Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.102.16.1
      1 /*	$NetBSD: pmap.h,v 1.102.16.1 2008/12/13 01:13:14 haad Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgment:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 2001 Wasabi Systems, Inc.
     37  * All rights reserved.
     38  *
     39  * Written by Frank van der Linden for Wasabi Systems, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. All advertising materials mentioning features or use of this software
     50  *    must display the following acknowledgement:
     51  *      This product includes software developed for the NetBSD Project by
     52  *      Wasabi Systems, Inc.
     53  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     54  *    or promote products derived from this software without specific prior
     55  *    written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     60  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67  * POSSIBILITY OF SUCH DAMAGE.
     68  */
     69 
     70 #ifndef	_I386_PMAP_H_
     71 #define	_I386_PMAP_H_
     72 
     73 #if defined(_KERNEL_OPT)
     74 #include "opt_user_ldt.h"
     75 #include "opt_xen.h"
     76 #endif
     77 
     78 #include <sys/atomic.h>
     79 
     80 #include <i386/pte.h>
     81 #include <machine/segments.h>
     82 #if defined(_KERNEL)
     83 #include <machine/cpufunc.h>
     84 #endif
     85 
     86 #include <uvm/uvm_object.h>
     87 #ifdef XEN
     88 #include <xen/xenfunc.h>
     89 #include <xen/xenpmap.h>
     90 #endif /* XEN */
     91 
     92 /*
     93  * see pte.h for a description of i386 MMU terminology and hardware
     94  * interface.
     95  *
     96  * a pmap describes a processes' 4GB virtual address space.  when PAE
     97  * is not in use, this virtual address space can be broken up into 1024 4MB
     98  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     99  * follows:
    100  *
    101  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
    102  * (the following assumes that KERNBASE is 0xc0000000)
    103  *
    104  * PDE#s	VA range		usage
    105  * 0->766	0x0 -> 0xbfc00000	user address space
    106  * 767		0xbfc00000->		recursive mapping of PDP (used for
    107  *			0xc0000000	linear mapping of PTPs)
    108  * 768->1023	0xc0000000->		kernel address space (constant
    109  *			0xffc00000	across all pmap's/processes)
    110  * 1023		0xffc00000->		"alternate" recursive PDP mapping
    111  *			<end>		(for other pmaps)
    112  *
    113  *
    114  * note: a recursive PDP mapping provides a way to map all the PTEs for
    115  * a 4GB address space into a linear chunk of virtual memory.  in other
    116  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    117  * area.  the PTE for page 1 is the second int.  the very last int in the
    118  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    119  * address).
    120  *
    121  * all pmap's PD's must have the same values in slots 768->1023 so that
    122  * the kernel is always mapped in every process.  these values are loaded
    123  * into the PD at pmap creation time.
    124  *
    125  * at any one time only one pmap can be active on a processor.  this is
    126  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    127  * will have all its PTEs mapped into memory at the recursive mapping
    128  * point (slot #767 as show above).  when the pmap code wants to find the
    129  * PTE for a virtual address, all it has to do is the following:
    130  *
    131  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    132  *                = 0xbfc00000 + (VA / 4096) * 4
    133  *
    134  * what happens if the pmap layer is asked to perform an operation
    135  * on a pmap that is not the one which is currently active?  in that
    136  * case we take the PA of the PDP of non-active pmap and put it in
    137  * slot 1023 of the active pmap.  this causes the non-active pmap's
    138  * PTEs to get mapped in the final 4MB of the 4GB address space
    139  * (e.g. starting at 0xffc00000).
    140  *
    141  * the following figure shows the effects of the recursive PDP mapping:
    142  *
    143  *   PDP (%cr3)
    144  *   +----+
    145  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    146  *   |    |
    147  *   |    |
    148  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    149  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    150  *   |    |
    151  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    152  *   +----+
    153  *
    154  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    155  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    156  *
    157  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    158  * PTP:
    159  *
    160  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    161  *   +----+
    162  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    163  *   |    |
    164  *   |    |
    165  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    166  *   | 768| -> maps contents of first kernel PTP
    167  *   |    |
    168  *   |1023|
    169  *   +----+
    170  *
    171  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    172  * defined as "PDP_BASE".... within that mapping there are two
    173  * defines:
    174  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    175  *      which points back to itself.
