Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.82
      1  1.82  junyoung /*	$NetBSD: pmap.h,v 1.82 2004/08/26 10:12:33 junyoung Exp $	*/
      2  1.38   mycroft 
      3  1.40   thorpej /*
      4  1.40   thorpej  *
      5  1.40   thorpej  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  1.38   mycroft  * All rights reserved.
      7  1.38   mycroft  *
      8  1.38   mycroft  * Redistribution and use in source and binary forms, with or without
      9  1.38   mycroft  * modification, are permitted provided that the following conditions
     10  1.38   mycroft  * are met:
     11  1.38   mycroft  * 1. Redistributions of source code must retain the above copyright
     12  1.38   mycroft  *    notice, this list of conditions and the following disclaimer.
     13  1.38   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.38   mycroft  *    notice, this list of conditions and the following disclaimer in the
     15  1.38   mycroft  *    documentation and/or other materials provided with the distribution.
     16  1.38   mycroft  * 3. All advertising materials mentioning features or use of this software
     17  1.40   thorpej  *    must display the following acknowledgment:
     18  1.40   thorpej  *      This product includes software developed by Charles D. Cranor and
     19  1.40   thorpej  *      Washington University.
     20  1.40   thorpej  * 4. The name of the author may not be used to endorse or promote products
     21  1.40   thorpej  *    derived from this software without specific prior written permission.
     22   1.1       cgd  *
     23  1.40   thorpej  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  1.40   thorpej  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  1.40   thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  1.40   thorpej  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  1.40   thorpej  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  1.40   thorpej  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  1.40   thorpej  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  1.40   thorpej  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  1.40   thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  1.40   thorpej  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33   1.1       cgd  */
     34   1.1       cgd 
     35   1.1       cgd /*
     36  1.40   thorpej  * pmap.h: see pmap.c for the history of this pmap module.
     37   1.1       cgd  */
     38  1.34       mrg 
     39  1.40   thorpej #ifndef	_I386_PMAP_H_
     40  1.40   thorpej #define	_I386_PMAP_H_
     41  1.40   thorpej 
     42  1.58       mrg #if defined(_KERNEL_OPT)
     43  1.39   thorpej #include "opt_user_ldt.h"
     44  1.48   thorpej #include "opt_largepages.h"
     45  1.34       mrg #endif
     46   1.1       cgd 
     47  1.14   mycroft #include <machine/cpufunc.h>
     48   1.6   mycroft #include <machine/pte.h>
     49  1.39   thorpej #include <machine/segments.h>
     50  1.40   thorpej #include <uvm/uvm_object.h>
     51   1.1       cgd 
     52   1.1       cgd /*
     53  1.40   thorpej  * see pte.h for a description of i386 MMU terminology and hardware
     54  1.40   thorpej  * interface.
     55  1.40   thorpej  *
     56  1.40   thorpej  * a pmap describes a processes' 4GB virtual address space.  this
     57  1.40   thorpej  * virtual address space can be broken up into 1024 4MB regions which
     58  1.41       chs  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     59  1.40   thorpej  *
     60  1.40   thorpej  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     61  1.43   thorpej  * (the following assumes that KERNBASE is 0xc0000000)
     62  1.40   thorpej  *
     63  1.40   thorpej  * PDE#s	VA range		usage
     64  1.68  drochner  * 0->766	0x0 -> 0xbfc00000	user address space
     65  1.61      yamt  * 767		0xbfc00000->		recursive mapping of PDP (used for
     66  1.43   thorpej  *			0xc0000000	linear mapping of PTPs)
     67  1.43   thorpej  * 768->1023	0xc0000000->		kernel address space (constant
     68  1.40   thorpej  *			0xffc00000	across all pmap's/processes)
     69  1.40   thorpej  * 1023		0xffc00000->		"alternate" recursive PDP mapping
     70  1.40   thorpej  *			<end>		(for other pmaps)
     71  1.40   thorpej  *
     72  1.40   thorpej  *
     73  1.40   thorpej  * note: a recursive PDP mapping provides a way to map all the PTEs for
     74  1.41       chs  * a 4GB address space into a linear chunk of virtual memory.  in other
     75  1.41       chs  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
     76  1.41       chs  * area.  the PTE for page 1 is the second int.  the very last int in the
     77  1.81  junyoung  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
     78  1.40   thorpej  * address).
