pmap.h revision 1.90 1 1.90 ad /* $NetBSD: pmap.h,v 1.90 2007/08/29 23:38:05 ad Exp $ */
2 1.38 mycroft
3 1.40 thorpej /*
4 1.40 thorpej *
5 1.40 thorpej * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 1.38 mycroft * All rights reserved.
7 1.38 mycroft *
8 1.38 mycroft * Redistribution and use in source and binary forms, with or without
9 1.38 mycroft * modification, are permitted provided that the following conditions
10 1.38 mycroft * are met:
11 1.38 mycroft * 1. Redistributions of source code must retain the above copyright
12 1.38 mycroft * notice, this list of conditions and the following disclaimer.
13 1.38 mycroft * 2. Redistributions in binary form must reproduce the above copyright
14 1.38 mycroft * notice, this list of conditions and the following disclaimer in the
15 1.38 mycroft * documentation and/or other materials provided with the distribution.
16 1.38 mycroft * 3. All advertising materials mentioning features or use of this software
17 1.40 thorpej * must display the following acknowledgment:
18 1.40 thorpej * This product includes software developed by Charles D. Cranor and
19 1.40 thorpej * Washington University.
20 1.40 thorpej * 4. The name of the author may not be used to endorse or promote products
21 1.40 thorpej * derived from this software without specific prior written permission.
22 1.1 cgd *
23 1.40 thorpej * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.40 thorpej * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.40 thorpej * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.40 thorpej * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.40 thorpej * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 1.40 thorpej * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 1.40 thorpej * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 1.40 thorpej * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 1.40 thorpej * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 1.40 thorpej * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.1 cgd /*
36 1.40 thorpej * pmap.h: see pmap.c for the history of this pmap module.
37 1.1 cgd */
38 1.34 mrg
39 1.40 thorpej #ifndef _I386_PMAP_H_
40 1.40 thorpej #define _I386_PMAP_H_
41 1.40 thorpej
42 1.58 mrg #if defined(_KERNEL_OPT)
43 1.39 thorpej #include "opt_user_ldt.h"
44 1.48 thorpej #include "opt_largepages.h"
45 1.34 mrg #endif
46 1.1 cgd
47 1.14 mycroft #include <machine/cpufunc.h>
48 1.6 mycroft #include <machine/pte.h>
49 1.39 thorpej #include <machine/segments.h>
50 1.90 ad #include <machine/atomic.h>
51 1.90 ad
52 1.40 thorpej #include <uvm/uvm_object.h>
53 1.1 cgd
54 1.1 cgd /*
55 1.40 thorpej * see pte.h for a description of i386 MMU terminology and hardware
56 1.40 thorpej * interface.
57 1.40 thorpej *
58 1.40 thorpej * a pmap describes a processes' 4GB virtual address space. this
59 1.40 thorpej * virtual address space can be broken up into 1024 4MB regions which
60 1.41 chs * are described by PDEs in the PDP. the PDEs are defined as follows:
61 1.40 thorpej *
62 1.40 thorpej * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
63 1.43 thorpej * (the following assumes that KERNBASE is 0xc0000000)
64 1.40 thorpej *
65 1.40 thorpej * PDE#s VA range usage
66 1.68 drochner * 0->766 0x0 -> 0xbfc00000 user address space
67 1.61 yamt * 767 0xbfc00000-> recursive mapping of PDP (used for
68 1.43 thorpej * 0xc0000000 linear mapping of PTPs)
69 1.43 thorpej * 768->1023 0xc0000000-> kernel address space (constant
70 1.40 thorpej * 0xffc00000 across all pmap's/processes)
71 1.40 thorpej * 1023 0xffc00000-> "alternate" recursive PDP mapping
72 1.40 thorpej * <end> (for other pmaps)
73 1.40 thorpej *
74 1.40 thorpej *
75 1.40 thorpej * note: a recursive PDP mapping provides a way to map all the PTEs for
76 1.41 chs * a 4GB address space into a linear chunk of virtual memory. in other
77 1.41 chs * words, the PTE for page 0 is the first int mapped into the 4MB recursive
78 1.41 chs * area. the PTE for page 1 is the second int. the very last int in the
79 1.81 junyoung * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
80 1.40 thorpej * address).
81 1.40 thorpej *
82 1.43 thorpej * all pmap's PD's must have the same values in slots 768->1023 so that
83 1.41 chs * the kernel is always mapped in every process. these values are loaded
84 1.40 thorpej * into the PD at pmap creation time.
