Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.90.2.3
      1  1.90.2.1      yamt /*	$NetBSD: pmap.h,v 1.90.2.3 2007/10/04 15:36:57 yamt Exp $	*/
      2      1.38   mycroft 
      3      1.40   thorpej /*
      4      1.40   thorpej  *
      5      1.40   thorpej  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6      1.38   mycroft  * All rights reserved.
      7      1.38   mycroft  *
      8      1.38   mycroft  * Redistribution and use in source and binary forms, with or without
      9      1.38   mycroft  * modification, are permitted provided that the following conditions
     10      1.38   mycroft  * are met:
     11      1.38   mycroft  * 1. Redistributions of source code must retain the above copyright
     12      1.38   mycroft  *    notice, this list of conditions and the following disclaimer.
     13      1.38   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     14      1.38   mycroft  *    notice, this list of conditions and the following disclaimer in the
     15      1.38   mycroft  *    documentation and/or other materials provided with the distribution.
     16      1.38   mycroft  * 3. All advertising materials mentioning features or use of this software
     17      1.40   thorpej  *    must display the following acknowledgment:
     18      1.40   thorpej  *      This product includes software developed by Charles D. Cranor and
     19      1.40   thorpej  *      Washington University.
     20      1.40   thorpej  * 4. The name of the author may not be used to endorse or promote products
     21      1.40   thorpej  *    derived from this software without specific prior written permission.
     22       1.1       cgd  *
     23      1.40   thorpej  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24      1.40   thorpej  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25      1.40   thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26      1.40   thorpej  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27      1.40   thorpej  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28      1.40   thorpej  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29      1.40   thorpej  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30      1.40   thorpej  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31      1.40   thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32      1.40   thorpej  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33       1.1       cgd  */
     34       1.1       cgd 
     35       1.1       cgd /*
     36  1.90.2.1      yamt  * Copyright (c) 2001 Wasabi Systems, Inc.
     37  1.90.2.1      yamt  * All rights reserved.
     38  1.90.2.1      yamt  *
     39  1.90.2.1      yamt  * Written by Frank van der Linden for Wasabi Systems, Inc.
     40  1.90.2.1      yamt  *
     41  1.90.2.1      yamt  * Redistribution and use in source and binary forms, with or without
     42  1.90.2.1      yamt  * modification, are permitted provided that the following conditions
     43  1.90.2.1      yamt  * are met:
     44  1.90.2.1      yamt  * 1. Redistributions of source code must retain the above copyright
     45  1.90.2.1      yamt  *    notice, this list of conditions and the following disclaimer.
     46  1.90.2.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     47  1.90.2.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     48  1.90.2.1      yamt  *    documentation and/or other materials provided with the distribution.
     49  1.90.2.1      yamt  * 3. All advertising materials mentioning features or use of this software
     50  1.90.2.1      yamt  *    must display the following acknowledgement:
     51  1.90.2.1      yamt  *      This product includes software developed for the NetBSD Project by
     52  1.90.2.1      yamt  *      Wasabi Systems, Inc.
     53  1.90.2.1      yamt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     54  1.90.2.1      yamt  *    or promote products derived from this software without specific prior
     55  1.90.2.1      yamt  *    written permission.
     56  1.90.2.1      yamt  *
     57  1.90.2.1      yamt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     58  1.90.2.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     59  1.90.2.1      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     60  1.90.2.1      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     61  1.90.2.1      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  1.90.2.1      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  1.90.2.1      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  1.90.2.1      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  1.90.2.1      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  1.90.2.1      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67  1.90.2.1      yamt  * POSSIBILITY OF SUCH DAMAGE.
     68  1.90.2.1      yamt  */
     69  1.90.2.1      yamt 
     70  1.90.2.1      yamt /*
     71      1.40   thorpej  * pmap.h: see pmap.c for the history of this pmap module.