    176  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    177  *      establishes the recursive mapping of the alternate pmap.
    178  *      to set the alternate PDP, one just has to put the correct
    179  *	PA info in *APDP_PDE.
    180  *
    181  * note that in the APTE_BASE space, the APDP appears at VA
    182  * "APDP_BASE" (0xfffff000).
    183  *
    184  * When PAE is in use, the L3 page directory breaks up the address space in
    185  * 4 1GB * regions, each of them broken in 512 2MB regions by the L2 PD
    186  * (the size of the pages at the L1 level is still 4K).
    187  * The kernel virtual space is mapped by the last entry in the L3 page,
    188  * the first 3 entries mapping the user VA space.
    189  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    190  * mappings at this level for PDP_PDE and APDP_PDE (this would eat 2 of the
    191  * 4GB virtual space). There's also restrictions imposed by Xen on the
    192  * last entry of the L3 PD, which makes it hard to use one L3 page per pmap
    193  * switch %cr3 to switch pmaps. So we use one static L3 page which is
    194  * always loaded in %cr3, and we use it as 2 virtual PD pointers: one for
    195  * kenrel space (L3[3], always loaded), and one for user space (in fact the
    196  * first 3 entries of the L3 PD), and we claim the VM has only a 2-level
    197  * PTP (with the L2 index extended by 2 bytes).
    198  * PTE_BASE and APTE_BASE will need 4 entries in the L2 page table.
    199  * In addition, we can't recursively map L3[3] (Xen wants the ref count on
    200  * this page to be exactly once), so we use a shadow PD page for the last
    201  * L2 PD. The shadow page could be static too, but to make pm_pdir[]
    202  * contigous we'll allocate/copy one page per pmap.
    203  */
    204 /* XXX MP should we allocate one APDP_PDE per processor?? */
    205 
    206 /*
    207  * Mask to get rid of the sign-extended part of addresses.
    208  */
    209 #define VA_SIGN_MASK		0
    210 #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    211 /*
    212  * XXXfvdl this one's not right.
    213  */
    214 #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    215 
    216 /*
    217  * the following defines identify the slots used as described above.
    218  */
    219 #ifdef PAE
    220 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
    221 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
    222 #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    223 #define L2_SLOT_APTE	1960                 /* 1964-2047 reserved by Xen */
    224 #else /* PAE */
    225 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
    226 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 768: start of kernel space */
    227 #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    228 #ifndef XEN
    229 #define L2_SLOT_APTE	1023		 /* 1023: alternative recursive slot */
    230 #else
    231 #define L2_SLOT_APTE	1007		/* 1008-1023 reserved by Xen */
    232 #endif
    233 #endif /* PAE */
    234 
    235 
    236 #define PDIR_SLOT_KERN	L2_SLOT_KERN
    237 #define PDIR_SLOT_PTE	L2_SLOT_PTE
    238 #define PDIR_SLOT_APTE	L2_SLOT_APTE
    239 
    240 /*
    241  * the following defines give the virtual addresses of various MMU
    242  * data structures:
    243  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    244  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    245  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    246  */
    247 
    248 #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    249 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
    250 
    251 #define L1_BASE		PTE_BASE
    252 #define AL1_BASE	APTE_BASE
    253 
    254 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    255 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
    256 
    257 #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    258 #ifdef PAE
    259 /*
    260  * when PAE is in use we can't write APDP_PDE though the recursive mapping,
    261  * because it points to the shadow PD. Use the kernel PD instead, which is
    262  * static
    263  */
    264 #define APDP_PDE	(&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
    265 #define APDP_PDE_SHADOW	(L2_BASE + PDIR_SLOT_APTE)
    266 #else /* PAE */
    267 #define APDP_PDE	(L2_BASE + PDIR_SLOT_APTE)
    268 #endif /* PAE */
    269 
    270 #define PDP_BASE	L2_BASE
    271 #define APDP_BASE	AL2_BASE
    272 
    273 /* largest value (-1 for APTP space) */
    274 #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    275 #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    276 
    277 #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    278 
    279 #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    280 #define NKL1_START_ENTRIES	0	/* XXX unused */
    281 
    282 #ifdef PAE
    283 #define NTOPLEVEL_PDES		(PAGE_SIZE * 4 / (sizeof (pd_entry_t)))
    284 #else
    285 #define NTOPLEVEL_PDES		(PAGE_SIZE / (sizeof (pd_entry_t)))
    286 #endif
    287 
    288 #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    289 
    290 #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    291 #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    292 #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    293 #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    294 #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    295 #define PDES_INITIALIZER	{ L2_BASE }
    296 #define APDES_INITIALIZER	{ AL2_BASE }
    297 
    298 #define PTP_LEVELS	2
    299 
    300 /*
    301  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    302  */
    303 
    304 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    305 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    306 #define PG_X		PG_AVAIL3	/* executable mapping */
    307 
    308 /*
    309  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    310  * Used to avoid false sharing of cache lines.