     79  1.40   thorpej  *
     80  1.43   thorpej  * all pmap's PD's must have the same values in slots 768->1023 so that
     81  1.41       chs  * the kernel is always mapped in every process.  these values are loaded
     82  1.40   thorpej  * into the PD at pmap creation time.
     83  1.40   thorpej  *
     84  1.41       chs  * at any one time only one pmap can be active on a processor.  this is
     85  1.41       chs  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
     86  1.40   thorpej  * will have all its PTEs mapped into memory at the recursive mapping
     87  1.43   thorpej  * point (slot #767 as show above).  when the pmap code wants to find the
     88  1.40   thorpej  * PTE for a virtual address, all it has to do is the following:
     89  1.40   thorpej  *
     90  1.71   thorpej  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
     91  1.43   thorpej  *                = 0xbfc00000 + (VA / 4096) * 4
     92  1.40   thorpej  *
     93  1.40   thorpej  * what happens if the pmap layer is asked to perform an operation
     94  1.41       chs  * on a pmap that is not the one which is currently active?  in that
     95  1.41       chs  * case we take the PA of the PDP of non-active pmap and put it in
     96  1.41       chs  * slot 1023 of the active pmap.  this causes the non-active pmap's
     97  1.40   thorpej  * PTEs to get mapped in the final 4MB of the 4GB address space
     98  1.40   thorpej  * (e.g. starting at 0xffc00000).
     99  1.40   thorpej  *
    100  1.40   thorpej  * the following figure shows the effects of the recursive PDP mapping:
    101  1.40   thorpej  *
    102  1.40   thorpej  *   PDP (%cr3)
    103  1.40   thorpej  *   +----+
    104  1.40   thorpej  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    105  1.40   thorpej  *   |    |
    106  1.40   thorpej  *   |    |
    107  1.43   thorpej  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    108  1.43   thorpej  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xf0400000)
    109  1.40   thorpej  *   |    |
    110  1.40   thorpej  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    111  1.40   thorpej  *   +----+
    112  1.40   thorpej  *
    113  1.43   thorpej  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    114  1.40   thorpej  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    115  1.40   thorpej  *
    116  1.43   thorpej  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    117  1.40   thorpej  * PTP:
    118  1.40   thorpej  *
    119  1.43   thorpej  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    120  1.40   thorpej  *   +----+
    121  1.43   thorpej  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    122  1.40   thorpej  *   |    |
    123  1.40   thorpej  *   |    |
    124  1.81  junyoung  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    125  1.43   thorpej  *   | 768| -> maps contents of first kernel PTP
    126  1.40   thorpej  *   |    |
    127  1.40   thorpej  *   |1023|
    128  1.40   thorpej  *   +----+
    129  1.40   thorpej  *
    130  1.81  junyoung  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    131  1.40   thorpej  * defined as "PDP_BASE".... within that mapping there are two
    132  1.41       chs  * defines:
    133  1.59       chs  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    134  1.41       chs  *      which points back to itself.
    135  1.59       chs  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    136  1.40   thorpej  *      establishes the recursive mapping of the alternate pmap.
    137  1.40   thorpej  *      to set the alternate PDP, one just has to put the correct
    138  1.40   thorpej  *	PA info in *APDP_PDE.
    139  1.40   thorpej  *
    140  1.41       chs  * note that in the APTE_BASE space, the APDP appears at VA
    141  1.40   thorpej  * "APDP_BASE" (0xfffff000).