     72       1.1       cgd  */
     73      1.34       mrg 
     74      1.40   thorpej #ifndef	_I386_PMAP_H_
     75      1.40   thorpej #define	_I386_PMAP_H_
     76      1.40   thorpej 
     77      1.58       mrg #if defined(_KERNEL_OPT)
     78      1.39   thorpej #include "opt_user_ldt.h"
     79      1.34       mrg #endif
     80       1.1       cgd 
     81      1.14   mycroft #include <machine/cpufunc.h>
     82       1.6   mycroft #include <machine/pte.h>
     83      1.39   thorpej #include <machine/segments.h>
     84      1.90        ad #include <machine/atomic.h>
     85      1.90        ad 
     86      1.40   thorpej #include <uvm/uvm_object.h>
     87       1.1       cgd 
     88       1.1       cgd /*
     89      1.40   thorpej  * see pte.h for a description of i386 MMU terminology and hardware
     90      1.40   thorpej  * interface.
     91      1.40   thorpej  *
     92      1.40   thorpej  * a pmap describes a processes' 4GB virtual address space.  this
     93      1.40   thorpej  * virtual address space can be broken up into 1024 4MB regions which
     94      1.41       chs  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     95      1.40   thorpej  *
     96      1.40   thorpej  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     97      1.43   thorpej  * (the following assumes that KERNBASE is 0xc0000000)
     98      1.40   thorpej  *
     99      1.40   thorpej  * PDE#s	VA range		usage
    100      1.68  drochner  * 0->766	0x0 -> 0xbfc00000	user address space
    101      1.61      yamt  * 767		0xbfc00000->		recursive mapping of PDP (used for
    102      1.43   thorpej  *			0xc0000000	linear mapping of PTPs)
    103      1.43   thorpej  * 768->1023	0xc0000000->		kernel address space (constant
    104      1.40   thorpej  *			0xffc00000	across all pmap's/processes)
    105      1.40   thorpej  * 1023		0xffc00000->		"alternate" recursive PDP mapping
    106      1.40   thorpej  *			<end>		(for other pmaps)
    107      1.40   thorpej  *
    108      1.40   thorpej  *
    109      1.40   thorpej  * note: a recursive PDP mapping provides a way to map all the PTEs for
    110      1.41       chs  * a 4GB address space into a linear chunk of virtual memory.  in other
    111      1.41       chs  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    112      1.41       chs  * area.  the PTE for page 1 is the second int.  the very last int in the
    113      1.81  junyoung  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    114      1.40   thorpej  * address).
    115      1.40   thorpej  *
    116      1.43   thorpej  * all pmap's PD's must have the same values in slots 768->1023 so that
    117      1.41       chs  * the kernel is always mapped in every process.  these values are loaded
    118      1.40   thorpej  * into the PD at pmap creation time.
    119      1.40   thorpej  *
    120      1.41       chs  * at any one time only one pmap can be active on a processor.  this is
    121      1.41       chs  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    122      1.40   thorpej  * will have all its PTEs mapped into memory at the recursive mapping
    123      1.43   thorpej  * point (slot #767 as show above).  when the pmap code wants to find the
    124      1.40   thorpej  * PTE for a virtual address, all it has to do is the following:
    125      1.40   thorpej  *
    126      1.71   thorpej  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    127      1.43   thorpej  *                = 0xbfc00000 + (VA / 4096) * 4
    128      1.40   thorpej  *
    129      1.40   thorpej  * what happens if the pmap layer is asked to perform an operation
    130      1.41       chs  * on a pmap that is not the one which is currently active?  in that
    131      1.41       chs  * case we take the PA of the PDP of non-active pmap and put it in
    132      1.41       chs  * slot 1023 of the active pmap.  this causes the non-active pmap's
    133      1.40   thorpej  * PTEs to get mapped in the final 4MB of the 4GB address space
    134      1.40   thorpej  * (e.g. starting at 0xffc00000).
