Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.103.14.2
      1 /*	$NetBSD: pmap.h,v 1.103.14.2 2010/08/17 06:44:38 uebayasi Exp $	*/
      2 
      3 /*
      4  *
      5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgment:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 2001 Wasabi Systems, Inc.
     37  * All rights reserved.
     38  *
     39  * Written by Frank van der Linden for Wasabi Systems, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. All advertising materials mentioning features or use of this software
     50  *    must display the following acknowledgement:
     51  *      This product includes software developed for the NetBSD Project by
     52  *      Wasabi Systems, Inc.
     53  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     54  *    or promote products derived from this software without specific prior
     55  *    written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     60  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67  * POSSIBILITY OF SUCH DAMAGE.
     68  */
     69 
     70 #ifndef	_I386_PMAP_H_
     71 #define	_I386_PMAP_H_
     72 
     73 #if defined(_KERNEL_OPT)
     74 #include "opt_user_ldt.h"
     75 #include "opt_xen.h"
     76 #endif
     77 
     78 #include <sys/atomic.h>
     79 
     80 #include <i386/pte.h>
     81 #include <machine/segments.h>
     82 #if defined(_KERNEL)
     83 #include <machine/cpufunc.h>
     84 #endif
     85 
     86 #include <uvm/uvm_object.h>
     87 #ifdef XEN
     88 #include <xen/xenfunc.h>
     89 #include <xen/xenpmap.h>
     90 #endif /* XEN */
     91 
     92 /*
     93  * see pte.h for a description of i386 MMU terminology and hardware
     94  * interface.
     95  *
     96  * a pmap describes a processes' 4GB virtual address space.  when PAE
     97  * is not in use, this virtual address space can be broken up into 1024 4MB
     98  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     99  * follows:
    100  *
    101  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
    102  * (the following assumes that KERNBASE is 0xc0000000)
    103  *
    104  * PDE#s	VA range		usage
    105  * 0->766	0x0 -> 0xbfc00000	user address space
    106  * 767		0xbfc00000->		recursive mapping of PDP (used for
    107  *			0xc0000000	linear mapping of PTPs)
    108  * 768->1023	0xc0000000->		kernel address space (constant
    109  *			0xffc00000	across all pmap's/processes)
    110  * 1023		0xffc00000->		"alternate" recursive PDP mapping
    111  *			<end>		(for other pmaps)
    112  *
    113  *
    114  * note: a recursive PDP mapping provides a way to map all the PTEs for
    115  * a 4GB address space into a linear chunk of virtual memory.  in other
    116  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    117  * area.  the PTE for page 1 is the second int.  the very last int in the
    118  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    119  * address).
    120  *
    121  * all pmap's PD's must have the same values in slots 768->1023 so that
    122  * the kernel is always mapped in every process.  these values are loaded
    123  * into the PD at pmap creation time.
    124  *
    125  * at any one time only one pmap can be active on a processor.  this is
    126  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    127  * will have all its PTEs mapped into memory at the recursive mapping
    128  * point (slot #767 as show above).  when the pmap code wants to find the
    129  * PTE for a virtual address, all it has to do is the following:
    130  *
    131  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    132  *                = 0xbfc00000 + (VA / 4096) * 4
    133  *
    134  * what happens if the pmap layer is asked to perform an operation
    135  * on a pmap that is not the one which is currently active?  in that
    136  * case we take the PA of the PDP of non-active pmap and put it in
    137  * slot 1023 of the active pmap.  this causes the non-active pmap's
    138  * PTEs to get mapped in the final 4MB of the 4GB address space
    139  * (e.g. starting at 0xffc00000).
    140  *
    141  * the following figure shows the effects of the recursive PDP mapping:
    142  *
    143  *   PDP (%cr3)
    144  *   +----+
    145  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    146  *   |    |
    147  *   |    |
    148  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    149  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    150  *   |    |
    151  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    152  *   +----+
    153  *
    154  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    155  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    156  *
    157  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    158  * PTP:
    159  *
    160  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    161  *   +----+
    162  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    163  *   |    |
    164  *   |    |
    165  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    166  *   | 768| -> maps contents of first kernel PTP
    167  *   |    |
    168  *   |1023|
    169  *   +----+
    170  *
    171  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    172  * defined as "PDP_BASE".... within that mapping there are two
    173  * defines:
    174  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    175  *      which points back to itself.
    176  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    177  *      establishes the recursive mapping of the alternate pmap.
    178  *      to set the alternate PDP, one just has to put the correct
    179  *	PA info in *APDP_PDE.
    180  *
    181  * note that in the APTE_BASE space, the APDP appears at VA
    182  * "APDP_BASE" (0xfffff000).
    183  *
    184  * - PAE support -
    185  * ---------------
    186  *
    187  * PAE adds another layer of indirection during address translation, breaking
    188  * up the translation process in 3 different levels:
    189  * - L3 page directory, containing 4 * 64-bits addresses (index determined by
    190  * bits [31:30] from the virtual address). This breaks up the address space
    191  * in 4 1GB regions.