    142   1.1       cgd  */
    143  1.65      fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
    144  1.33       mrg 
    145  1.33       mrg /*
    146  1.40   thorpej  * the following defines identify the slots used as described above.
    147  1.33       mrg  */
    148  1.33       mrg 
    149  1.43   thorpej #define PDSLOT_PTE	((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
    150  1.43   thorpej #define PDSLOT_KERN	(KERNBASE/NBPD)	    /* 768: start of kernel space */
    151  1.40   thorpej #define PDSLOT_APTE	((unsigned)1023) /* 1023: alternative recursive slot */
    152   1.1       cgd 
    153   1.1       cgd /*
    154  1.41       chs  * the following defines give the virtual addresses of various MMU
    155  1.40   thorpej  * data structures:
    156  1.40   thorpej  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    157  1.81  junyoung  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    158  1.40   thorpej  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    159   1.1       cgd  */
    160  1.29      fvdl 
    161  1.40   thorpej #define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
    162  1.40   thorpej #define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
    163  1.71   thorpej #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * PAGE_SIZE)))
    164  1.71   thorpej #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * PAGE_SIZE)))
    165  1.40   thorpej #define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
    166  1.40   thorpej #define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
    167  1.40   thorpej 
    168  1.40   thorpej /*
    169  1.40   thorpej  * the follow define determines how many PTPs should be set up for the
    170  1.81  junyoung  * kernel by locore.S at boot time.  this should be large enough to
    171  1.41       chs  * get the VM system running.  once the VM system is running, the
    172  1.40   thorpej  * pmap module can add more PTPs to the kernel area on demand.
    173  1.40   thorpej  */
    174  1.40   thorpej 
    175  1.40   thorpej #ifndef NKPTP
    176  1.80   mycroft #define NKPTP		0	/* 16MB to start */
    177   1.1       cgd #endif
    178  1.80   mycroft #define NKPTP_MIN	2	/* smallest value we allow */
    179  1.40   thorpej #define NKPTP_MAX	(1024 - (KERNBASE/NBPD) - 1)
    180  1.40   thorpej 				/* largest value (-1 for APTP space) */
    181   1.1       cgd 
    182   1.1       cgd /*
    183  1.40   thorpej  * pdei/ptei: generate index into PDP/PTP from a VA
    184   1.1       cgd  */
    185  1.40   thorpej #define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
    186  1.40   thorpej #define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
    187   1.1       cgd 
    188   1.1       cgd /*
    189  1.40   thorpej  * PTP macros:
    190  1.40   thorpej  *   a PTP's index is the PD index of the PDE that points to it
    191  1.40   thorpej  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    192  1.40   thorpej  *   a PTP's VA is the first VA mapped by that PTP
    193  1.40   thorpej  *
    194  1.71   thorpej  * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
    195  1.40   thorpej  *           NBPD == number of bytes a PTP can map (4MB)
    196   1.1       cgd  */
    197  1.39   thorpej 
    198  1.71   thorpej #define ptp_i2o(I)	((I) * PAGE_SIZE)	/* index => offset */
    199  1.71   thorpej #define ptp_o2i(O)	((O) / PAGE_SIZE)	/* offset => index */
    200  1.40   thorpej #define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
    201  1.40   thorpej #define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
    202  1.39   thorpej 
    203  1.40   thorpej /*
    204  1.40   thorpej  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    205  1.40   thorpej  */
    206  1.40   thorpej 
    207  1.40   thorpej #define PG_W		PG_AVAIL1	/* "wired" mapping */
    208  1.40   thorpej #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    209  1.75       chs #define PG_X		PG_AVAIL3	/* executable mapping */
    210  1.40   thorpej 
    211  1.65      fvdl /*
    212  1.65      fvdl  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    213  1.65      fvdl  * Used to avoid false sharing of cache lines.
