pmap.h revision 1.89.20.3 1 1.89.20.3 joerg /* $NetBSD: pmap.h,v 1.89.20.3 2007/10/02 18:27:25 joerg Exp $ */
2 1.38 mycroft
3 1.40 thorpej /*
4 1.40 thorpej *
5 1.40 thorpej * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 1.38 mycroft * All rights reserved.
7 1.38 mycroft *
8 1.38 mycroft * Redistribution and use in source and binary forms, with or without
9 1.38 mycroft * modification, are permitted provided that the following conditions
10 1.38 mycroft * are met:
11 1.38 mycroft * 1. Redistributions of source code must retain the above copyright
12 1.38 mycroft * notice, this list of conditions and the following disclaimer.
13 1.38 mycroft * 2. Redistributions in binary form must reproduce the above copyright
14 1.38 mycroft * notice, this list of conditions and the following disclaimer in the
15 1.38 mycroft * documentation and/or other materials provided with the distribution.
16 1.38 mycroft * 3. All advertising materials mentioning features or use of this software
17 1.40 thorpej * must display the following acknowledgment:
18 1.40 thorpej * This product includes software developed by Charles D. Cranor and
19 1.40 thorpej * Washington University.
20 1.40 thorpej * 4. The name of the author may not be used to endorse or promote products
21 1.40 thorpej * derived from this software without specific prior written permission.
22 1.1 cgd *
23 1.40 thorpej * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.40 thorpej * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.40 thorpej * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.40 thorpej * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.40 thorpej * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 1.40 thorpej * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 1.40 thorpej * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 1.40 thorpej * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 1.40 thorpej * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 1.40 thorpej * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.1 cgd /*
36 1.40 thorpej * pmap.h: see pmap.c for the history of this pmap module.
37 1.1 cgd */
38 1.34 mrg
39 1.40 thorpej #ifndef _I386_PMAP_H_
40 1.40 thorpej #define _I386_PMAP_H_
41 1.40 thorpej
42 1.58 mrg #if defined(_KERNEL_OPT)
43 1.39 thorpej #include "opt_user_ldt.h"
44 1.48 thorpej #include "opt_largepages.h"
45 1.34 mrg #endif
46 1.1 cgd
47 1.6 mycroft #include <machine/pte.h>
48 1.39 thorpej #include <machine/segments.h>
49 1.89.20.1 jmcneill #include <machine/atomic.h>
50 1.89.20.3 joerg #if defined(_KERNEL) || defined(_LKM)
51 1.89.20.3 joerg #include <machine/cpufunc.h>
52 1.89.20.3 joerg #endif
53 1.89.20.1 jmcneill
54 1.40 thorpej #include <uvm/uvm_object.h>
55 1.1 cgd
56 1.1 cgd /*
57 1.40 thorpej * see pte.h for a description of i386 MMU terminology and hardware
58 1.40 thorpej * interface.
59 1.40 thorpej *
60 1.40 thorpej * a pmap describes a processes' 4GB virtual address space. this
61 1.40 thorpej * virtual address space can be broken up into 1024 4MB regions which
62 1.41 chs * are described by PDEs in the PDP. the PDEs are defined as follows:
63 1.40 thorpej *
64 1.40 thorpej * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
65 1.43 thorpej * (the following assumes that KERNBASE is 0xc0000000)
66 1.40 thorpej *
67 1.40 thorpej * PDE#s VA range usage
68 1.68 drochner * 0->766 0x0 -> 0xbfc00000 user address space
69 1.61 yamt * 767 0xbfc00000-> recursive mapping of PDP (used for
70 1.43 thorpej * 0xc0000000 linear mapping of PTPs)
71 1.43 thorpej * 768->1023 0xc0000000-> kernel address space (constant
72 1.40 thorpej * 0xffc00000 across all pmap's/processes)
73 1.40 thorpej * 1023 0xffc00000-> "alternate" recursive PDP mapping
74 1.40 thorpej * <end> (for other pmaps)
75 1.40 thorpej *
76 1.40 thorpej *
77 1.40 thorpej * note: a recursive PDP mapping provides a way to map all the PTEs for
78 1.41 chs * a 4GB address space into a linear chunk of virtual memory. in other
79 1.41 chs * words, the PTE for page 0 is the first int mapped into the 4MB recursive
80 1.41 chs * area. the PTE for page 1 is the second int. the very last int in the
81 1.81 junyoung * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
82 1.40 thorpej * address).