    135      1.40   thorpej  *
    136      1.40   thorpej  * the following figure shows the effects of the recursive PDP mapping:
    137      1.40   thorpej  *
    138      1.40   thorpej  *   PDP (%cr3)
    139      1.40   thorpej  *   +----+
    140      1.40   thorpej  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    141      1.40   thorpej  *   |    |
    142      1.40   thorpej  *   |    |
    143      1.43   thorpej  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    144      1.83  junyoung  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    145      1.40   thorpej  *   |    |
    146      1.40   thorpej  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    147      1.40   thorpej  *   +----+
    148      1.40   thorpej  *
    149      1.43   thorpej  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    150      1.40   thorpej  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    151      1.40   thorpej  *
    152      1.43   thorpej  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    153      1.40   thorpej  * PTP:
    154      1.40   thorpej  *
    155      1.43   thorpej  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    156      1.40   thorpej  *   +----+
    157      1.43   thorpej  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    158      1.40   thorpej  *   |    |
    159      1.40   thorpej  *   |    |
    160      1.81  junyoung  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    161      1.43   thorpej  *   | 768| -> maps contents of first kernel PTP
    162      1.40   thorpej  *   |    |
    163      1.40   thorpej  *   |1023|
    164      1.40   thorpej  *   +----+
    165      1.40   thorpej  *
    166      1.81  junyoung  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    167      1.40   thorpej  * defined as "PDP_BASE".... within that mapping there are two
    168      1.41       chs  * defines:
    169      1.59       chs  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    170      1.41       chs  *      which points back to itself.
    171      1.59       chs  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    172      1.40   thorpej  *      establishes the recursive mapping of the alternate pmap.
    173      1.40   thorpej  *      to set the alternate PDP, one just has to put the correct
    174      1.40   thorpej  *	PA info in *APDP_PDE.
    175      1.40   thorpej  *
    176      1.41       chs  * note that in the APTE_BASE space, the APDP appears at VA
    177      1.40   thorpej  * "APDP_BASE" (0xfffff000).
    178       1.1       cgd  */
    179      1.65      fvdl /* XXX MP should we allocate one APDP_PDE per processor?? */
    180      1.33       mrg 
    181      1.33       mrg /*
    182  1.90.2.1      yamt  * Mask to get rid of the sign-extended part of addresses.
    183  1.90.2.1      yamt  */
    184  1.90.2.1      yamt #define VA_SIGN_MASK		0
    185  1.90.2.1      yamt #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    186  1.90.2.1      yamt /*
    187  1.90.2.1      yamt  * XXXfvdl this one's not right.
    188  1.90.2.1      yamt  */
    189  1.90.2.1      yamt #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    190  1.90.2.1      yamt 
    191  1.90.2.1      yamt /*
    192      1.40   thorpej  * the following defines identify the slots used as described above.
    193      1.33       mrg  */
    194      1.33       mrg 
    195  1.90.2.1      yamt #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1)	/* 767: for recursive PDP map */
    196  1.90.2.1      yamt #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)	/* 768: start of kernel space */
    197  1.90.2.1      yamt #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    198  1.90.2.1      yamt #define L2_SLOT_APTE	1023		/* 1023: alternative recursive slot */
    199  1.90.2.1      yamt 
    200  1.90.2.1      yamt #define PDIR_SLOT_KERN	L2_SLOT_KERN
    201  1.90.2.1      yamt #define PDIR_SLOT_PTE	L2_SLOT_PTE
    202  1.90.2.1      yamt #define PDIR_SLOT_APTE	L2_SLOT_APTE
    203       1.1       cgd 
    204       1.1       cgd /*
    205      1.41       chs  * the following defines give the virtual addresses of various MMU
    206      1.40   thorpej  * data structures:
    207      1.40   thorpej  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    208      1.81  junyoung  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    209      1.40   thorpej  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    210       1.1       cgd  */
    211      1.29      fvdl 
    212  1.90.2.1      yamt #define PTE_BASE  ((pt_entry_t *) (L2_SLOT_PTE * NBPD_L2))
    213  1.90.2.1      yamt #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L2_SLOT_APTE * NBPD_L2))))
    214  1.90.2.1      yamt 
    215  1.90.2.1      yamt #define L1_BASE		PTE_BASE
    216  1.90.2.1      yamt #define AL1_BASE	APTE_BASE
    217  1.90.2.1      yamt 
    218  1.90.2.1      yamt #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    219  1.90.2.1      yamt 
    220  1.90.2.1      yamt #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
    221  1.90.2.1      yamt 
    222  1.90.2.1      yamt #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    223  1.90.2.1      yamt #define APDP_PDE	(L2_BASE + PDIR_SLOT_APTE)
    224  1.90.2.1      yamt 
    225  1.90.2.1      yamt #define PDP_BASE	L2_BASE
    226  1.90.2.1      yamt #define APDP_BASE	AL2_BASE
    227  1.90.2.1      yamt 
    228  1.90.2.1      yamt /* largest value (-1 for APTP space) */
    229  1.90.2.1      yamt #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    230  1.90.2.1      yamt #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    231  1.90.2.1      yamt 
    232  1.90.2.2      yamt #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    233  1.90.2.1      yamt 
    234  1.90.2.2      yamt #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    235  1.90.2.2      yamt #define NKL1_START_ENTRIES	0	/* XXX unused */
    236      1.40   thorpej 
    237  1.90.2.1      yamt #define NTOPLEVEL_PDES		(PAGE_SIZE / (sizeof (pd_entry_t)))
    238  1.90.2.1      yamt 
    239  1.90.2.1      yamt #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    240  1.90.2.1      yamt 
    241  1.90.2.1      yamt #define ptei(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
    242       1.1       cgd 
    243       1.1       cgd /*
    244  1.90.2.1      yamt  * pl*_pi: index in the ptp page for a pde mapping a VA.