    214  1.65      fvdl  */
    215  1.65      fvdl #define NPTECL			8
    216  1.65      fvdl 
    217  1.40   thorpej #ifdef _KERNEL
    218  1.40   thorpej /*
    219  1.40   thorpej  * pmap data structures: see pmap.c for details of locking.
    220  1.40   thorpej  */
    221  1.40   thorpej 
    222  1.40   thorpej struct pmap;
    223  1.40   thorpej typedef struct pmap *pmap_t;
    224  1.40   thorpej 
    225  1.40   thorpej /*
    226  1.40   thorpej  * we maintain a list of all non-kernel pmaps
    227  1.40   thorpej  */
    228  1.40   thorpej 
    229  1.40   thorpej LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    230  1.40   thorpej 
    231  1.40   thorpej /*
    232  1.40   thorpej  * the pmap structure
    233  1.40   thorpej  *
    234  1.40   thorpej  * note that the pm_obj contains the simple_lock, the reference count,
    235  1.40   thorpej  * page list, and number of PTPs within the pmap.
    236  1.65      fvdl  *
    237  1.65      fvdl  * XXX If we ever support processor numbers higher than 31, we'll have
    238  1.65      fvdl  * XXX to rethink the CPU mask.
    239  1.40   thorpej  */
    240  1.40   thorpej 
    241  1.40   thorpej struct pmap {
    242  1.41       chs 	struct uvm_object pm_obj;	/* object (lck by object lock) */
    243  1.40   thorpej #define	pm_lock	pm_obj.vmobjlock
    244  1.41       chs 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    245  1.41       chs 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    246  1.41       chs 	u_int32_t pm_pdirpa;		/* PA of PD (read-only after create) */
    247  1.41       chs 	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
    248  1.41       chs 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    249  1.41       chs 
    250  1.75       chs 	vaddr_t pm_hiexec;		/* highest executable mapping */
    251  1.41       chs 	int pm_flags;			/* see below */
    252  1.41       chs 
    253  1.41       chs 	union descriptor *pm_ldt;	/* user-set LDT */
    254  1.41       chs 	int pm_ldt_len;			/* number of LDT entries */
    255  1.41       chs 	int pm_ldt_sel;			/* LDT selector */
    256  1.65      fvdl 	u_int32_t pm_cpus;		/* mask of CPUs using pmap */
    257  1.40   thorpej };
    258   1.1       cgd 
    259  1.39   thorpej /* pm_flags */
    260  1.39   thorpej #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    261  1.39   thorpej 
    262   1.1       cgd /*
    263  1.40   thorpej  * for each managed physical page we maintain a list of <PMAP,VA>'s
    264  1.41       chs  * which it is mapped at.  the list is headed by a pv_head structure.
    265  1.40   thorpej  * there is one pv_head per managed phys page (allocated at boot time).
    266  1.40   thorpej  * the pv_head structure points to a list of pv_entry structures (each
    267  1.40   thorpej  * describes one mapping).
    268   1.1       cgd  */
    269  1.40   thorpej 
    270  1.41       chs struct pv_entry {			/* locked by its list's pvh_lock */
    271  1.77       chs 	SPLAY_ENTRY(pv_entry) pv_node;	/* splay-tree node */
    272  1.41       chs 	struct pmap *pv_pmap;		/* the pmap */
    273  1.41       chs 	vaddr_t pv_va;			/* the virtual address */
    274  1.41       chs 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    275  1.11   mycroft };
    276  1.11   mycroft 
    277  1.40   thorpej /*
    278  1.40   thorpej  * pv_entrys are dynamically allocated in chunks from a single page.
    279  1.40   thorpej  * we keep track of how many pv_entrys are in use for each page and
    280  1.41       chs  * we can free pv_entry pages if needed.  there is one lock for the
    281  1.40   thorpej  * entire allocation system.