83 1.40 thorpej *
84 1.43 thorpej * all pmap's PD's must have the same values in slots 768->1023 so that
85 1.41 chs * the kernel is always mapped in every process. these values are loaded
86 1.40 thorpej * into the PD at pmap creation time.
87 1.40 thorpej *
88 1.41 chs * at any one time only one pmap can be active on a processor. this is
89 1.41 chs * the pmap whose PDP is pointed to by processor register %cr3. this pmap
90 1.40 thorpej * will have all its PTEs mapped into memory at the recursive mapping
91 1.43 thorpej * point (slot #767 as show above). when the pmap code wants to find the
92 1.40 thorpej * PTE for a virtual address, all it has to do is the following:
93 1.40 thorpej *
94 1.71 thorpej * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
95 1.43 thorpej * = 0xbfc00000 + (VA / 4096) * 4
96 1.40 thorpej *
97 1.40 thorpej * what happens if the pmap layer is asked to perform an operation
98 1.41 chs * on a pmap that is not the one which is currently active? in that
99 1.41 chs * case we take the PA of the PDP of non-active pmap and put it in
100 1.41 chs * slot 1023 of the active pmap. this causes the non-active pmap's
101 1.40 thorpej * PTEs to get mapped in the final 4MB of the 4GB address space
102 1.40 thorpej * (e.g. starting at 0xffc00000).
103 1.40 thorpej *
104 1.40 thorpej * the following figure shows the effects of the recursive PDP mapping:
105 1.40 thorpej *
106 1.40 thorpej * PDP (%cr3)
107 1.40 thorpej * +----+
108 1.40 thorpej * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
109 1.40 thorpej * | |
110 1.40 thorpej * | |
111 1.43 thorpej * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
112 1.83 junyoung * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
113 1.40 thorpej * | |
114 1.40 thorpej * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
115 1.40 thorpej * +----+
116 1.40 thorpej *
117 1.43 thorpej * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
118 1.40 thorpej * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
119 1.40 thorpej *
120 1.43 thorpej * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
121 1.40 thorpej * PTP:
122 1.40 thorpej *
123 1.43 thorpej * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
124 1.40 thorpej * +----+
125 1.43 thorpej * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
126 1.40 thorpej * | |
127 1.40 thorpej * | |
128 1.81 junyoung * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
129 1.43 thorpej * | 768| -> maps contents of first kernel PTP
130 1.40 thorpej * | |
131 1.40 thorpej * |1023|
132 1.40 thorpej * +----+
133 1.40 thorpej *
134 1.81 junyoung * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
135 1.40 thorpej * defined as "PDP_BASE".... within that mapping there are two
136 1.41 chs * defines:
137 1.59 chs * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
138 1.41 chs * which points back to itself.
139 1.59 chs * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
140 1.40 thorpej * establishes the recursive mapping of the alternate pmap.
141 1.40 thorpej * to set the alternate PDP, one just has to put the correct
142 1.40 thorpej * PA info in *APDP_PDE.
143 1.40 thorpej *
144 1.41 chs * note that in the APTE_BASE space, the APDP appears at VA
145 1.40 thorpej * "APDP_BASE" (0xfffff000).
146 1.1 cgd */
147 1.65 fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
148 1.33 mrg
149 1.33 mrg /*
150 1.40 thorpej * the following defines identify the slots used as described above.
151 1.33 mrg */
152 1.33 mrg
153 1.43 thorpej #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
154 1.43 thorpej #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
155 1.40 thorpej #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
156 1.1 cgd
157 1.1 cgd /*
158 1.41 chs * the following defines give the virtual addresses of various MMU
159 1.40 thorpej * data structures:
160 1.40 thorpej * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
161 1.81 junyoung * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
162 1.40 thorpej * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
163 1.1 cgd */
164 1.29 fvdl
165 1.40 thorpej #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
166 1.40 thorpej #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
167 1.71 thorpej #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * PAGE_SIZE)))
168 1.71 thorpej #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * PAGE_SIZE)))
169 1.40 thorpej #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
170 1.40 thorpej #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
171 1.40 thorpej
172 1.40 thorpej /*
173 1.40 thorpej * the follow define determines how many PTPs should be set up for the
174 1.81 junyoung * kernel by locore.S at boot time. this should be large enough to
175 1.41 chs * get the VM system running. once the VM system is running, the
176 1.40 thorpej * pmap module can add more PTPs to the kernel area on demand.