    245  1.90.2.1      yamt  * (pl*_i below is the index in the virtual array of all pdes per level)
    246       1.1       cgd  */
    247  1.90.2.1      yamt #define pl1_pi(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
    248  1.90.2.1      yamt #define pl2_pi(VA)	(((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
    249  1.90.2.1      yamt #define pl3_pi(VA)	(((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
    250  1.90.2.1      yamt #define pl4_pi(VA)	(((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
    251  1.90.2.1      yamt 
    252  1.90.2.1      yamt /*
    253  1.90.2.1      yamt  * pl*_i: generate index into pde/pte arrays in virtual space
    254  1.90.2.1      yamt  */
    255  1.90.2.1      yamt #define pl1_i(VA)	(((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
    256  1.90.2.1      yamt #define pl2_i(VA)	(((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
    257  1.90.2.1      yamt #define pl3_i(VA)	(((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
    258  1.90.2.1      yamt #define pl4_i(VA)	(((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
    259  1.90.2.1      yamt #define pl_i(va, lvl) \
    260  1.90.2.1      yamt         (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
    261  1.90.2.1      yamt 
    262  1.90.2.1      yamt #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    263  1.90.2.1      yamt #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    264  1.90.2.1      yamt #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    265  1.90.2.1      yamt #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    266  1.90.2.1      yamt #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    267  1.90.2.1      yamt #define PDES_INITIALIZER	{ L2_BASE }
    268  1.90.2.1      yamt #define APDES_INITIALIZER	{ AL2_BASE }
    269       1.1       cgd 
    270       1.1       cgd /*
    271      1.40   thorpej  * PTP macros:
    272      1.40   thorpej  *   a PTP's index is the PD index of the PDE that points to it
    273      1.40   thorpej  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    274      1.40   thorpej  *   a PTP's VA is the first VA mapped by that PTP
    275       1.1       cgd  */
    276      1.39   thorpej 
    277  1.90.2.1      yamt #define ptp_va2o(va, lvl)	(pl_i(va, (lvl)+1) * PAGE_SIZE)
    278  1.90.2.1      yamt 
    279  1.90.2.1      yamt #define PTP_LEVELS	2
    280      1.39   thorpej 
    281      1.40   thorpej /*
    282      1.40   thorpej  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    283      1.40   thorpej  */
    284      1.40   thorpej 
    285      1.40   thorpej #define PG_W		PG_AVAIL1	/* "wired" mapping */
    286      1.40   thorpej #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    287      1.75       chs #define PG_X		PG_AVAIL3	/* executable mapping */
    288      1.40   thorpej 
    289      1.65      fvdl /*
    290      1.65      fvdl  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    291      1.65      fvdl  * Used to avoid false sharing of cache lines.
    292      1.65      fvdl  */
    293  1.90.2.1      yamt #define NPTECL		8
    294      1.65      fvdl 
    295      1.40   thorpej #ifdef _KERNEL
    296      1.40   thorpej /*
    297      1.40   thorpej  * pmap data structures: see pmap.c for details of locking.