    282  1.40   thorpej  */
    283  1.11   mycroft 
    284  1.11   mycroft struct pv_page_info {
    285  1.41       chs 	TAILQ_ENTRY(pv_page) pvpi_list;
    286  1.41       chs 	struct pv_entry *pvpi_pvfree;
    287  1.41       chs 	int pvpi_nfree;
    288  1.11   mycroft };
    289   1.1       cgd 
    290  1.11   mycroft /*
    291  1.40   thorpej  * number of pv_entry's in a pv_page
    292  1.40   thorpej  * (note: won't work on systems where NPBG isn't a constant)
    293  1.40   thorpej  */
    294  1.40   thorpej 
    295  1.71   thorpej #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
    296  1.41       chs 			sizeof(struct pv_entry))
    297  1.40   thorpej 
    298  1.40   thorpej /*
    299  1.40   thorpej  * a pv_page: where pv_entrys are allocated from
    300  1.11   mycroft  */
    301   1.1       cgd 
    302  1.11   mycroft struct pv_page {
    303  1.41       chs 	struct pv_page_info pvinfo;
    304  1.41       chs 	struct pv_entry pvents[PVE_PER_PVPAGE];
    305  1.40   thorpej };
    306  1.40   thorpej 
    307  1.40   thorpej /*
    308  1.40   thorpej  * global kernel variables
    309  1.40   thorpej  */
    310  1.40   thorpej 
    311  1.82  junyoung /* PDPpaddr: is the physical address of the kernel's PDP */
    312  1.82  junyoung extern u_long PDPpaddr;
    313  1.40   thorpej 
    314  1.40   thorpej extern struct pmap kernel_pmap_store;	/* kernel pmap */
    315  1.40   thorpej extern int nkpde;			/* current # of PDEs for kernel */
    316  1.40   thorpej extern int pmap_pg_g;			/* do we support PG_G? */
    317  1.40   thorpej 
    318  1.40   thorpej /*
    319  1.40   thorpej  * macros
    320  1.40   thorpej  */
    321   1.1       cgd 
    322  1.18   mycroft #define	pmap_kernel()			(&kernel_pmap_store)
    323   1.1       cgd #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    324  1.50        is #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    325  1.60     chris #define	pmap_update(pmap)		/* nothing (yet) */
    326  1.11   mycroft 
    327  1.65      fvdl #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
    328  1.65      fvdl #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
    329  1.65      fvdl #define pmap_copy(DP,SP,D,L,S)
    330  1.40   thorpej #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    331  1.40   thorpej #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    332  1.65      fvdl #define pmap_move(DP,SP,D,L,S)
    333  1.69      fvdl #define pmap_phys_address(ppn)		x86_ptob(ppn)
    334  1.40   thorpej #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    335  1.40   thorpej 
    336  1.40   thorpej 
    337  1.40   thorpej /*
    338  1.40   thorpej  * prototypes
    339  1.40   thorpej  */
    340  1.40   thorpej 
    341  1.78  junyoung void		pmap_activate(struct lwp *);
    342  1.78  junyoung void		pmap_bootstrap(vaddr_t);
    343  1.78  junyoung boolean_t	pmap_clear_attrs(struct vm_page *, int);
    344  1.78  junyoung void		pmap_deactivate(struct lwp *);
    345  1.79      yamt void		pmap_deactivate2(struct lwp *);
    346  1.78  junyoung void		pmap_page_remove (struct vm_page *);
    347  1.78  junyoung void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
    348  1.78  junyoung boolean_t	pmap_test_attrs(struct vm_page *, int);
    349  1.78  junyoung void		pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
    350  1.75       chs int		pmap_exec_fixup(struct vm_map *, struct trapframe *,
    351  1.75       chs 		    struct pcb *);
    352  1.79      yamt void		pmap_load(void);
    353  1.40   thorpej 
    354  1.78  junyoung vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
    355  1.40   thorpej 
    356  1.78  junyoung void	pmap_tlb_shootdown(pmap_t, vaddr_t, pt_entry_t, int32_t *);
    357  1.78  junyoung void	pmap_tlb_shootnow(int32_t);
    358  1.78  junyoung void	pmap_do_tlb_shootdown(struct cpu_info *);
    359  1.65      fvdl 
    360  1.40   thorpej #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    361  1.44   thorpej 
    362  1.44   thorpej /*
    363  1.44   thorpej  * Do idle page zero'ing uncached to avoid polluting the cache.
