pmap.h revision 1.103.14.2 1 /* $NetBSD: pmap.h,v 1.103.14.2 2010/08/17 06:44:38 uebayasi Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgment:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 2001 Wasabi Systems, Inc.
37 * All rights reserved.
38 *
39 * Written by Frank van der Linden for Wasabi Systems, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed for the NetBSD Project by
52 * Wasabi Systems, Inc.
53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 * or promote products derived from this software without specific prior
55 * written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 * POSSIBILITY OF SUCH DAMAGE.
68 */
69
70 #ifndef _I386_PMAP_H_
71 #define _I386_PMAP_H_
72
73 #if defined(_KERNEL_OPT)
74 #include "opt_user_ldt.h"
75 #include "opt_xen.h"
76 #endif
77
78 #include <sys/atomic.h>
79
80 #include <i386/pte.h>
81 #include <machine/segments.h>
82 #if defined(_KERNEL)
83 #include <machine/cpufunc.h>
84 #endif
85
86 #include <uvm/uvm_object.h>
87 #ifdef XEN
88 #include <xen/xenfunc.h>
89 #include <xen/xenpmap.h>
90 #endif /* XEN */
91
92 /*
93 * see pte.h for a description of i386 MMU terminology and hardware
94 * interface.
95 *
96 * a pmap describes a processes' 4GB virtual address space. when PAE
97 * is not in use, this virtual address space can be broken up into 1024 4MB
98 * regions which are described by PDEs in the PDP. the PDEs are defined as
99 * follows:
100 *
101 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
102 * (the following assumes that KERNBASE is 0xc0000000)
103 *
104 * PDE#s VA range usage
105 * 0->766 0x0 -> 0xbfc00000 user address space
106 * 767 0xbfc00000-> recursive mapping of PDP (used for
107 * 0xc0000000 linear mapping of PTPs)
108 * 768->1023 0xc0000000-> kernel address space (constant
109 * 0xffc00000 across all pmap's/processes)
110 * 1023 0xffc00000-> "alternate" recursive PDP mapping
111 * <end> (for other pmaps)
112 *
113 *
114 * note: a recursive PDP mapping provides a way to map all the PTEs for
115 * a 4GB address space into a linear chunk of virtual memory. in other
116 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
117 * area. the PTE for page 1 is the second int. the very last int in the
118 * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
119 * address).
120 *
121 * all pmap's PD's must have the same values in slots 768->1023 so that
122 * the kernel is always mapped in every process. these values are loaded
123 * into the PD at pmap creation time.
124 *
125 * at any one time only one pmap can be active on a processor. this is
126 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
127 * will have all its PTEs mapped into memory at the recursive mapping
128 * point (slot #767 as show above). when the pmap code wants to find the
129 * PTE for a virtual address, all it has to do is the following:
130 *
131 * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
132 * = 0xbfc00000 + (VA / 4096) * 4
133 *
134 * what happens if the pmap layer is asked to perform an operation
135 * on a pmap that is not the one which is currently active? in that
136 * case we take the PA of the PDP of non-active pmap and put it in
137 * slot 1023 of the active pmap. this causes the non-active pmap's
138 * PTEs to get mapped in the final 4MB of the 4GB address space
139 * (e.g. starting at 0xffc00000).
140 *
141 * the following figure shows the effects of the recursive PDP mapping:
142 *
143 * PDP (%cr3)
144 * +----+
145 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
146 * | |
147 * | |
148 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
149 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
150 * | |
151 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
152 * +----+
153 *
154 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
155 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
156 *
157 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
158 * PTP:
159 *
160 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
161 * +----+
162 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
163 * | |
164 * | |
165 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
166 * | 768| -> maps contents of first kernel PTP
167 * | |
168 * |1023|
169 * +----+
170 *
171 * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
172 * defined as "PDP_BASE".... within that mapping there are two
173 * defines:
174 * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
175 * which points back to itself.
176 * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
177 * establishes the recursive mapping of the alternate pmap.
178 * to set the alternate PDP, one just has to put the correct
179 * PA info in *APDP_PDE.
180 *
181 * note that in the APTE_BASE space, the APDP appears at VA
182 * "APDP_BASE" (0xfffff000).