177 1.40 thorpej */
178 1.40 thorpej
179 1.40 thorpej #ifndef NKPTP
180 1.80 mycroft #define NKPTP 0 /* 16MB to start */
181 1.1 cgd #endif
182 1.80 mycroft #define NKPTP_MIN 2 /* smallest value we allow */
183 1.40 thorpej #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
184 1.40 thorpej /* largest value (-1 for APTP space) */
185 1.1 cgd
186 1.1 cgd /*
187 1.40 thorpej * pdei/ptei: generate index into PDP/PTP from a VA
188 1.1 cgd */
189 1.40 thorpej #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
190 1.40 thorpej #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
191 1.1 cgd
192 1.1 cgd /*
193 1.40 thorpej * PTP macros:
194 1.40 thorpej * a PTP's index is the PD index of the PDE that points to it
195 1.40 thorpej * a PTP's offset is the byte-offset in the PTE space that this PTP is at
196 1.40 thorpej * a PTP's VA is the first VA mapped by that PTP
197 1.40 thorpej *
198 1.71 thorpej * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
199 1.40 thorpej * NBPD == number of bytes a PTP can map (4MB)
200 1.1 cgd */
201 1.39 thorpej
202 1.71 thorpej #define ptp_i2o(I) ((I) * PAGE_SIZE) /* index => offset */
203 1.71 thorpej #define ptp_o2i(O) ((O) / PAGE_SIZE) /* offset => index */
204 1.40 thorpej #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
205 1.40 thorpej #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
206 1.39 thorpej
207 1.40 thorpej /*
208 1.40 thorpej * PG_AVAIL usage: we make use of the ignored bits of the PTE
209 1.40 thorpej */
210 1.40 thorpej
211 1.40 thorpej #define PG_W PG_AVAIL1 /* "wired" mapping */
212 1.40 thorpej #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
213 1.75 chs #define PG_X PG_AVAIL3 /* executable mapping */
214 1.40 thorpej
215 1.65 fvdl /*
216 1.65 fvdl * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
217 1.65 fvdl * Used to avoid false sharing of cache lines.
218 1.65 fvdl */
219 1.65 fvdl #define NPTECL 8
220 1.65 fvdl
221 1.40 thorpej #ifdef _KERNEL
222 1.40 thorpej /*
223 1.40 thorpej * pmap data structures: see pmap.c for details of locking.
224 1.40 thorpej */
225 1.40 thorpej
226 1.40 thorpej struct pmap;
227 1.40 thorpej typedef struct pmap *pmap_t;
228 1.40 thorpej
229 1.40 thorpej /*
230 1.40 thorpej * we maintain a list of all non-kernel pmaps
231 1.40 thorpej */
232 1.40 thorpej
233 1.40 thorpej LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
234 1.40 thorpej
235 1.40 thorpej /*
236 1.40 thorpej * the pmap structure
237 1.40 thorpej *
238 1.40 thorpej * note that the pm_obj contains the simple_lock, the reference count,
239 1.40 thorpej * page list, and number of PTPs within the pmap.
240 1.65 fvdl *
241 1.65 fvdl * XXX If we ever support processor numbers higher than 31, we'll have
242 1.65 fvdl * XXX to rethink the CPU mask.
243 1.40 thorpej */
244 1.40 thorpej
245 1.40 thorpej struct pmap {
246 1.41 chs struct uvm_object pm_obj; /* object (lck by object lock) */
247 1.40 thorpej #define pm_lock pm_obj.vmobjlock
248 1.41 chs LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
249 1.41 chs pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
250 1.85 perry uint32_t pm_pdirpa; /* PA of PD (read-only after create) */
251 1.41 chs struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
252 1.41 chs struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
253 1.41 chs
254 1.75 chs vaddr_t pm_hiexec; /* highest executable mapping */
255 1.41 chs int pm_flags; /* see below */
256 1.41 chs
257 1.41 chs union descriptor *pm_ldt; /* user-set LDT */
258 1.41 chs int pm_ldt_len; /* number of LDT entries */
259 1.41 chs int pm_ldt_sel; /* LDT selector */
260 1.85 perry uint32_t pm_cpus; /* mask of CPUs using pmap */
261 1.89.20.1 jmcneill uint32_t pm_kernel_cpus; /* mask of CPUs using kernel part
262 1.89.20.1 jmcneill of pmap */
263 1.40 thorpej };
264 1.1 cgd
265 1.39 thorpej /* pm_flags */
266 1.39 thorpej #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
267 1.39 thorpej
268 1.1 cgd /*
269 1.40 thorpej * for each managed physical page we maintain a list of <PMAP,VA>'s
270 1.41 chs * which it is mapped at. the list is headed by a pv_head structure.