    298      1.40   thorpej  */
    299      1.40   thorpej 
    300      1.40   thorpej struct pmap;
    301      1.40   thorpej typedef struct pmap *pmap_t;
    302      1.40   thorpej 
    303      1.40   thorpej /*
    304      1.40   thorpej  * we maintain a list of all non-kernel pmaps
    305      1.40   thorpej  */
    306      1.40   thorpej 
    307      1.40   thorpej LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    308      1.40   thorpej 
    309      1.40   thorpej /*
    310      1.40   thorpej  * the pmap structure
    311      1.40   thorpej  *
    312      1.40   thorpej  * note that the pm_obj contains the simple_lock, the reference count,
    313      1.40   thorpej  * page list, and number of PTPs within the pmap.
    314      1.65      fvdl  *
    315      1.65      fvdl  * XXX If we ever support processor numbers higher than 31, we'll have
    316      1.65      fvdl  * XXX to rethink the CPU mask.
    317      1.40   thorpej  */
    318      1.40   thorpej 
    319      1.40   thorpej struct pmap {
    320  1.90.2.1      yamt 	struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
    321  1.90.2.1      yamt #define	pm_lock	pm_obj[0].vmobjlock
    322  1.90.2.1      yamt #define pm_obj_l1 pm_obj[0]
    323  1.90.2.1      yamt #define pm_obj_l2 pm_obj[1]
    324  1.90.2.1      yamt #define pm_obj_l3 pm_obj[2]
    325      1.41       chs 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    326      1.41       chs 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    327  1.90.2.1      yamt 	paddr_t pm_pdirpa;		/* PA of PD (read-only after create) */
    328  1.90.2.1      yamt 	struct vm_page *pm_ptphint[PTP_LEVELS-1];
    329  1.90.2.1      yamt 					/* pointer to a PTP in our pmap */
    330      1.41       chs 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    331      1.41       chs 
    332      1.75       chs 	vaddr_t pm_hiexec;		/* highest executable mapping */
    333      1.41       chs 	int pm_flags;			/* see below */
    334      1.41       chs 
    335      1.41       chs 	union descriptor *pm_ldt;	/* user-set LDT */
    336      1.41       chs 	int pm_ldt_len;			/* number of LDT entries */
    337      1.41       chs 	int pm_ldt_sel;			/* LDT selector */
    338      1.85     perry 	uint32_t pm_cpus;		/* mask of CPUs using pmap */
    339      1.90        ad 	uint32_t pm_kernel_cpus;	/* mask of CPUs using kernel part
    340      1.90        ad 					 of pmap */
    341      1.40   thorpej };
    342       1.1       cgd 
    343      1.39   thorpej /* pm_flags */
    344      1.39   thorpej #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    345      1.39   thorpej 
    346       1.1       cgd /*
    347      1.40   thorpej  * for each managed physical page we maintain a list of <PMAP,VA>'s
    348      1.41       chs  * which it is mapped at.  the list is headed by a pv_head structure.
    349      1.40   thorpej  * there is one pv_head per managed phys page (allocated at boot time).
    350      1.40   thorpej  * the pv_head structure points to a list of pv_entry structures (each
    351      1.40   thorpej  * describes one mapping).
    352       1.1       cgd  */
    353      1.40   thorpej 
    354      1.41       chs struct pv_entry {			/* locked by its list's pvh_lock */
    355      1.77       chs 	SPLAY_ENTRY(pv_entry) pv_node;	/* splay-tree node */
    356      1.41       chs 	struct pmap *pv_pmap;		/* the pmap */
    357      1.41       chs 	vaddr_t pv_va;			/* the virtual address */
    358      1.41       chs 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    359      1.90        ad 	struct pmap_cpu *pv_alloc_cpu;	/* CPU allocated from */
    360      1.11   mycroft };
    361      1.11   mycroft 
    362      1.40   thorpej /*
    363      1.40   thorpej  * pv_entrys are dynamically allocated in chunks from a single page.
    364      1.40   thorpej  * we keep track of how many pv_entrys are in use for each page and
    365      1.41       chs  * we can free pv_entry pages if needed.  there is one lock for the
    366      1.40   thorpej  * entire allocation system.
