   1.1      cgd 
    332  1.18  mycroft #define	pmap_kernel()			(&kernel_pmap_store)
    333   1.1      cgd #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    334  1.50       is #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    335  1.60    chris #define	pmap_update(pmap)		/* nothing (yet) */
    336  1.11  mycroft 
    337  1.65     fvdl #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
    338  1.65     fvdl #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
    339  1.65     fvdl #define pmap_copy(DP,SP,D,L,S)
    340  1.40  thorpej #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    341  1.40  thorpej #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    342  1.65     fvdl #define pmap_move(DP,SP,D,L,S)
    343  1.40  thorpej #define pmap_phys_address(ppn)		i386_ptob(ppn)
    344  1.40  thorpej #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    345  1.40  thorpej 
    346  1.40  thorpej 
    347  1.40  thorpej /*
    348  1.40  thorpej  * prototypes
    349  1.40  thorpej  */
    350  1.40  thorpej 
    351  1.40  thorpej void		pmap_activate __P((struct proc *));
    352  1.40  thorpej void		pmap_bootstrap __P((vaddr_t));
    353  1.65     fvdl boolean_t	pmap_clear_attrs __P((struct vm_page *, int));
    354  1.40  thorpej void		pmap_deactivate __P((struct proc *));
    355  1.40  thorpej void		pmap_page_remove  __P((struct vm_page *));
    356  1.40  thorpej void		pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
    357  1.40  thorpej boolean_t	pmap_test_attrs __P((struct vm_page *, int));
    358  1.41      chs void		pmap_write_protect __P((struct pmap *, vaddr_t,
    359  1.40  thorpej 				vaddr_t, vm_prot_t));
    360  1.40  thorpej 
    361  1.40  thorpej vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
    362  1.40  thorpej 
    363  1.65     fvdl void	pmap_tlb_shootdown __P((pmap_t, vaddr_t, pt_entry_t, int32_t *));
    364  1.65     fvdl void	pmap_tlb_shootnow __P((int32_t));
    365  1.65     fvdl void	pmap_do_tlb_shootdown __P((struct cpu_info *));
    366  1.65     fvdl 
    367  1.40  thorpej #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    368  1.44  thorpej 
    369  1.44  thorpej /*
    370  1.44  thorpej  * Do idle page zero'ing uncached to avoid polluting the cache.
    371  1.44  thorpej  */
    372  1.56  thorpej boolean_t			pmap_pageidlezero __P((paddr_t));
    373  1.56  thorpej #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    374  1.40  thorpej 
    375  1.40  thorpej /*
    376  1.40  thorpej  * inline functions
    377  1.40  thorpej  */
    378  1.63      chs 
    379  1.63      chs static __inline void
    380  1.64      chs pmap_remove_all(struct pmap *pmap)
    381  1.63      chs {
    382  1.63      chs 	/* Nothing. */
    383  1.63      chs }
    384  1.40  thorpej 
    385  1.40  thorpej /*
    386  1.40  thorpej  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    387  1.40  thorpej  *	if hardware doesn't support one-page flushing)
    388  1.40  thorpej  */
    389  1.40  thorpej 
    390  1.62  thorpej __inline static void __attribute__((__unused__))
    391  1.62  thorpej pmap_update_pg(vaddr_t va)
    392  1.11  mycroft {
    393  1.40  thorpej #if defined(I386_CPU)
    394  1.41      chs 	if (cpu_class == CPUCLASS_386)
    395  1.52  thorpej 		tlbflush();
    396  1.41      chs 	else
    397  1.40  thorpej #endif
    398  1.41      chs 		invlpg((u_int) va);
    399  1.11  mycroft }
    400  1.11  mycroft 
    401  1.40  thorpej /*
    402  1.40  thorpej  * pmap_update_2pg: flush two pages from the TLB
    403  1.40  thorpej  */
    404  1.40  thorpej 
    405  1.62  thorpej __inline static void __attribute__((__unused__))
    406  1.62  thorpej pmap_update_2pg(vaddr_t va, vaddr_t vb)
    407  1.11  mycroft {
    408  1.40  thorpej #if defined(I386_CPU)
    409  1.41      chs 	if (cpu_class == CPUCLASS_386)
    410  1.52  thorpej 		tlbflush();
    411  1.41      chs 	else
    412  1.40  thorpej #endif
    413  1.41      chs 	{
    414  1.41      chs 		invlpg((u_int) va);
    415  1.41      chs 		invlpg((u_int) vb);
    416  1.41      chs 	}
    417  1.11  mycroft }
    418  1.11  mycroft 
    419  1.40  thorpej /*
    420  1.40  thorpej  * pmap_page_protect: change the protection of all recorded mappings
    421  1.40  thorpej  *	of a managed page
    422  1.40  thorpej  *
    423  1.65     fvdl  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
    424  1.40  thorpej  * => we only have to worry about making the page more protected.