271 1.40 thorpej * there is one pv_head per managed phys page (allocated at boot time).
272 1.40 thorpej * the pv_head structure points to a list of pv_entry structures (each
273 1.40 thorpej * describes one mapping).
274 1.1 cgd */
275 1.40 thorpej
276 1.41 chs struct pv_entry { /* locked by its list's pvh_lock */
277 1.77 chs SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */
278 1.41 chs struct pmap *pv_pmap; /* the pmap */
279 1.41 chs vaddr_t pv_va; /* the virtual address */
280 1.41 chs struct vm_page *pv_ptp; /* the vm_page of the PTP */
281 1.89.20.1 jmcneill struct pmap_cpu *pv_alloc_cpu; /* CPU allocated from */
282 1.11 mycroft };
283 1.11 mycroft
284 1.40 thorpej /*
285 1.40 thorpej * pv_entrys are dynamically allocated in chunks from a single page.
286 1.40 thorpej * we keep track of how many pv_entrys are in use for each page and
287 1.41 chs * we can free pv_entry pages if needed. there is one lock for the
288 1.40 thorpej * entire allocation system.
289 1.40 thorpej */
290 1.11 mycroft
291 1.11 mycroft struct pv_page_info {
292 1.41 chs TAILQ_ENTRY(pv_page) pvpi_list;
293 1.41 chs struct pv_entry *pvpi_pvfree;
294 1.41 chs int pvpi_nfree;
295 1.11 mycroft };
296 1.1 cgd
297 1.11 mycroft /*
298 1.40 thorpej * number of pv_entry's in a pv_page
299 1.40 thorpej * (note: won't work on systems where NPBG isn't a constant)
300 1.40 thorpej */
301 1.40 thorpej
302 1.71 thorpej #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
303 1.41 chs sizeof(struct pv_entry))
304 1.40 thorpej
305 1.40 thorpej /*
306 1.40 thorpej * a pv_page: where pv_entrys are allocated from
307 1.11 mycroft */
308 1.1 cgd
309 1.11 mycroft struct pv_page {
310 1.41 chs struct pv_page_info pvinfo;
311 1.41 chs struct pv_entry pvents[PVE_PER_PVPAGE];
312 1.40 thorpej };
313 1.40 thorpej
314 1.40 thorpej /*
315 1.40 thorpej * global kernel variables
316 1.40 thorpej */
317 1.40 thorpej
318 1.82 junyoung /* PDPpaddr: is the physical address of the kernel's PDP */
319 1.82 junyoung extern u_long PDPpaddr;
320 1.40 thorpej
321 1.40 thorpej extern struct pmap kernel_pmap_store; /* kernel pmap */
322 1.40 thorpej extern int nkpde; /* current # of PDEs for kernel */
323 1.40 thorpej extern int pmap_pg_g; /* do we support PG_G? */
324 1.40 thorpej
325 1.40 thorpej /*
326 1.40 thorpej * macros
327 1.40 thorpej */
328 1.1 cgd
329 1.18 mycroft #define pmap_kernel() (&kernel_pmap_store)
330 1.1 cgd #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
331 1.50 is #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
332 1.11 mycroft
333 1.65 fvdl #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
334 1.65 fvdl #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
335 1.65 fvdl #define pmap_copy(DP,SP,D,L,S)
336 1.40 thorpej #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
337 1.40 thorpej #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
338 1.65 fvdl #define pmap_move(DP,SP,D,L,S)
339 1.69 fvdl #define pmap_phys_address(ppn) x86_ptob(ppn)
340 1.40 thorpej #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
341 1.40 thorpej
342 1.40 thorpej
343 1.40 thorpej /*
344 1.40 thorpej * prototypes
345 1.40 thorpej */
346 1.40 thorpej
347 1.78 junyoung void pmap_activate(struct lwp *);
348 1.78 junyoung void pmap_bootstrap(vaddr_t);
349 1.89 thorpej bool pmap_clear_attrs(struct vm_page *, int);
350 1.78 junyoung void pmap_deactivate(struct lwp *);
351 1.79 yamt void pmap_deactivate2(struct lwp *);
352 1.78 junyoung void pmap_page_remove (struct vm_page *);
353 1.78 junyoung void pmap_remove(struct pmap *, vaddr_t, vaddr_t);
354 1.89 thorpej bool pmap_test_attrs(struct vm_page *, int);
355 1.78 junyoung void pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
356 1.75 chs int pmap_exec_fixup(struct vm_map *, struct trapframe *,
357 1.75 chs struct pcb *);
358 1.79 yamt void pmap_load(void);
359 1.89.20.2 joerg paddr_t pmap_init_tmp_pgtbl(paddr_t);
360 1.40 thorpej
361 1.78 junyoung vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
362 1.40 thorpej
363 1.89.20.1 jmcneill void pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
364 1.89.20.1 jmcneill void pmap_tlb_shootwait(void);
365 1.65 fvdl
366 1.40 thorpej #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
367 1.44 thorpej
368 1.44 thorpej /*
369 1.44 thorpej * Do idle page zero'ing uncached to avoid polluting the cache.