    364  1.44   thorpej  */
    365  1.78  junyoung boolean_t			pmap_pageidlezero(paddr_t);
    366  1.56   thorpej #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    367  1.40   thorpej 
    368  1.40   thorpej /*
    369  1.40   thorpej  * inline functions
    370  1.40   thorpej  */
    371  1.63       chs 
    372  1.66     perry /*ARGSUSED*/
    373  1.63       chs static __inline void
    374  1.64       chs pmap_remove_all(struct pmap *pmap)
    375  1.63       chs {
    376  1.63       chs 	/* Nothing. */
    377  1.63       chs }
    378  1.40   thorpej 
    379  1.40   thorpej /*
    380  1.40   thorpej  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    381  1.40   thorpej  *	if hardware doesn't support one-page flushing)
    382  1.40   thorpej  */
    383  1.40   thorpej 
    384  1.62   thorpej __inline static void __attribute__((__unused__))
    385  1.62   thorpej pmap_update_pg(vaddr_t va)
    386  1.11   mycroft {
    387  1.40   thorpej #if defined(I386_CPU)
    388  1.41       chs 	if (cpu_class == CPUCLASS_386)
    389  1.52   thorpej 		tlbflush();
    390  1.41       chs 	else
    391  1.40   thorpej #endif
    392  1.41       chs 		invlpg((u_int) va);
    393  1.11   mycroft }
    394  1.11   mycroft 
    395  1.40   thorpej /*
    396  1.40   thorpej  * pmap_update_2pg: flush two pages from the TLB
    397  1.40   thorpej  */
    398  1.40   thorpej 
    399  1.62   thorpej __inline static void __attribute__((__unused__))
    400  1.62   thorpej pmap_update_2pg(vaddr_t va, vaddr_t vb)
    401  1.11   mycroft {
    402  1.40   thorpej #if defined(I386_CPU)
    403  1.41       chs 	if (cpu_class == CPUCLASS_386)
    404  1.52   thorpej 		tlbflush();
    405  1.41       chs 	else
    406  1.40   thorpej #endif
    407  1.41       chs 	{
    408  1.41       chs 		invlpg((u_int) va);
    409  1.41       chs 		invlpg((u_int) vb);
    410  1.41       chs 	}
    411  1.11   mycroft }
    412  1.11   mycroft 
    413  1.40   thorpej /*
    414  1.40   thorpej  * pmap_page_protect: change the protection of all recorded mappings
    415  1.40   thorpej  *	of a managed page
    416  1.40   thorpej  *
    417  1.65      fvdl  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
    418  1.40   thorpej  * => we only have to worry about making the page more protected.
    419  1.40   thorpej  *	unprotecting a page is done on-demand at fault time.
    420  1.40   thorpej  */
    421  1.40   thorpej 
    422  1.62   thorpej __inline static void __attribute__((__unused__))
    423  1.62   thorpej pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
    424  1.11   mycroft {
    425  1.41       chs 	if ((prot & VM_PROT_WRITE) == 0) {
    426  1.41       chs 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    427  1.65      fvdl 			(void) pmap_clear_attrs(pg, PG_RW);
    428  1.41       chs 		} else {
    429  1.41       chs 			pmap_page_remove(pg);
    430  1.41       chs 		}
    431  1.41       chs 	}
    432  1.11   mycroft }
    433  1.11   mycroft 
    434  1.40   thorpej /*
    435  1.40   thorpej  * pmap_protect: change the protection of pages in a pmap
    436  1.40   thorpej  *
    437  1.40   thorpej  * => this function is a frontend for pmap_remove/pmap_write_protect
    438  1.40   thorpej  * => we only have to worry about making the page more protected.
