Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.89.22.3
      1  1.89.22.3      matt /*	pmap.h,v 1.89.22.2 2008/01/09 01:46:42 matt Exp	*/
      2       1.38   mycroft 
      3       1.40   thorpej /*
      4       1.40   thorpej  *
      5       1.40   thorpej  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6       1.38   mycroft  * All rights reserved.
      7       1.38   mycroft  *
      8       1.38   mycroft  * Redistribution and use in source and binary forms, with or without
      9       1.38   mycroft  * modification, are permitted provided that the following conditions
     10       1.38   mycroft  * are met:
     11       1.38   mycroft  * 1. Redistributions of source code must retain the above copyright
     12       1.38   mycroft  *    notice, this list of conditions and the following disclaimer.
     13       1.38   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.38   mycroft  *    notice, this list of conditions and the following disclaimer in the
     15       1.38   mycroft  *    documentation and/or other materials provided with the distribution.
     16       1.38   mycroft  * 3. All advertising materials mentioning features or use of this software
     17       1.40   thorpej  *    must display the following acknowledgment:
     18       1.40   thorpej  *      This product includes software developed by Charles D. Cranor and
     19       1.40   thorpej  *      Washington University.
     20       1.40   thorpej  * 4. The name of the author may not be used to endorse or promote products
     21       1.40   thorpej  *    derived from this software without specific prior written permission.
     22        1.1       cgd  *
     23       1.40   thorpej  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24       1.40   thorpej  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25       1.40   thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26       1.40   thorpej  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27       1.40   thorpej  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28       1.40   thorpej  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29       1.40   thorpej  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30       1.40   thorpej  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31       1.40   thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32       1.40   thorpej  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33        1.1       cgd  */
     34        1.1       cgd 
     35        1.1       cgd /*
     36  1.89.22.1      matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     37  1.89.22.1      matt  * All rights reserved.
     38  1.89.22.1      matt  *
     39  1.89.22.1      matt  * Written by Frank van der Linden for Wasabi Systems, Inc.
     40  1.89.22.1      matt  *
     41  1.89.22.1      matt  * Redistribution and use in source and binary forms, with or without
     42  1.89.22.1      matt  * modification, are permitted provided that the following conditions
     43  1.89.22.1      matt  * are met:
     44  1.89.22.1      matt  * 1. Redistributions of source code must retain the above copyright
     45  1.89.22.1      matt  *    notice, this list of conditions and the following disclaimer.
     46  1.89.22.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     47  1.89.22.1      matt  *    notice, this list of conditions and the following disclaimer in the
     48  1.89.22.1      matt  *    documentation and/or other materials provided with the distribution.
     49  1.89.22.1      matt  * 3. All advertising materials mentioning features or use of this software
     50  1.89.22.1      matt  *    must display the following acknowledgement:
     51  1.89.22.1      matt  *      This product includes software developed for the NetBSD Project by
     52  1.89.22.1      matt  *      Wasabi Systems, Inc.
     53  1.89.22.1      matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     54  1.89.22.1      matt  *    or promote products derived from this software without specific prior
     55  1.89.22.1      matt  *    written permission.