370 1.44 thorpej */
371 1.89 thorpej bool pmap_pageidlezero(paddr_t);
372 1.56 thorpej #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
373 1.40 thorpej
374 1.40 thorpej /*
375 1.40 thorpej * inline functions
376 1.40 thorpej */
377 1.63 chs
378 1.66 perry /*ARGSUSED*/
379 1.86 perry static __inline void
380 1.88 christos pmap_remove_all(struct pmap *pmap)
381 1.63 chs {
382 1.63 chs /* Nothing. */
383 1.63 chs }
384 1.40 thorpej
385 1.40 thorpej /*
386 1.40 thorpej * pmap_update_pg: flush one page from the TLB (or flush the whole thing
387 1.40 thorpej * if hardware doesn't support one-page flushing)
388 1.40 thorpej */
389 1.40 thorpej
390 1.86 perry __inline static void __attribute__((__unused__))
391 1.62 thorpej pmap_update_pg(vaddr_t va)
392 1.11 mycroft {
393 1.40 thorpej #if defined(I386_CPU)
394 1.41 chs if (cpu_class == CPUCLASS_386)
395 1.52 thorpej tlbflush();
396 1.41 chs else
397 1.40 thorpej #endif
398 1.41 chs invlpg((u_int) va);
399 1.11 mycroft }
400 1.11 mycroft
401 1.40 thorpej /*
402 1.40 thorpej * pmap_update_2pg: flush two pages from the TLB
403 1.40 thorpej */
404 1.40 thorpej
405 1.86 perry __inline static void __attribute__((__unused__))
406 1.62 thorpej pmap_update_2pg(vaddr_t va, vaddr_t vb)
407 1.11 mycroft {
408 1.40 thorpej #if defined(I386_CPU)
409 1.41 chs if (cpu_class == CPUCLASS_386)
410 1.52 thorpej tlbflush();
411 1.41 chs else
412 1.40 thorpej #endif
413 1.41 chs {
414 1.41 chs invlpg((u_int) va);
415 1.41 chs invlpg((u_int) vb);
416 1.41 chs }
417 1.11 mycroft }
418 1.11 mycroft
419 1.40 thorpej /*
420 1.40 thorpej * pmap_page_protect: change the protection of all recorded mappings
421 1.40 thorpej * of a managed page
422 1.40 thorpej *
423 1.65 fvdl * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
424 1.40 thorpej * => we only have to worry about making the page more protected.
425 1.40 thorpej * unprotecting a page is done on-demand at fault time.
426 1.40 thorpej */
427 1.40 thorpej
428 1.86 perry __inline static void __attribute__((__unused__))
429 1.62 thorpej pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
430 1.11 mycroft {
431 1.41 chs if ((prot & VM_PROT_WRITE) == 0) {
432 1.41 chs if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
433 1.65 fvdl (void) pmap_clear_attrs(pg, PG_RW);
434 1.41 chs } else {
435 1.41 chs pmap_page_remove(pg);
436 1.41 chs }
437 1.41 chs }
438 1.11 mycroft }
439 1.11 mycroft
440 1.40 thorpej /*
441 1.40 thorpej * pmap_protect: change the protection of pages in a pmap
442 1.40 thorpej *
443 1.40 thorpej * => this function is a frontend for pmap_remove/pmap_write_protect
444 1.40 thorpej * => we only have to worry about making the page more protected.
445 1.40 thorpej * unprotecting a page is done on-demand at fault time.