85 1.40 thorpej *
86 1.41 chs * at any one time only one pmap can be active on a processor. this is
87 1.41 chs * the pmap whose PDP is pointed to by processor register %cr3. this pmap
88 1.40 thorpej * will have all its PTEs mapped into memory at the recursive mapping
89 1.43 thorpej * point (slot #767 as show above). when the pmap code wants to find the
90 1.40 thorpej * PTE for a virtual address, all it has to do is the following:
91 1.40 thorpej *
92 1.71 thorpej * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
93 1.43 thorpej * = 0xbfc00000 + (VA / 4096) * 4
94 1.40 thorpej *
95 1.40 thorpej * what happens if the pmap layer is asked to perform an operation
96 1.41 chs * on a pmap that is not the one which is currently active? in that
97 1.41 chs * case we take the PA of the PDP of non-active pmap and put it in
98 1.41 chs * slot 1023 of the active pmap. this causes the non-active pmap's
99 1.40 thorpej * PTEs to get mapped in the final 4MB of the 4GB address space
100 1.40 thorpej * (e.g. starting at 0xffc00000).
101 1.40 thorpej *
102 1.40 thorpej * the following figure shows the effects of the recursive PDP mapping:
103 1.40 thorpej *
104 1.40 thorpej * PDP (%cr3)
105 1.40 thorpej * +----+
106 1.40 thorpej * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
107 1.40 thorpej * | |
108 1.40 thorpej * | |
109 1.43 thorpej * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
110 1.83 junyoung * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
111 1.40 thorpej * | |
112 1.40 thorpej * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
113 1.40 thorpej * +----+
114 1.40 thorpej *
115 1.43 thorpej * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
116 1.40 thorpej * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
117 1.40 thorpej *
118 1.43 thorpej * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
119 1.40 thorpej * PTP:
120 1.40 thorpej *
121 1.43 thorpej * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
122 1.40 thorpej * +----+
123 1.43 thorpej * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
124 1.40 thorpej * | |
125 1.40 thorpej * | |
126 1.81 junyoung * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
127 1.43 thorpej * | 768| -> maps contents of first kernel PTP
128 1.40 thorpej * | |
129 1.40 thorpej * |1023|
130 1.40 thorpej * +----+
131 1.40 thorpej *
132 1.81 junyoung * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
133 1.40 thorpej * defined as "PDP_BASE".... within that mapping there are two
134 1.41 chs * defines:
135 1.59 chs * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
136 1.41 chs * which points back to itself.
137 1.59 chs * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
138 1.40 thorpej * establishes the recursive mapping of the alternate pmap.
139 1.40 thorpej * to set the alternate PDP, one just has to put the correct
140 1.40 thorpej * PA info in *APDP_PDE.
141 1.40 thorpej *
142 1.41 chs * note that in the APTE_BASE space, the APDP appears at VA
143 1.40 thorpej * "APDP_BASE" (0xfffff000).
144 1.1 cgd */
145 1.65 fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
146 1.33 mrg
147 1.33 mrg /*
148 1.40 thorpej * the following defines identify the slots used as described above.
149 1.33 mrg */
150 1.33 mrg
151 1.43 thorpej #define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 767: for recursive PDP map */
152 1.43 thorpej #define PDSLOT_KERN (KERNBASE/NBPD) /* 768: start of kernel space */
153 1.40 thorpej #define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
154 1.1 cgd
155 1.1 cgd /*
156 1.41 chs * the following defines give the virtual addresses of various MMU
157 1.40 thorpej * data structures:
158 1.40 thorpej * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
159 1.81 junyoung * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
160 1.40 thorpej * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
161 1.1 cgd */
162 1.29 fvdl
163 1.40 thorpej #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
164 1.40 thorpej #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
165 1.71 thorpej #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * PAGE_SIZE)))
166 1.71 thorpej #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * PAGE_SIZE)))
167 1.40 thorpej #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
168 1.40 thorpej #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
169 1.40 thorpej
170 1.40 thorpej /*
171 1.40 thorpej * the follow define determines how many PTPs should be set up for the
172 1.81 junyoung * kernel by locore.S at boot time. this should be large enough to
173 1.41 chs * get the VM system running. once the VM system is running, the
174 1.40 thorpej * pmap module can add more PTPs to the kernel area on demand.