     56  1.89.22.1      matt  *
     57  1.89.22.1      matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     58  1.89.22.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     59  1.89.22.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     60  1.89.22.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     61  1.89.22.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  1.89.22.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  1.89.22.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  1.89.22.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  1.89.22.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  1.89.22.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67  1.89.22.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     68        1.1       cgd  */
     69       1.34       mrg 
     70       1.40   thorpej #ifndef	_I386_PMAP_H_
     71       1.40   thorpej #define	_I386_PMAP_H_
     72       1.40   thorpej 
     73       1.58       mrg #if defined(_KERNEL_OPT)
     74       1.39   thorpej #include "opt_user_ldt.h"
     75  1.89.22.3      matt #include "opt_xen.h"
     76       1.34       mrg #endif
     77        1.1       cgd 
     78  1.89.22.2      matt #include <sys/atomic.h>
     79  1.89.22.2      matt 
     80        1.6   mycroft #include <machine/pte.h>
     81       1.39   thorpej #include <machine/segments.h>
     82  1.89.22.1      matt #if defined(_KERNEL)
     83  1.89.22.1      matt #include <machine/cpufunc.h>
     84  1.89.22.1      matt #endif
     85  1.89.22.1      matt 
     86       1.40   thorpej #include <uvm/uvm_object.h>
     87  1.89.22.3      matt #ifdef XEN
     88  1.89.22.3      matt #include <xen/xenfunc.h>
     89  1.89.22.3      matt #include <xen/xenpmap.h>
     90  1.89.22.3      matt #endif /* XEN */
     91        1.1       cgd 
     92        1.1       cgd /*
     93       1.40   thorpej  * see pte.h for a description of i386 MMU terminology and hardware
     94       1.40   thorpej  * interface.
     95       1.40   thorpej  *
     96  1.89.22.3      matt  * a pmap describes a processes' 4GB virtual address space.  when PAE
     97  1.89.22.3      matt  * is not in use, this virtual address space can be broken up into 1024 4MB
     98  1.89.22.3      matt  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     99  1.89.22.3      matt  * follows:
    100       1.40   thorpej  *
    101       1.40   thorpej  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
    102       1.43   thorpej  * (the following assumes that KERNBASE is 0xc0000000)
    103       1.40   thorpej  *
    104       1.40   thorpej  * PDE#s	VA range		usage
    105       1.68  drochner  * 0->766	0x0 -> 0xbfc00000	user address space
    106       1.61      yamt  * 767		0xbfc00000->		recursive mapping of PDP (used for
    107       1.43   thorpej  *			0xc0000000	linear mapping of PTPs)
    108       1.43   thorpej  * 768->1023	0xc0000000->		kernel address space (constant
    109       1.40   thorpej  *			0xffc00000	across all pmap's/processes)
    110       1.40   thorpej  * 1023		0xffc00000->		"alternate" recursive PDP mapping
    111       1.40   thorpej  *			<end>		(for other pmaps)
    112       1.40   thorpej  *
    113       1.40   thorpej  *
    114       1.40   thorpej  * note: a recursive PDP mapping provides a way to map all the PTEs for
    115       1.41       chs  * a 4GB address space into a linear chunk of virtual memory.  in other
    116       1.41       chs  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    117       1.41       chs  * area.  the PTE for page 1 is the second int.  the very last int in the
    118       1.81  junyoung  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    119       1.40   thorpej  * address).
    120       1.40   thorpej  *
    121       1.43   thorpej  * all pmap's PD's must have the same values in slots 768->1023 so that
    122       1.41       chs  * the kernel is always mapped in every process.  these values are loaded
    123       1.40   thorpej  * into the PD at pmap creation time.
    124       1.40   thorpej  *
    125       1.41       chs  * at any one time only one pmap can be active on a processor.  this is
    126       1.41       chs  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    127       1.40   thorpej  * will have all its PTEs mapped into memory at the recursive mapping
    128       1.43   thorpej  * point (slot #767 as show above).  when the pmap code wants to find the
    129       1.40   thorpej  * PTE for a virtual address, all it has to do is the following:
    130       1.40   thorpej  *
    131       1.71   thorpej  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    132       1.43   thorpej  *                = 0xbfc00000 + (VA / 4096) * 4
    133       1.40   thorpej  *
    134       1.40   thorpej  * what happens if the pmap layer is asked to perform an operation
    135       1.41       chs  * on a pmap that is not the one which is currently active?  in that
    136       1.41       chs  * case we take the PA of the PDP of non-active pmap and put it in
    137       1.41       chs  * slot 1023 of the active pmap.  this causes the non-active pmap's
    138       1.40   thorpej  * PTEs to get mapped in the final 4MB of the 4GB address space
    139       1.40   thorpej  * (e.g. starting at 0xffc00000).