    367      1.40   thorpej  */
    368      1.11   mycroft 
    369      1.11   mycroft struct pv_page_info {
    370      1.41       chs 	TAILQ_ENTRY(pv_page) pvpi_list;
    371      1.41       chs 	struct pv_entry *pvpi_pvfree;
    372      1.41       chs 	int pvpi_nfree;
    373      1.11   mycroft };
    374       1.1       cgd 
    375      1.11   mycroft /*
    376      1.40   thorpej  * number of pv_entry's in a pv_page
    377      1.40   thorpej  * (note: won't work on systems where NPBG isn't a constant)
    378      1.40   thorpej  */
    379      1.40   thorpej 
    380      1.71   thorpej #define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
    381      1.41       chs 			sizeof(struct pv_entry))
    382      1.40   thorpej 
    383      1.40   thorpej /*
    384      1.40   thorpej  * a pv_page: where pv_entrys are allocated from
    385      1.11   mycroft  */
    386       1.1       cgd 
    387      1.11   mycroft struct pv_page {
    388      1.41       chs 	struct pv_page_info pvinfo;
    389      1.41       chs 	struct pv_entry pvents[PVE_PER_PVPAGE];
    390      1.40   thorpej };
    391      1.40   thorpej 
    392      1.40   thorpej /*
    393      1.40   thorpej  * global kernel variables
    394      1.40   thorpej  */
    395      1.40   thorpej 
    396      1.82  junyoung /* PDPpaddr: is the physical address of the kernel's PDP */
    397      1.82  junyoung extern u_long PDPpaddr;
    398      1.40   thorpej 
    399      1.40   thorpej extern struct pmap kernel_pmap_store;	/* kernel pmap */
    400      1.40   thorpej extern int nkpde;			/* current # of PDEs for kernel */
    401      1.40   thorpej extern int pmap_pg_g;			/* do we support PG_G? */
    402  1.90.2.2      yamt extern long nkptp[PTP_LEVELS];
    403      1.40   thorpej 
    404      1.40   thorpej /*
    405      1.40   thorpej  * macros
    406      1.40   thorpej  */
    407       1.1       cgd 
    408      1.18   mycroft #define	pmap_kernel()			(&kernel_pmap_store)
    409       1.1       cgd #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    410      1.50        is #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    411      1.11   mycroft 
    412      1.65      fvdl #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
    413      1.65      fvdl #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
    414      1.65      fvdl #define pmap_copy(DP,SP,D,L,S)
    415      1.40   thorpej #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
    416      1.40   thorpej #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
    417      1.65      fvdl #define pmap_move(DP,SP,D,L,S)
    418      1.69      fvdl #define pmap_phys_address(ppn)		x86_ptob(ppn)
    419      1.40   thorpej #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    420      1.40   thorpej 
    421      1.40   thorpej 
    422      1.40   thorpej /*
    423      1.40   thorpej  * prototypes
    424      1.40   thorpej  */
    425      1.40   thorpej 
    426      1.78  junyoung void		pmap_activate(struct lwp *);
    427      1.78  junyoung void		pmap_bootstrap(vaddr_t);
    428  1.90.2.1      yamt bool		pmap_clear_attrs(struct vm_page *, unsigned);
    429      1.78  junyoung void		pmap_deactivate(struct lwp *);
    430      1.78  junyoung void		pmap_page_remove (struct vm_page *);
    431      1.78  junyoung void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
    432  1.90.2.1      yamt bool		pmap_test_attrs(struct vm_page *, unsigned);
    433      1.78  junyoung void		pmap_write_protect(struct pmap *, vaddr_t, vaddr_t, vm_prot_t);
    434      1.75       chs int		pmap_exec_fixup(struct vm_map *, struct trapframe *,
    435      1.75       chs 		    struct pcb *);
    436      1.79      yamt void		pmap_load(void);
    437      1.40   thorpej 
    438      1.78  junyoung vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
    439      1.40   thorpej 
    440      1.90        ad void	pmap_tlb_shootdown(pmap_t, vaddr_t, vaddr_t, pt_entry_t);
    441      1.90        ad void	pmap_tlb_shootwait(void);
    442      1.65      fvdl 
    443      1.40   thorpej #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    444      1.44   thorpej 
    445      1.44   thorpej /*
    446      1.44   thorpej  * Do idle page zero'ing uncached to avoid polluting the cache.