175 1.40 thorpej */
176 1.40 thorpej
177 1.40 thorpej #ifndef NKPTP
178 1.80 mycroft #define NKPTP 0 /* 16MB to start */
179 1.1 cgd #endif
180 1.80 mycroft #define NKPTP_MIN 2 /* smallest value we allow */
181 1.40 thorpej #define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
182 1.40 thorpej /* largest value (-1 for APTP space) */
183 1.1 cgd
184 1.1 cgd /*
185 1.40 thorpej * pdei/ptei: generate index into PDP/PTP from a VA
186 1.1 cgd */
187 1.40 thorpej #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
188 1.40 thorpej #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
189 1.1 cgd
190 1.1 cgd /*
191 1.40 thorpej * PTP macros:
192 1.40 thorpej * a PTP's index is the PD index of the PDE that points to it
193 1.40 thorpej * a PTP's offset is the byte-offset in the PTE space that this PTP is at
194 1.40 thorpej * a PTP's VA is the first VA mapped by that PTP
195 1.40 thorpej *
196 1.71 thorpej * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
197 1.40 thorpej * NBPD == number of bytes a PTP can map (4MB)
198 1.1 cgd */
199 1.39 thorpej
200 1.71 thorpej #define ptp_i2o(I) ((I) * PAGE_SIZE) /* index => offset */
201 1.71 thorpej #define ptp_o2i(O) ((O) / PAGE_SIZE) /* offset => index */
202 1.40 thorpej #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
203 1.40 thorpej #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
204 1.39 thorpej
205 1.40 thorpej /*
206 1.40 thorpej * PG_AVAIL usage: we make use of the ignored bits of the PTE
207 1.40 thorpej */
208 1.40 thorpej
209 1.40 thorpej #define PG_W PG_AVAIL1 /* "wired" mapping */
210 1.40 thorpej #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
211 1.75 chs #define PG_X PG_AVAIL3 /* executable mapping */
212 1.40 thorpej
213 1.65 fvdl /*
214 1.65 fvdl * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
215 1.65 fvdl * Used to avoid false sharing of cache lines.
216 1.65 fvdl */
217 1.65 fvdl #define NPTECL 8
218 1.65 fvdl
219 1.40 thorpej #ifdef _KERNEL
220 1.40 thorpej /*
221 1.40 thorpej * pmap data structures: see pmap.c for details of locking.
222 1.40 thorpej */
223 1.40 thorpej
224 1.40 thorpej struct pmap;
225 1.40 thorpej typedef struct pmap *pmap_t;
226 1.40 thorpej
227 1.40 thorpej /*
228 1.40 thorpej * we maintain a list of all non-kernel pmaps
229 1.40 thorpej */
230 1.40 thorpej
231 1.40 thorpej LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
232 1.40 thorpej
233 1.40 thorpej /*
234 1.40 thorpej * the pmap structure
235 1.40 thorpej *
236 1.40 thorpej * note that the pm_obj contains the simple_lock, the reference count,
237 1.40 thorpej * page list, and number of PTPs within the pmap.
238 1.65 fvdl *
239 1.65 fvdl * XXX If we ever support processor numbers higher than 31, we'll have
240 1.65 fvdl * XXX to rethink the CPU mask.
241 1.40 thorpej */
242 1.40 thorpej
243 1.40 thorpej struct pmap {
244 1.41 chs struct uvm_object pm_obj; /* object (lck by object lock) */
245 1.40 thorpej #define pm_lock pm_obj.vmobjlock
246 1.41 chs LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
247 1.41 chs pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
248 1.85 perry uint32_t pm_pdirpa; /* PA of PD (read-only after create) */
249 1.41 chs struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
250 1.41 chs struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
251 1.41 chs
252 1.75 chs vaddr_t pm_hiexec; /* highest executable mapping */
253 1.41 chs int pm_flags; /* see below */
254 1.41 chs
255 1.41 chs union descriptor *pm_ldt; /* user-set LDT */
256 1.41 chs int pm_ldt_len; /* number of LDT entries */
257 1.41 chs int pm_ldt_sel; /* LDT selector */
258 1.85 perry uint32_t pm_cpus; /* mask of CPUs using pmap */
259 1.90 ad uint32_t pm_kernel_cpus; /* mask of CPUs using kernel part
260 1.90 ad of pmap */
261 1.40 thorpej };
262 1.1 cgd
263 1.39 thorpej /* pm_flags */
264 1.39 thorpej #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
265 1.39 thorpej
266 1.1 cgd /*
267 1.40 thorpej * for each managed physical page we maintain a list of <PMAP,VA>'s
268 1.41 chs * which it is mapped at. the list is headed by a pv_head structure.