    140       1.40   thorpej  *
    141       1.40   thorpej  * the following figure shows the effects of the recursive PDP mapping:
    142       1.40   thorpej  *
    143       1.40   thorpej  *   PDP (%cr3)
    144       1.40   thorpej  *   +----+
    145       1.40   thorpej  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    146       1.40   thorpej  *   |    |
    147       1.40   thorpej  *   |    |
    148       1.43   thorpej  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    149       1.83  junyoung  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    150       1.40   thorpej  *   |    |
    151       1.40   thorpej  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    152       1.40   thorpej  *   +----+
    153       1.40   thorpej  *
    154       1.43   thorpej  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    155       1.40   thorpej  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    156       1.40   thorpej  *
    157       1.43   thorpej  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    158       1.40   thorpej  * PTP:
    159       1.40   thorpej  *
    160       1.43   thorpej  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    161       1.40   thorpej  *   +----+
    162       1.43   thorpej  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    163       1.40   thorpej  *   |    |
    164       1.40   thorpej  *   |    |
    165       1.81  junyoung  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    166       1.43   thorpej  *   | 768| -> maps contents of first kernel PTP
    167       1.40   thorpej  *   |    |
    168       1.40   thorpej  *   |1023|
    169       1.40   thorpej  *   +----+
    170       1.40   thorpej  *
    171       1.81  junyoung  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    172       1.40   thorpej  * defined as "PDP_BASE".... within that mapping there are two
    173       1.41       chs  * defines:
    174       1.59       chs  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    175       1.41       chs  *      which points back to itself.
    176       1.59       chs  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    177       1.40   thorpej  *      establishes the recursive mapping of the alternate pmap.
    178       1.40   thorpej  *      to set the alternate PDP, one just has to put the correct
    179       1.40   thorpej  *	PA info in *APDP_PDE.
    180       1.40   thorpej  *
    181       1.41       chs  * note that in the APTE_BASE space, the APDP appears at VA
    182       1.40   thorpej  * "APDP_BASE" (0xfffff000).
    183  1.89.22.3      matt  *
    184  1.89.22.3      matt  * When PAE is in use, the L3 page directory breaks up the address space in
    185  1.89.22.3      matt  * 4 1GB * regions, each of them broken in 512 2MB regions by the L2 PD
    186  1.89.22.3      matt  * (the size of the pages at the L1 level is still 4K).
    187  1.89.22.3      matt  * The kernel virtual space is mapped by the last entry in the L3 page,
    188  1.89.22.3      matt  * the first 3 entries mapping the user VA space.
    189  1.89.22.3      matt  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    190  1.89.22.3      matt  * mappings at this level for PDP_PDE and APDP_PDE (this would eat 2 of the
    191  1.89.22.3      matt  * 4GB virtual space). There's also restrictions imposed by Xen on the
    192  1.89.22.3      matt  * last entry of the L3 PD, which makes it hard to use one L3 page per pmap
    193  1.89.22.3      matt  * switch %cr3 to switch pmaps. So we use one static L3 page which is
    194  1.89.22.3      matt  * always loaded in %cr3, and we use it as 2 virtual PD pointers: one for
    195  1.89.22.3      matt  * kenrel space (L3[3], always loaded), and one for user space (in fact the
    196  1.89.22.3      matt  * first 3 entries of the L3 PD), and we claim the VM has only a 2-level
    197  1.89.22.3      matt  * PTP (with the L2 index extended by 2 bytes).
    198  1.89.22.3      matt  * PTE_BASE and APTE_BASE will need 4 entries in the L2 page table.
    199  1.89.22.3      matt  * In addition, we can't recursively map L3[3] (Xen wants the ref count on
    200  1.89.22.3      matt  * this page to be exactly once), so we use a shadow PD page for the last
    201  1.89.22.3      matt  * L2 PD. The shadow page could be static too, but to make pm_pdir[]
    202  1.89.22.3      matt  * contigous we'll allocate/copy one page per pmap.