183 *
184 * - PAE support -
185 * ---------------
186 *
187 * PAE adds another layer of indirection during address translation, breaking
188 * up the translation process in 3 different levels:
189 * - L3 page directory, containing 4 * 64-bits addresses (index determined by
190 * bits [31:30] from the virtual address). This breaks up the address space
191 * in 4 1GB regions.
192 * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
193 * in 512 * 2MB regions.
194 * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
195 * the pages is still 4K).
196 *
197 * The kernel virtual space is mapped by the last entry in the L3 page,
198 * the first 3 entries mapping the user VA space.
199 *
200 * Because the L3 has only 4 entries of 1GB each, we can't use recursive
201 * mappings at this level for PDP_PDE and APDP_PDE (this would eat up 2 of
202 * the 4GB virtual space). There are also restrictions imposed by Xen on the
203 * last entry of the L3 PD (reference count to this page cannot be bigger
204 * than 1), which makes it hard to use one L3 page per pmap to switch
205 * between pmaps using %cr3.
206 *
207 * As such, each CPU gets its own L3 page that is always loaded into its %cr3
208 * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
209 * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
210 * pages long (corresponding to the 4 entries of the L3), and the different
211 * index/slots (like PDP_PDE) are adapted accordingly.
212 *
213 * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
214 * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
215 *
216 * PTE_BASE and APTE_BASE will need 4 entries in the L2 PD pages to map the
217 * L2 pages recursively.
218 *
219 * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
220 * count on this page to be exactly one), so we use a shadow PD page for
221 * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
222 * contiguous we'll allocate/copy one page per pmap.
223 */
224 /* XXX MP should we allocate one APDP_PDE per processor?? */
225
226 /*
227 * Mask to get rid of the sign-extended part of addresses.
228 */
229 #define VA_SIGN_MASK 0
230 #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
231 /*
232 * XXXfvdl this one's not right.
233 */
234 #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
235
236 /*
237 * the following defines identify the slots used as described above.
238 */
239 #ifdef PAE
240 #define L2_SLOT_PTE (KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
241 #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 1536: start of kernel space */
242 #ifndef XEN
243 #define L2_SLOT_APTE 2044 /* 2044: alternative recursive slot */
244 #else
245 #define L2_SLOT_APTE 1960 /* 1964-2047 reserved by Xen */
246 #endif
247 #else /* PAE */
248 #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
249 #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */
250 #ifndef XEN
251 #define L2_SLOT_APTE 1023 /* 1023: alternative recursive slot */
252 #else
253 #define L2_SLOT_APTE 1007 /* 1008-1023 reserved by Xen */
254 #endif
255 #endif /* PAE */
256
257 #define L2_SLOT_KERNBASE L2_SLOT_KERN
258
259 #define PDIR_SLOT_KERN L2_SLOT_KERN
260 #define PDIR_SLOT_PTE L2_SLOT_PTE
261 #define PDIR_SLOT_APTE L2_SLOT_APTE
262
263 /*
264 * the following defines give the virtual addresses of various MMU
265 * data structures:
266 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
267 * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
268 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
269 */
270
271 #define PTE_BASE ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
272 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
273
274 #define L1_BASE PTE_BASE
275 #define AL1_BASE APTE_BASE
276
277 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
278 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
279
280 #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
281 #if defined(PAE) && defined(XEN)
282 /*
283 * when PAE is in use under Xen, we can't write APDP_PDE through the recursive
284 * mapping, because it points to the shadow PD. Use the kernel PD instead,
285 * which is static
286 */
287 #define APDP_PDE (&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
288 #define APDP_PDE_SHADOW (L2_BASE + PDIR_SLOT_APTE)
289 #else /* PAE && XEN */
290 #define APDP_PDE (L2_BASE + PDIR_SLOT_APTE)
291 #endif /* PAE && XEN */
292
293 #define PDP_BASE L2_BASE
294 #define APDP_BASE AL2_BASE
295
296 /* largest value (-1 for APTP space) */
297 #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
298 #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
299
300 #define NKL2_KIMG_ENTRIES 0 /* XXX unused */
301
302 #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */
303 #define NKL1_START_ENTRIES 0 /* XXX unused */
304
305 #define NTOPLEVEL_PDES (PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
306
307 #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
308
309 #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME }
310 #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
311 #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
312 #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
313 #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
314 #define PDES_INITIALIZER { L2_BASE }
315 #define APDES_INITIALIZER { AL2_BASE }
316
317 #define PTP_LEVELS 2
318
319 /*
320 * PG_AVAIL usage: we make use of the ignored bits of the PTE
321 */
322
323 #define PG_W PG_AVAIL1 /* "wired" mapping */
324 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
325 #define PG_X PG_AVAIL3 /* executable mapping */
326
327 /*
328 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
329 * Used to avoid false sharing of cache lines.