    447      1.44   thorpej  */
    448      1.89   thorpej bool	pmap_pageidlezero(paddr_t);
    449      1.56   thorpej #define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
    450      1.40   thorpej 
    451      1.40   thorpej /*
    452      1.40   thorpej  * inline functions
    453      1.40   thorpej  */
    454      1.63       chs 
    455      1.66     perry /*ARGSUSED*/
    456      1.86     perry static __inline void
    457      1.88  christos pmap_remove_all(struct pmap *pmap)
    458      1.63       chs {
    459      1.63       chs 	/* Nothing. */
    460      1.63       chs }
    461      1.40   thorpej 
    462      1.40   thorpej /*
    463      1.40   thorpej  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
    464      1.40   thorpej  *	if hardware doesn't support one-page flushing)
    465      1.40   thorpej  */
    466      1.40   thorpej 
    467      1.86     perry __inline static void __attribute__((__unused__))
    468      1.62   thorpej pmap_update_pg(vaddr_t va)
    469      1.11   mycroft {
    470      1.40   thorpej #if defined(I386_CPU)
    471      1.41       chs 	if (cpu_class == CPUCLASS_386)
    472      1.52   thorpej 		tlbflush();
    473      1.41       chs 	else
    474      1.40   thorpej #endif
    475      1.41       chs 		invlpg((u_int) va);
    476      1.11   mycroft }
    477      1.11   mycroft 
    478      1.40   thorpej /*
    479      1.40   thorpej  * pmap_update_2pg: flush two pages from the TLB
    480      1.40   thorpej  */
    481      1.40   thorpej 
    482      1.86     perry __inline static void __attribute__((__unused__))
    483      1.62   thorpej pmap_update_2pg(vaddr_t va, vaddr_t vb)
    484      1.11   mycroft {
    485      1.40   thorpej #if defined(I386_CPU)
    486      1.41       chs 	if (cpu_class == CPUCLASS_386)
    487      1.52   thorpej 		tlbflush();
    488      1.41       chs 	else
    489      1.40   thorpej #endif
    490      1.41       chs 	{
    491      1.41       chs 		invlpg((u_int) va);
    492      1.41       chs 		invlpg((u_int) vb);
    493      1.41       chs 	}
    494      1.11   mycroft }
    495      1.11   mycroft 
    496      1.40   thorpej /*
    497      1.40   thorpej  * pmap_page_protect: change the protection of all recorded mappings
    498      1.40   thorpej  *	of a managed page
    499      1.40   thorpej  *
    500      1.65      fvdl  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
    501      1.40   thorpej  * => we only have to worry about making the page more protected.
    502      1.40   thorpej  *	unprotecting a page is done on-demand at fault time.
    503      1.40   thorpej  */
    504      1.40   thorpej 
    505      1.86     perry __inline static void __attribute__((__unused__))
    506      1.62   thorpej pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
    507      1.11   mycroft {
    508      1.41       chs 	if ((prot & VM_PROT_WRITE) == 0) {
    509      1.41       chs 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    510      1.65      fvdl 			(void) pmap_clear_attrs(pg, PG_RW);
    511      1.41       chs 		} else {
    512      1.41       chs 			pmap_page_remove(pg);
    513      1.41       chs 		}
    514      1.41       chs 	}
    515      1.11   mycroft }
    516      1.11   mycroft 
    517      1.40   thorpej /*
    518      1.40   thorpej  * pmap_protect: change the protection of pages in a pmap
    519      1.40   thorpej  *
    520      1.40   thorpej  * => this function is a frontend for pmap_remove/pmap_write_protect
    521      1.40   thorpej  * => we only have to worry about making the page more protected.
    522      1.40   thorpej  *	unprotecting a page is done on-demand at fault time.