    203        1.1       cgd  */
    204       1.65      fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
    205       1.33       mrg 
    206       1.33       mrg /*
    207  1.89.22.1      matt  * Mask to get rid of the sign-extended part of addresses.
    208  1.89.22.1      matt  */
    209  1.89.22.1      matt #define VA_SIGN_MASK		0
    210  1.89.22.1      matt #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    211  1.89.22.1      matt /*
    212  1.89.22.1      matt  * XXXfvdl this one's not right.
    213  1.89.22.1      matt  */
    214  1.89.22.1      matt #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    215  1.89.22.1      matt 
    216  1.89.22.1      matt /*
    217       1.40   thorpej  * the following defines identify the slots used as described above.
    218       1.33       mrg  */
    219  1.89.22.3      matt #ifdef PAE
    220  1.89.22.3      matt #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
    221  1.89.22.3      matt #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
    222  1.89.22.3      matt #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    223  1.89.22.3      matt #define L2_SLOT_APTE	1960                 /* 1964-2047 reserved by Xen */
    224  1.89.22.3      matt #else /* PAE */
    225  1.89.22.3      matt #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
    226  1.89.22.3      matt #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 768: start of kernel space */
    227  1.89.22.1      matt #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    228  1.89.22.3      matt #ifndef XEN
    229  1.89.22.3      matt #define L2_SLOT_APTE	1023		 /* 1023: alternative recursive slot */
    230  1.89.22.3      matt #else
    231  1.89.22.3      matt #define L2_SLOT_APTE	1007		/* 1008-1023 reserved by Xen */
    232  1.89.22.3      matt #endif
    233  1.89.22.3      matt #endif /* PAE */
    234  1.89.22.3      matt 
    235  1.89.22.1      matt 
    236  1.89.22.1      matt #define PDIR_SLOT_KERN	L2_SLOT_KERN
    237  1.89.22.1      matt #define PDIR_SLOT_PTE	L2_SLOT_PTE
    238  1.89.22.1      matt #define PDIR_SLOT_APTE	L2_SLOT_APTE
    239        1.1       cgd 
    240        1.1       cgd /*
    241       1.41       chs  * the following defines give the virtual addresses of various MMU
    242       1.40   thorpej  * data structures:
    243       1.40   thorpej  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    244       1.81  junyoung  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    245       1.40   thorpej  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    246        1.1       cgd  */
    247       1.29      fvdl 
    248  1.89.22.3      matt #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    249  1.89.22.3      matt #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
    250       1.40   thorpej 
    251  1.89.22.1      matt #define L1_BASE		PTE_BASE
    252  1.89.22.1      matt #define AL1_BASE	APTE_BASE
    253       1.40   thorpej 
    254  1.89.22.1      matt #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    255  1.89.22.1      matt #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
    256       1.40   thorpej 
    257  1.89.22.1      matt #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    258  1.89.22.3      matt #ifdef PAE
    259  1.89.22.3      matt /*
    260  1.89.22.3      matt  * when PAE is in use we can't write APDP_PDE though the recursive mapping,
    261  1.89.22.3      matt  * because it points to the shadow PD. Use the kernel PD instead, which is
    262  1.89.22.3      matt  * static
    263  1.89.22.3      matt  */
    264  1.89.22.3      matt #define APDP_PDE	(&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
    265  1.89.22.3      matt #define APDP_PDE_SHADOW	(L2_BASE + PDIR_SLOT_APTE)
    266  1.89.22.3      matt #else /* PAE */
    267  1.89.22.1      matt #define APDP_PDE	(L2_BASE + PDIR_SLOT_APTE)
    268  1.89.22.3      matt #endif /* PAE */
    269       1.40   thorpej 