446 1.40 thorpej */
447 1.40 thorpej
448 1.86 perry __inline static void __attribute__((__unused__))
449 1.62 thorpej pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
450 1.11 mycroft {
451 1.41 chs if ((prot & VM_PROT_WRITE) == 0) {
452 1.41 chs if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
453 1.41 chs pmap_write_protect(pmap, sva, eva, prot);
454 1.41 chs } else {
455 1.41 chs pmap_remove(pmap, sva, eva);
456 1.41 chs }
457 1.41 chs }
458 1.47 thorpej }
459 1.47 thorpej
460 1.47 thorpej /*
461 1.47 thorpej * various address inlines
462 1.47 thorpej *
463 1.47 thorpej * vtopte: return a pointer to the PTE mapping a VA, works only for
464 1.47 thorpej * user and PT addresses
465 1.47 thorpej *
466 1.47 thorpej * kvtopte: return a pointer to the PTE mapping a kernel VA
467 1.47 thorpej */
468 1.47 thorpej
469 1.47 thorpej #include <lib/libkern/libkern.h>
470 1.47 thorpej
471 1.86 perry static __inline pt_entry_t * __attribute__((__unused__))
472 1.47 thorpej vtopte(vaddr_t va)
473 1.47 thorpej {
474 1.47 thorpej
475 1.47 thorpej KASSERT(va < (PDSLOT_KERN << PDSHIFT));
476 1.47 thorpej
477 1.69 fvdl return (PTE_BASE + x86_btop(va));
478 1.47 thorpej }
479 1.47 thorpej
480 1.86 perry static __inline pt_entry_t * __attribute__((__unused__))
481 1.47 thorpej kvtopte(vaddr_t va)
482 1.47 thorpej {
483 1.47 thorpej
484 1.47 thorpej KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
485 1.48 thorpej
486 1.48 thorpej #ifdef LARGEPAGES
487 1.48 thorpej {
488 1.48 thorpej pd_entry_t *pde;
489 1.48 thorpej
490 1.51 chs pde = PDP_BASE + pdei(va);
491 1.48 thorpej if (*pde & PG_PS)
492 1.48 thorpej return ((pt_entry_t *)pde);
493 1.48 thorpej }
494 1.48 thorpej #endif
495 1.47 thorpej
496 1.69 fvdl return (PTE_BASE + x86_btop(va));
497 1.41 chs }
498 1.70 fvdl
499 1.89.20.1 jmcneill #define pmap_pte_set(p, n) x86_atomic_testset_ul(p, n)
500 1.89.20.1 jmcneill #define pmap_pte_setbits(p, b) x86_atomic_setbits_l(p, b)
501 1.89.20.1 jmcneill #define pmap_pte_clearbits(p, b) x86_atomic_clearbits_l(p, b)
502 1.70 fvdl #define pmap_cpu_has_pg_n() (cpu_class != CPUCLASS_386)
503 1.70 fvdl #define pmap_cpu_has_invlpg() (cpu_class != CPUCLASS_386)
504 1.35 cgd
505 1.78 junyoung paddr_t vtophys(vaddr_t);
506 1.78 junyoung vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
507 1.78 junyoung void pmap_ldt_cleanup(struct lwp *);
508 1.89.20.1 jmcneill void pmap_cpu_init_early(struct cpu_info *);
509 1.89.20.1 jmcneill void pmap_cpu_init_late(struct cpu_info *);
510 1.89.20.1 jmcneill void sse2_zero_page(void *);
511 1.89.20.1 jmcneill void sse2_copy_page(void *, void *);
512 1.73 thorpej
513 1.83 junyoung /*
514 1.73 thorpej * Hooks for the pool allocator.
515 1.73 thorpej */
516 1.73 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
517 1.1 cgd
518 1.89.20.1 jmcneill /*
519 1.89.20.1 jmcneill * TLB shootdown mailbox.
520 1.89.20.1 jmcneill */
521 1.89.20.1 jmcneill
522 1.89.20.1 jmcneill struct pmap_mbox {
523 1.89.20.1 jmcneill volatile void *mb_pointer;
524 1.89.20.1 jmcneill volatile uintptr_t mb_addr1;
525 1.89.20.1 jmcneill volatile uintptr_t mb_addr2;
526 1.89.20.1 jmcneill volatile uintptr_t mb_head;
527 1.89.20.1 jmcneill volatile uintptr_t mb_tail;
528 1.89.20.1 jmcneill volatile uintptr_t mb_global;
529 1.89.20.1 jmcneill };
530 1.89.20.1 jmcneill
531 1.40 thorpej #endif /* _KERNEL */
532 1.40 thorpej #endif /* _I386_PMAP_H_ */
533