269 1.40 thorpej * there is one pv_head per managed phys page (allocated at boot time).
270 1.40 thorpej * the pv_head structure points to a list of pv_entry structures (each
271 1.40 thorpej * describes one mapping).
272 1.1 cgd */
273 1.40 thorpej
274 1.41 chs struct pv_entry { /* locked by its list's pvh_lock */
275 1.77 chs SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */
276 1.41 chs struct pmap *pv_pmap; /* the pmap */
277 1.41 chs vaddr_t pv_va; /* the virtual address */
278 1.41 chs struct vm_page *pv_ptp; /* the vm_page of the PTP */
279 1.90 ad struct pmap_cpu *pv_alloc_cpu; /* CPU allocated from */
280 1.11 mycroft };
281 1.11 mycroft
282 1.40 thorpej /*
283 1.40 thorpej * pv_entrys are dynamically allocated in chunks from a single page.
284 1.40 thorpej * we keep track of how many pv_entrys are in use for each page and
285 1.41 chs * we can free pv_entry pages if needed. there is one lock for the
286 1.40 thorpej * entire allocation system.
287 1.40 thorpej */
288 1.11 mycroft
289 1.11 mycroft struct pv_page_info {
290 1.41 chs TAILQ_ENTRY(pv_page) pvpi_list;
291 1.41 chs struct pv_entry *pvpi_pvfree;
292 1.41 chs int pvpi_nfree;
293 1.11 mycroft };
294 1.1 cgd
295 1.11 mycroft /*
296 1.40 thorpej * number of pv_entry's in a pv_page
297 1.40 thorpej * (note: won't work on systems where NPBG isn't a constant)
298 1.40 thorpej */
299 1.40 thorpej
300 1.71 thorpej #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
301 1.41 chs sizeof(struct pv_entry))
302 1.40 thorpej
303 1.40 thorpej /*
304 1.40 thorpej * a pv_page: where pv_entrys are allocated from
305 1.11 mycroft */
306 1.1 cgd
307 1.11 mycroft struct pv_page {
308 1.41 chs struct pv_page_info pvinfo;
309 1.41 chs struct pv_entry pvents[PVE_PER_PVPAGE];
310 1.40 thorpej };
311 1.40 thorpej
312 1.40 thorpej /*
313 1.40 thorpej * global kernel variables
314 1.40 thorpej */
315 1.40 thorpej
316 1.82 junyoung /* PDPpaddr: is the physical address of the kernel's PDP */
317 1.82 junyoung extern u_long PDPpaddr;
318 1.40 thorpej
319 1.40 thorpej extern struct pmap kernel_pmap_store; /* kernel pmap */
320 1.40 thorpej extern int nkpde; /* current # of PDEs for kernel */
321 1.40 thorpej extern int pmap_pg_g; /* do we support PG_G? */
322 1.40 thorpej
323 1.40 thorpej /*
324 1.40 thorpej * macros
325 1.40 thorpej */
326 1.1 cgd
327 1.18 mycroft #define pmap_kernel() (&kernel_pmap_store)
328 1.1 cgd #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
329 1.50 is #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
330 1.11 mycroft
331 1.65 fvdl #define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
332 1.65 fvdl #define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
333 1.65 fvdl #define pmap_copy(DP,SP,D,L,S)
334 1.40 thorpej #define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
335 1.40 thorpej #define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
336 1.65 fvdl #define pmap_move(DP,SP,D,L,S)
337 1.69 fvdl #define pmap_phys_address(ppn) x86_ptob(ppn)
338 1.40 thorpej #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
339 1.40 thorpej
340 1.40 thorpej
341 1.40 thorpej /*
342 1.40 thorpej * prototypes
343 1.40 thorpej */
344 1.40 thorpej
345 1.78 junyoung void pmap_activate(struct lwp *);
346 1.78 junyoung void pmap_bootstrap(vaddr_t);
347 1.89 thorpej bool pmap_clear_attrs(struct vm_page *, int);
348 1.78 junyoung void pmap_deactivate(struct lwp *);
349 1.79 yamt void pmap_deactivate2(struct lwp *);
350 1.78 junyoung void pmap_page_remove (struct vm_page *);
351 1.78 junyoung void pmap_remove(struct pmap *, vaddr_t, vaddr_t);
352 1.89 thorpej bool pmap_test_attrs(struct vm_page *, int);
353 1.78 junyoung void pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
354 1.75 chs int pmap_exec_fixup(struct vm_map *, struct trapframe *,
355 1.75 chs struct pcb *);
356 1.79 yamt void pmap_load(void);
357 1.40 thorpej
358 1.78 junyoung vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
359 1.40 thorpej
360 1.90 ad void pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
361 1.90 ad void pmap_tlb_shootwait(void);
362 1.65 fvdl
363 1.40 thorpej #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
364 1.44 thorpej
365 1.44 thorpej /*
366 1.44 thorpej * Do idle page zero'ing uncached to avoid polluting the cache.