    270  1.89.22.1      matt #define PDP_BASE	L2_BASE
    271  1.89.22.1      matt #define APDP_BASE	AL2_BASE
    272       1.40   thorpej 
    273  1.89.22.1      matt /* largest value (-1 for APTP space) */
    274  1.89.22.1      matt #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    275  1.89.22.1      matt #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    276       1.65      fvdl 
    277  1.89.22.1      matt #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    278       1.44   thorpej 
    279  1.89.22.1      matt #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    280  1.89.22.1      matt #define NKL1_START_ENTRIES	0	/* XXX unused */
    281       1.40   thorpej 
    282  1.89.22.3      matt #ifdef PAE
    283  1.89.22.3      matt #define NTOPLEVEL_PDES		(PAGE_SIZE * 4 / (sizeof (pd_entry_t)))
    284  1.89.22.3      matt #else
    285  1.89.22.1      matt #define NTOPLEVEL_PDES		(PAGE_SIZE / (sizeof (pd_entry_t)))
    286  1.89.22.3      matt #endif
    287       1.63       chs 
    288  1.89.22.1      matt #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    289       1.40   thorpej 
    290  1.89.22.1      matt #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    291  1.89.22.1      matt #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    292  1.89.22.1      matt #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    293  1.89.22.1      matt #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    294  1.89.22.1      matt #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    295  1.89.22.1      matt #define PDES_INITIALIZER	{ L2_BASE }
    296  1.89.22.1      matt #define APDES_INITIALIZER	{ AL2_BASE }
    297       1.40   thorpej 
    298  1.89.22.1      matt #define PTP_LEVELS	2
    299       1.11   mycroft 
    300       1.40   thorpej /*
    301  1.89.22.1      matt  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    302       1.40   thorpej  */
    303       1.40   thorpej 
    304  1.89.22.1      matt #define PG_W		PG_AVAIL1	/* "wired" mapping */
    305  1.89.22.1      matt #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    306  1.89.22.1      matt #define PG_X		PG_AVAIL3	/* executable mapping */
    307       1.47   thorpej 
    308       1.47   thorpej /*
    309  1.89.22.1      matt  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    310  1.89.22.1      matt  * Used to avoid false sharing of cache lines.
    311       1.47   thorpej  */
    312  1.89.22.3      matt #ifdef PAE
    313  1.89.22.3      matt #define NPTECL		4
    314  1.89.22.3      matt #else
    315  1.89.22.1      matt #define NPTECL		8
    316  1.89.22.3      matt #endif
    317  1.89.22.3      matt 
    318  1.89.22.3      matt #include <x86/pmap.h>
    319       1.47   thorpej 
    320  1.89.22.3      matt #ifndef XEN
    321  1.89.22.2      matt #define pmap_pa2pte(a)			(a)
    322  1.89.22.2      matt #define pmap_pte2pa(a)			((a) & PG_FRAME)
    323  1.89.22.2      matt #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    324  1.89.22.3      matt #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    325  1.89.22.2      matt #define pmap_pte_testset(p, n)		\
    326  1.89.22.2      matt     atomic_swap_ulong((volatile unsigned long *)p, n)
    327  1.89.22.2      matt #define pmap_pte_setbits(p, b)		\
    328  1.89.22.2      matt     atomic_or_ulong((volatile unsigned long *)p, b)
    329  1.89.22.2      matt #define pmap_pte_clearbits(p, b)	\
    330  1.89.22.2      matt     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    331  1.89.22.2      matt #define pmap_pte_flush()		/* nothing */
    332  1.89.22.3      matt #else
    333  1.89.22.3      matt static __inline pt_entry_t
    334  1.89.22.3      matt pmap_pa2pte(paddr_t pa)
    335  1.89.22.3      matt {
    336  1.89.22.3      matt 	return (pt_entry_t)xpmap_ptom_masked(pa);
    337  1.89.22.3      matt }
    338  1.89.22.3      matt 
    339  1.89.22.3      matt static __inline paddr_t