    425  1.40  thorpej  *	unprotecting a page is done on-demand at fault time.
    426  1.40  thorpej  */
    427  1.40  thorpej 
    428  1.62  thorpej __inline static void __attribute__((__unused__))
    429  1.62  thorpej pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
    430  1.11  mycroft {
    431  1.41      chs 	if ((prot & VM_PROT_WRITE) == 0) {
    432  1.41      chs 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    433  1.65     fvdl 			(void) pmap_clear_attrs(pg, PG_RW);
    434  1.41      chs 		} else {
    435  1.41      chs 			pmap_page_remove(pg);
    436  1.41      chs 		}
    437  1.41      chs 	}
    438  1.11  mycroft }
    439  1.11  mycroft 
    440  1.40  thorpej /*
    441  1.40  thorpej  * pmap_protect: change the protection of pages in a pmap
    442  1.40  thorpej  *
    443  1.40  thorpej  * => this function is a frontend for pmap_remove/pmap_write_protect
    444  1.40  thorpej  * => we only have to worry about making the page more protected.
    445  1.40  thorpej  *	unprotecting a page is done on-demand at fault time.
    446  1.40  thorpej  */
    447  1.40  thorpej 
    448  1.62  thorpej __inline static void __attribute__((__unused__))
    449  1.62  thorpej pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
    450  1.11  mycroft {
    451  1.41      chs 	if ((prot & VM_PROT_WRITE) == 0) {
    452  1.41      chs 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    453  1.41      chs 			pmap_write_protect(pmap, sva, eva, prot);
    454  1.41      chs 		} else {
    455  1.41      chs 			pmap_remove(pmap, sva, eva);
    456  1.41      chs 		}
    457  1.41      chs 	}
    458  1.47  thorpej }
    459  1.47  thorpej 
    460  1.47  thorpej /*
    461  1.47  thorpej  * various address inlines
    462  1.47  thorpej  *
    463  1.47  thorpej  *  vtopte: return a pointer to the PTE mapping a VA, works only for
    464  1.47  thorpej  *  user and PT addresses
    465  1.47  thorpej  *
    466  1.47  thorpej  *  kvtopte: return a pointer to the PTE mapping a kernel VA
    467  1.47  thorpej  */
    468  1.47  thorpej 
    469  1.47  thorpej #include <lib/libkern/libkern.h>
    470  1.47  thorpej 
    471  1.62  thorpej static __inline pt_entry_t * __attribute__((__unused__))
    472  1.47  thorpej vtopte(vaddr_t va)
    473  1.47  thorpej {
    474  1.47  thorpej 
    475  1.47  thorpej 	KASSERT(va < (PDSLOT_KERN << PDSHIFT));
    476  1.47  thorpej 
    477  1.47  thorpej 	return (PTE_BASE + i386_btop(va));
    478  1.47  thorpej }
    479  1.47  thorpej 
    480  1.62  thorpej static __inline pt_entry_t * __attribute__((__unused__))
    481  1.47  thorpej kvtopte(vaddr_t va)
    482  1.47  thorpej {
    483  1.47  thorpej 
    484  1.47  thorpej 	KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
    485  1.48  thorpej 
    486  1.48  thorpej #ifdef LARGEPAGES
    487  1.48  thorpej 	{
    488  1.48  thorpej 		pd_entry_t *pde;
    489  1.48  thorpej 
    490  1.51      chs 		pde = PDP_BASE + pdei(va);
    491  1.48  thorpej 		if (*pde & PG_PS)
    492  1.48  thorpej 			return ((pt_entry_t *)pde);
    493  1.48  thorpej 	}
    494  1.48  thorpej #endif
    495  1.47  thorpej 
    496  1.47  thorpej 	return (PTE_BASE + i386_btop(va));
    497  1.41      chs }
    498  1.35      cgd 
    499  1.46  thorpej paddr_t vtophys __P((vaddr_t));
    500  1.41      chs vaddr_t	pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
    501  1.39  thorpej 
    502  1.39  thorpej #if defined(USER_LDT)
    503  1.39  thorpej void	pmap_ldt_cleanup __P((struct proc *));
    504  1.39  thorpej #define	PMAP_FORK
    505  1.39  thorpej #endif /* USER_LDT */
    506   1.1      cgd 
    507  1.40  thorpej #endif /* _KERNEL */
    508  1.40  thorpej #endif	/* _I386_PMAP_H_ */
    509