330 */
331 #ifdef PAE
332 #define NPTECL 4
333 #else
334 #define NPTECL 8
335 #endif
336
337 #include <x86/pmap.h>
338
339 #ifndef XEN
340 #define pmap_pa2pte(a) (a)
341 #define pmap_pte2pa(a) ((a) & PG_FRAME)
342 #define pmap_pte_set(p, n) do { *(p) = (n); } while (0)
343 #define pmap_pte_flush() /* nothing */
344
345 #ifdef PAE
346 #define pmap_pte_cas(p, o, n) atomic_cas_64((p), (o), (n))
347 #define pmap_pte_testset(p, n) \
348 atomic_swap_64((volatile uint64_t *)p, n)
349 #define pmap_pte_setbits(p, b) \
350 atomic_or_64((volatile uint64_t *)p, b)
351 #define pmap_pte_clearbits(p, b) \
352 atomic_and_64((volatile uint64_t *)p, ~(b))
353 #else /* PAE */
354 #define pmap_pte_cas(p, o, n) atomic_cas_32((p), (o), (n))
355 #define pmap_pte_testset(p, n) \
356 atomic_swap_ulong((volatile unsigned long *)p, n)
357 #define pmap_pte_setbits(p, b) \
358 atomic_or_ulong((volatile unsigned long *)p, b)
359 #define pmap_pte_clearbits(p, b) \
360 atomic_and_ulong((volatile unsigned long *)p, ~(b))
361 #endif /* PAE */
362
363 #else /* XEN */
364 static __inline pt_entry_t
365 pmap_pa2pte(paddr_t pa)
366 {
367 return (pt_entry_t)xpmap_ptom_masked(pa);
368 }
369
370 static __inline paddr_t
371 pmap_pte2pa(pt_entry_t pte)
372 {
373 return xpmap_mtop_masked(pte & PG_FRAME);
374 }
375 static __inline void
376 pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
377 {
378 int s = splvm();
379 xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
380 splx(s);
381 }
382
383 static __inline pt_entry_t
384 pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
385 {
386 int s = splvm();
387 pt_entry_t opte = *ptep;
388
389 if (opte == o) {
390 xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
391 xpq_flush_queue();
392 }
393 splx(s);
394 return opte;
395 }
396
397 static __inline pt_entry_t
398 pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
399 {
400 int s = splvm();
401 pt_entry_t opte = *pte;
402 xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
403 npte);
404 xpq_flush_queue();
405 splx(s);
406 return opte;
407 }
408
409 static __inline void
410 pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
411 {
412 int s = splvm();
413 xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
414 xpq_flush_queue();
415 splx(s);
416 }
417
418 static __inline void
419 pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
420 {
421 int s = splvm();
422 xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
423 (*pte) & ~bits);
424 xpq_flush_queue();
425 splx(s);
426 }
427
428 static __inline void
429 pmap_pte_flush(void)
430 {
431 int s = splvm();
432 xpq_flush_queue();
433 splx(s);
434 }
435
436 #endif
437
438 #ifdef PAE
439 /* Address of the static kernel's L2 page */
440 pd_entry_t *pmap_kl2pd;
441 paddr_t pmap_kl2paddr;
442 #endif
443
444
445 struct trapframe;
446
447 int pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
448 void pmap_ldt_cleanup(struct lwp *);
449
450 #endif /* _I386_PMAP_H_ */
451