    523      1.40   thorpej  */
    524      1.40   thorpej 
    525      1.86     perry __inline static void __attribute__((__unused__))
    526      1.62   thorpej pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
    527      1.11   mycroft {
    528      1.41       chs 	if ((prot & VM_PROT_WRITE) == 0) {
    529      1.41       chs 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    530      1.41       chs 			pmap_write_protect(pmap, sva, eva, prot);
    531      1.41       chs 		} else {
    532      1.41       chs 			pmap_remove(pmap, sva, eva);
    533      1.41       chs 		}
    534      1.41       chs 	}
    535      1.47   thorpej }
    536      1.47   thorpej 
    537      1.47   thorpej /*
    538      1.47   thorpej  * various address inlines
    539      1.47   thorpej  *
    540      1.47   thorpej  *  vtopte: return a pointer to the PTE mapping a VA, works only for
    541      1.47   thorpej  *  user and PT addresses
    542      1.47   thorpej  *
    543      1.47   thorpej  *  kvtopte: return a pointer to the PTE mapping a kernel VA
    544      1.47   thorpej  */
    545      1.47   thorpej 
    546      1.47   thorpej #include <lib/libkern/libkern.h>
    547      1.47   thorpej 
    548      1.86     perry static __inline pt_entry_t * __attribute__((__unused__))
    549      1.47   thorpej vtopte(vaddr_t va)
    550      1.47   thorpej {
    551      1.47   thorpej 
    552  1.90.2.1      yamt 	KASSERT(va < (L2_SLOT_KERN * NBPD_L2));
    553      1.47   thorpej 
    554  1.90.2.1      yamt 	return (PTE_BASE + pl1_i(va));
    555      1.47   thorpej }
    556      1.47   thorpej 
    557      1.86     perry static __inline pt_entry_t * __attribute__((__unused__))
    558      1.47   thorpej kvtopte(vaddr_t va)
    559      1.47   thorpej {
    560  1.90.2.3      yamt 	pd_entry_t *pde;
    561      1.47   thorpej 
    562  1.90.2.1      yamt 	KASSERT(va >= (L2_SLOT_KERN * NBPD_L2));
    563      1.48   thorpej 
    564      1.48   thorpej 
    565  1.90.2.3      yamt 	pde = L2_BASE + pl2_i(va);
    566  1.90.2.3      yamt 	if (*pde & PG_PS)
    567  1.90.2.3      yamt 		return ((pt_entry_t *)pde);
    568      1.47   thorpej 
    569  1.90.2.1      yamt 	return (PTE_BASE + pl1_i(va));
    570      1.41       chs }
    571      1.70      fvdl 
    572      1.90        ad #define pmap_pte_set(p, n)		x86_atomic_testset_ul(p, n)
    573      1.90        ad #define pmap_pte_setbits(p, b)		x86_atomic_setbits_l(p, b)
    574      1.90        ad #define pmap_pte_clearbits(p, b)	x86_atomic_clearbits_l(p, b)
    575      1.70      fvdl #define pmap_cpu_has_pg_n()		(cpu_class != CPUCLASS_386)
    576      1.70      fvdl #define pmap_cpu_has_invlpg()		(cpu_class != CPUCLASS_386)
    577      1.35       cgd 
    578      1.78  junyoung paddr_t vtophys(vaddr_t);
    579      1.78  junyoung vaddr_t	pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
    580      1.78  junyoung void	pmap_ldt_cleanup(struct lwp *);
    581      1.90        ad void	pmap_cpu_init_early(struct cpu_info *);
    582      1.90        ad void	pmap_cpu_init_late(struct cpu_info *);
    583      1.90        ad void	sse2_zero_page(void *);
    584      1.90        ad void	sse2_copy_page(void *, void *);
    585      1.73   thorpej 
    586      1.83  junyoung /*
    587      1.73   thorpej  * Hooks for the pool allocator.
    588      1.73   thorpej  */
    589      1.73   thorpej #define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
    590       1.1       cgd 
    591      1.90        ad /*
    592      1.90        ad  * TLB shootdown mailbox.
    593      1.90        ad  */
    594      1.90        ad 
    595      1.90        ad struct pmap_mbox {
    596      1.90        ad 	volatile void		*mb_pointer;
    597      1.90        ad 	volatile uintptr_t	mb_addr1;
    598      1.90        ad 	volatile uintptr_t	mb_addr2;
    599      1.90        ad 	volatile uintptr_t	mb_head;
    600      1.90        ad 	volatile uintptr_t	mb_tail;
    601      1.90        ad 	volatile uintptr_t	mb_global;
    602      1.90        ad };
    603      1.90        ad 
    604      1.40   thorpej #endif /* _KERNEL */
    605      1.40   thorpej #endif	/* _I386_PMAP_H_ */
    606