    311  */
    312 #ifdef PAE
    313 #define NPTECL		4
    314 #else
    315 #define NPTECL		8
    316 #endif
    317 
    318 #include <x86/pmap.h>
    319 
    320 #ifndef XEN
    321 #define pmap_pa2pte(a)			(a)
    322 #define pmap_pte2pa(a)			((a) & PG_FRAME)
    323 #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    324 #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    325 #define pmap_pte_testset(p, n)		\
    326     atomic_swap_ulong((volatile unsigned long *)p, n)
    327 #define pmap_pte_setbits(p, b)		\
    328     atomic_or_ulong((volatile unsigned long *)p, b)
    329 #define pmap_pte_clearbits(p, b)	\
    330     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    331 #define pmap_pte_flush()		/* nothing */
    332 #else
    333 static __inline pt_entry_t
    334 pmap_pa2pte(paddr_t pa)
    335 {
    336 	return (pt_entry_t)xpmap_ptom_masked(pa);
    337 }
    338 
    339 static __inline paddr_t
    340 pmap_pte2pa(pt_entry_t pte)
    341 {
    342 	return xpmap_mtop_masked(pte & PG_FRAME);
    343 }
    344 static __inline void
    345 pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    346 {
    347 	int s = splvm();
    348 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    349 	splx(s);
    350 }
    351 
    352 static __inline pt_entry_t
    353 pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    354 {
    355 	int s = splvm();
    356 	pt_entry_t opte = *ptep;
    357 
    358 	if (opte == o) {
    359 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    360 		xpq_flush_queue();
    361 	}
    362 	splx(s);
    363 	return opte;
    364 }
    365 
    366 static __inline pt_entry_t
    367 pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    368 {
    369 	int s = splvm();
    370 	pt_entry_t opte = *pte;
    371 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    372 	    npte);
    373 	xpq_flush_queue();
    374 	splx(s);
    375 	return opte;
    376 }
    377 
    378 static __inline void
    379 pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    380 {
    381 	int s = splvm();
    382 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    383 	xpq_flush_queue();
    384 	splx(s);
    385 }
    386 
    387 static __inline void
    388 pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    389 {
    390 	int s = splvm();
    391 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    392 	    (*pte) & ~bits);
    393 	xpq_flush_queue();
    394 	splx(s);
    395 }
    396 
    397 static __inline void
    398 pmap_pte_flush(void)
    399 {
    400 	int s = splvm();
    401 	xpq_flush_queue();
    402 	splx(s);
    403 }
    404 
    405 #endif
    406 
    407 #ifdef PAE
    408 /* addresses of static pages used for PAE pmap: */
    409 /* the L3 page */
    410 pd_entry_t *pmap_l3pd;
    411 paddr_t pmap_l3paddr;
    412 /* the kernel's L2 page */
    413 pd_entry_t *pmap_kl2pd;
    414 paddr_t pmap_kl2paddr;
    415 #endif
    416 
    417 
    418 struct trapframe;
    419 
    420 int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    421 void	pmap_ldt_cleanup(struct lwp *);
    422 
    423 #endif	/* _I386_PMAP_H_ */
    424