    439  1.40   thorpej  *	unprotecting a page is done on-demand at fault time.
    440  1.40   thorpej  */
    441  1.40   thorpej 
    442  1.62   thorpej __inline static void __attribute__((__unused__))
    443  1.62   thorpej pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
    444  1.11   mycroft {
    445  1.41       chs 	if ((prot & VM_PROT_WRITE) == 0) {
    446  1.41       chs 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    447  1.41       chs 			pmap_write_protect(pmap, sva, eva, prot);
    448  1.41       chs 		} else {
    449  1.41       chs 			pmap_remove(pmap, sva, eva);
    450  1.41       chs 		}
    451  1.41       chs 	}
    452  1.47   thorpej }
    453  1.47   thorpej 
    454  1.47   thorpej /*
    455  1.47   thorpej  * various address inlines
    456  1.47   thorpej  *
    457  1.47   thorpej  *  vtopte: return a pointer to the PTE mapping a VA, works only for
    458  1.47   thorpej  *  user and PT addresses
    459  1.47   thorpej  *
    460  1.47   thorpej  *  kvtopte: return a pointer to the PTE mapping a kernel VA
    461  1.47   thorpej  */
    462  1.47   thorpej 
    463  1.47   thorpej #include <lib/libkern/libkern.h>
    464  1.47   thorpej 
    465  1.62   thorpej static __inline pt_entry_t * __attribute__((__unused__))
    466  1.47   thorpej vtopte(vaddr_t va)
    467  1.47   thorpej {
    468  1.47   thorpej 
    469  1.47   thorpej 	KASSERT(va < (PDSLOT_KERN << PDSHIFT));
    470  1.47   thorpej 
    471  1.69      fvdl 	return (PTE_BASE + x86_btop(va));
    472  1.47   thorpej }
    473  1.47   thorpej 
    474  1.62   thorpej static __inline pt_entry_t * __attribute__((__unused__))
    475  1.47   thorpej kvtopte(vaddr_t va)
    476  1.47   thorpej {
    477  1.47   thorpej 
    478  1.47   thorpej 	KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
    479  1.48   thorpej 
    480  1.48   thorpej #ifdef LARGEPAGES
    481  1.48   thorpej 	{
    482  1.48   thorpej 		pd_entry_t *pde;
    483  1.48   thorpej 
    484  1.51       chs 		pde = PDP_BASE + pdei(va);
    485  1.48   thorpej 		if (*pde & PG_PS)
    486  1.48   thorpej 			return ((pt_entry_t *)pde);
    487  1.48   thorpej 	}
    488  1.48   thorpej #endif
    489  1.47   thorpej 
    490  1.69      fvdl 	return (PTE_BASE + x86_btop(va));
    491  1.41       chs }
    492  1.70      fvdl 
    493  1.70      fvdl #define pmap_cpu_has_pg_n()		(cpu_class != CPUCLASS_386)
    494  1.70      fvdl #define pmap_cpu_has_invlpg()		(cpu_class != CPUCLASS_386)
    495  1.35       cgd 
    496  1.78  junyoung paddr_t vtophys(vaddr_t);
    497  1.78  junyoung vaddr_t	pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
    498  1.39   thorpej 
    499  1.39   thorpej #if defined(USER_LDT)
    500  1.78  junyoung void	pmap_ldt_cleanup(struct lwp *);
    501  1.39   thorpej #define	PMAP_FORK
    502  1.39   thorpej #endif /* USER_LDT */
    503  1.73   thorpej 
    504  1.73   thorpej /*
    505  1.73   thorpej  * Hooks for the pool allocator.
    506  1.73   thorpej  */
    507  1.73   thorpej #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    508   1.1       cgd 
    509  1.40   thorpej #endif /* _KERNEL */
    510  1.40   thorpej #endif	/* _I386_PMAP_H_ */
    511