367 1.44 thorpej */
368 1.89 thorpej bool pmap_pageidlezero(paddr_t);
369 1.56 thorpej #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
370 1.40 thorpej
371 1.40 thorpej /*
372 1.40 thorpej * inline functions
373 1.40 thorpej */
374 1.63 chs
375 1.66 perry /*ARGSUSED*/
376 1.86 perry static __inline void
377 1.88 christos pmap_remove_all(struct pmap *pmap)
378 1.63 chs {
379 1.63 chs /* Nothing. */
380 1.63 chs }
381 1.40 thorpej
382 1.40 thorpej /*
383 1.40 thorpej * pmap_update_pg: flush one page from the TLB (or flush the whole thing
384 1.40 thorpej * if hardware doesn't support one-page flushing)
385 1.40 thorpej */
386 1.40 thorpej
387 1.86 perry __inline static void __attribute__((__unused__))
388 1.62 thorpej pmap_update_pg(vaddr_t va)
389 1.11 mycroft {
390 1.40 thorpej #if defined(I386_CPU)
391 1.41 chs if (cpu_class == CPUCLASS_386)
392 1.52 thorpej tlbflush();
393 1.41 chs else
394 1.40 thorpej #endif
395 1.41 chs invlpg((u_int) va);
396 1.11 mycroft }
397 1.11 mycroft
398 1.40 thorpej /*
399 1.40 thorpej * pmap_update_2pg: flush two pages from the TLB
400 1.40 thorpej */
401 1.40 thorpej
402 1.86 perry __inline static void __attribute__((__unused__))
403 1.62 thorpej pmap_update_2pg(vaddr_t va, vaddr_t vb)
404 1.11 mycroft {
405 1.40 thorpej #if defined(I386_CPU)
406 1.41 chs if (cpu_class == CPUCLASS_386)
407 1.52 thorpej tlbflush();
408 1.41 chs else
409 1.40 thorpej #endif
410 1.41 chs {
411 1.41 chs invlpg((u_int) va);
412 1.41 chs invlpg((u_int) vb);
413 1.41 chs }
414 1.11 mycroft }
415 1.11 mycroft
416 1.40 thorpej /*
417 1.40 thorpej * pmap_page_protect: change the protection of all recorded mappings
418 1.40 thorpej * of a managed page
419 1.40 thorpej *
420 1.65 fvdl * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
421 1.40 thorpej * => we only have to worry about making the page more protected.
422 1.40 thorpej * unprotecting a page is done on-demand at fault time.
423 1.40 thorpej */
424 1.40 thorpej
425 1.86 perry __inline static void __attribute__((__unused__))
426 1.62 thorpej pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
427 1.11 mycroft {
428 1.41 chs if ((prot & VM_PROT_WRITE) == 0) {
429 1.41 chs if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
430 1.65 fvdl (void) pmap_clear_attrs(pg, PG_RW);
431 1.41 chs } else {
432 1.41 chs pmap_page_remove(pg);
433 1.41 chs }
434 1.41 chs }
435 1.11 mycroft }
436 1.11 mycroft
437 1.40 thorpej /*
438 1.40 thorpej * pmap_protect: change the protection of pages in a pmap
439 1.40 thorpej *
440 1.40 thorpej * => this function is a frontend for pmap_remove/pmap_write_protect
441 1.40 thorpej * => we only have to worry about making the page more protected.
442 1.40 thorpej * unprotecting a page is done on-demand at fault time.