    340  1.89.22.3      matt pmap_pte2pa(pt_entry_t pte)
    341  1.89.22.3      matt {
    342  1.89.22.3      matt 	return xpmap_mtop_masked(pte & PG_FRAME);
    343  1.89.22.3      matt }
    344  1.89.22.3      matt static __inline void
    345  1.89.22.3      matt pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    346  1.89.22.3      matt {
    347  1.89.22.3      matt 	int s = splvm();
    348  1.89.22.3      matt 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    349  1.89.22.3      matt 	splx(s);
    350  1.89.22.3      matt }
    351  1.89.22.3      matt 
    352  1.89.22.3      matt static __inline pt_entry_t
    353  1.89.22.3      matt pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    354  1.89.22.3      matt {
    355  1.89.22.3      matt 	int s = splvm();
    356  1.89.22.3      matt 	pt_entry_t opte = *ptep;
    357  1.89.22.3      matt 
    358  1.89.22.3      matt 	if (opte == o) {
    359  1.89.22.3      matt 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    360  1.89.22.3      matt 		xpq_flush_queue();
    361  1.89.22.3      matt 	}
    362  1.89.22.3      matt 	splx(s);
    363  1.89.22.3      matt 	return opte;
    364  1.89.22.3      matt }
    365  1.89.22.3      matt 
    366  1.89.22.3      matt static __inline pt_entry_t
    367  1.89.22.3      matt pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    368  1.89.22.3      matt {
    369  1.89.22.3      matt 	int s = splvm();
    370  1.89.22.3      matt 	pt_entry_t opte = *pte;
    371  1.89.22.3      matt 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    372  1.89.22.3      matt 	    npte);
    373  1.89.22.3      matt 	xpq_flush_queue();
    374  1.89.22.3      matt 	splx(s);
    375  1.89.22.3      matt 	return opte;
    376  1.89.22.3      matt }
    377  1.89.22.3      matt 
    378  1.89.22.3      matt static __inline void
    379  1.89.22.3      matt pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    380  1.89.22.3      matt {
    381  1.89.22.3      matt 	int s = splvm();
    382  1.89.22.3      matt 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    383  1.89.22.3      matt 	xpq_flush_queue();
    384  1.89.22.3      matt 	splx(s);
    385  1.89.22.3      matt }
    386  1.89.22.3      matt 
    387  1.89.22.3      matt static __inline void
    388  1.89.22.3      matt pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    389  1.89.22.3      matt {
    390  1.89.22.3      matt 	int s = splvm();
    391  1.89.22.3      matt 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    392  1.89.22.3      matt 	    (*pte) & ~bits);
    393  1.89.22.3      matt 	xpq_flush_queue();
    394  1.89.22.3      matt 	splx(s);
    395  1.89.22.3      matt }
    396  1.89.22.3      matt 
    397  1.89.22.3      matt static __inline void
    398  1.89.22.3      matt pmap_pte_flush(void)
    399  1.89.22.3      matt {
    400  1.89.22.3      matt 	int s = splvm();
    401  1.89.22.3      matt 	xpq_flush_queue();
    402  1.89.22.3      matt 	splx(s);
    403  1.89.22.3      matt }
    404  1.89.22.3      matt 
    405  1.89.22.3      matt #endif
    406  1.89.22.3      matt 
    407  1.89.22.3      matt #ifdef PAE
    408  1.89.22.3      matt /* addresses of static pages used for PAE pmap: */
    409  1.89.22.3      matt /* the L3 page */
    410  1.89.22.3      matt pd_entry_t *pmap_l3pd;
    411  1.89.22.3      matt paddr_t pmap_l3paddr;
    412  1.89.22.3      matt /* the kernel's L2 page */
    413  1.89.22.3      matt pd_entry_t *pmap_kl2pd;
    414  1.89.22.3      matt paddr_t pmap_kl2paddr;
    415  1.89.22.3      matt #endif
    416       1.35       cgd 
    417       1.39   thorpej 
    418  1.89.22.1      matt struct trapframe;
    419       1.73   thorpej 
    420  1.89.22.1      matt int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    421  1.89.22.1      matt void	pmap_ldt_cleanup(struct lwp *);
    422        1.1       cgd 
    423       1.40   thorpej #endif	/* _I386_PMAP_H_ */
    424