443 1.40 thorpej */
444 1.40 thorpej
445 1.86 perry __inline static void __attribute__((__unused__))
446 1.62 thorpej pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
447 1.11 mycroft {
448 1.41 chs if ((prot & VM_PROT_WRITE) == 0) {
449 1.41 chs if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
450 1.41 chs pmap_write_protect(pmap, sva, eva, prot);
451 1.41 chs } else {
452 1.41 chs pmap_remove(pmap, sva, eva);
453 1.41 chs }
454 1.41 chs }
455 1.47 thorpej }
456 1.47 thorpej
457 1.47 thorpej /*
458 1.47 thorpej * various address inlines
459 1.47 thorpej *
460 1.47 thorpej * vtopte: return a pointer to the PTE mapping a VA, works only for
461 1.47 thorpej * user and PT addresses
462 1.47 thorpej *
463 1.47 thorpej * kvtopte: return a pointer to the PTE mapping a kernel VA
464 1.47 thorpej */
465 1.47 thorpej
466 1.47 thorpej #include <lib/libkern/libkern.h>
467 1.47 thorpej
468 1.86 perry static __inline pt_entry_t * __attribute__((__unused__))
469 1.47 thorpej vtopte(vaddr_t va)
470 1.47 thorpej {
471 1.47 thorpej
472 1.47 thorpej KASSERT(va < (PDSLOT_KERN << PDSHIFT));
473 1.47 thorpej
474 1.69 fvdl return (PTE_BASE + x86_btop(va));
475 1.47 thorpej }
476 1.47 thorpej
477 1.86 perry static __inline pt_entry_t * __attribute__((__unused__))
478 1.47 thorpej kvtopte(vaddr_t va)
479 1.47 thorpej {
480 1.47 thorpej
481 1.47 thorpej KASSERT(va >= (PDSLOT_KERN << PDSHIFT));
482 1.48 thorpej
483 1.48 thorpej #ifdef LARGEPAGES
484 1.48 thorpej {
485 1.48 thorpej pd_entry_t *pde;
486 1.48 thorpej
487 1.51 chs pde = PDP_BASE + pdei(va);
488 1.48 thorpej if (*pde & PG_PS)
489 1.48 thorpej return ((pt_entry_t *)pde);
490 1.48 thorpej }
491 1.48 thorpej #endif
492 1.47 thorpej
493 1.69 fvdl return (PTE_BASE + x86_btop(va));
494 1.41 chs }
495 1.70 fvdl
496 1.90 ad #define pmap_pte_set(p, n) x86_atomic_testset_ul(p, n)
497 1.90 ad #define pmap_pte_setbits(p, b) x86_atomic_setbits_l(p, b)
498 1.90 ad #define pmap_pte_clearbits(p, b) x86_atomic_clearbits_l(p, b)
499 1.70 fvdl #define pmap_cpu_has_pg_n() (cpu_class != CPUCLASS_386)
500 1.70 fvdl #define pmap_cpu_has_invlpg() (cpu_class != CPUCLASS_386)
501 1.35 cgd
502 1.78 junyoung paddr_t vtophys(vaddr_t);
503 1.78 junyoung vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
504 1.78 junyoung void pmap_ldt_cleanup(struct lwp *);
505 1.90 ad void pmap_cpu_init_early(struct cpu_info *);
506 1.90 ad void pmap_cpu_init_late(struct cpu_info *);
507 1.90 ad void sse2_zero_page(void *);
508 1.90 ad void sse2_copy_page(void *, void *);
509 1.73 thorpej
510 1.83 junyoung /*
511 1.73 thorpej * Hooks for the pool allocator.
512 1.73 thorpej */
513 1.73 thorpej #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
514 1.1 cgd
515 1.90 ad /*
516 1.90 ad * TLB shootdown mailbox.
517 1.90 ad */
518 1.90 ad
519 1.90 ad struct pmap_mbox {
520 1.90 ad volatile void *mb_pointer;
521 1.90 ad volatile uintptr_t mb_addr1;
522 1.90 ad volatile uintptr_t mb_addr2;
523 1.90 ad volatile uintptr_t mb_head;
524 1.90 ad volatile uintptr_t mb_tail;
525 1.90 ad volatile uintptr_t mb_global;
526 1.90 ad };
527 1.90 ad
528 1.40 thorpej #endif /* _KERNEL */
529 1.40 thorpej #endif /* _I386_PMAP_H_ */
530