    192  * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
    193  * in 512 * 2MB regions.
    194  * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
    195  * the pages is still 4K).
    196  *
    197  * The kernel virtual space is mapped by the last entry in the L3 page,
    198  * the first 3 entries mapping the user VA space.
    199  *
    200  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    201  * mappings at this level for PDP_PDE and APDP_PDE (this would eat up 2 of
    202  * the 4GB virtual space). There are also restrictions imposed by Xen on the
    203  * last entry of the L3 PD (reference count to this page cannot be bigger
    204  * than 1), which makes it hard to use one L3 page per pmap to switch
    205  * between pmaps using %cr3.
    206  *
    207  * As such, each CPU gets its own L3 page that is always loaded into its %cr3
    208  * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
    209  * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
    210  * pages long (corresponding to the 4 entries of the L3), and the different
    211  * index/slots (like PDP_PDE) are adapted accordingly.
    212  *
    213  * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
    214  * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
    215  *
    216  * PTE_BASE and APTE_BASE will need 4 entries in the L2 PD pages to map the
    217  * L2 pages recursively.
    218  *
    219  * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
    220  * count on this page to be exactly one), so we use a shadow PD page for
    221  * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
    222  * contiguous we'll allocate/copy one page per pmap.
    223  */
    224 /* XXX MP should we allocate one APDP_PDE per processor?? */
    225 
    226 /*
    227  * Mask to get rid of the sign-extended part of addresses.
    228  */
    229 #define VA_SIGN_MASK		0
    230 #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    231 /*
    232  * XXXfvdl this one's not right.
    233  */
    234 #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    235 
    236 /*
    237  * the following defines identify the slots used as described above.
    238  */
    239 #ifdef PAE
    240 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
    241 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
    242 #ifndef XEN
    243 #define L2_SLOT_APTE	2044		/* 2044: alternative recursive slot */
    244 #else
    245 #define L2_SLOT_APTE	1960		/* 1964-2047 reserved by Xen */
    246 #endif
    247 #else /* PAE */
    248 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
    249 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 768: start of kernel space */
    250 #ifndef XEN
    251 #define L2_SLOT_APTE	1023		/* 1023: alternative recursive slot */
    252 #else
    253 #define L2_SLOT_APTE	1007		/* 1008-1023 reserved by Xen */
    254 #endif
    255 #endif /* PAE */
    256 
    257 #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    258 
    259 #define PDIR_SLOT_KERN	L2_SLOT_KERN
    260 #define PDIR_SLOT_PTE	L2_SLOT_PTE
    261 #define PDIR_SLOT_APTE	L2_SLOT_APTE
    262 
    263 /*
    264  * the following defines give the virtual addresses of various MMU
    265  * data structures:
    266  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    267  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    268  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    269  */
    270 
    271 #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    272 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
    273 
    274 #define L1_BASE		PTE_BASE
    275 #define AL1_BASE	APTE_BASE
    276 
    277 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    278 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
    279 
    280 #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    281 #if defined(PAE) && defined(XEN)
    282 /*
    283  * when PAE is in use under Xen, we can't write APDP_PDE through the recursive
    284  * mapping, because it points to the shadow PD. Use the kernel PD instead,
    285  * which is static
    286  */
    287 #define APDP_PDE	(&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
    288 #define APDP_PDE_SHADOW	(L2_BASE + PDIR_SLOT_APTE)
    289 #else /* PAE && XEN */
    290 #define APDP_PDE	(L2_BASE + PDIR_SLOT_APTE)
    291 #endif /* PAE && XEN */
    292 
    293 #define PDP_BASE	L2_BASE
    294 #define APDP_BASE	AL2_BASE
    295 
    296 /* largest value (-1 for APTP space) */
    297 #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    298 #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    299 
    300 #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    301 
    302 #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    303 #define NKL1_START_ENTRIES	0	/* XXX unused */
    304 
    305 #define NTOPLEVEL_PDES		(PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
    306 
    307 #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    308 
    309 #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    310 #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    311 #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    312 #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    313 #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    314 #define PDES_INITIALIZER	{ L2_BASE }
    315 #define APDES_INITIALIZER	{ AL2_BASE }
    316 
    317 #define PTP_LEVELS	2
    318 
    319 /*
    320  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    321  */
    322 
    323 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    324 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    325 #define PG_X		PG_AVAIL3	/* executable mapping */
    326 
    327 /*
    328  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    329  * Used to avoid false sharing of cache lines.
    330  */
    331 #ifdef PAE
    332 #define NPTECL		4
    333 #else
    334 #define NPTECL		8
    335 #endif
    336 
    337 #include <x86/pmap.h>
    338 
    339 #ifndef XEN
    340 #define pmap_pa2pte(a)			(a)
    341 #define pmap_pte2pa(a)			((a) & PG_FRAME)
    342 #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    343 #define pmap_pte_flush()		/* nothing */
    344 
    345 #ifdef PAE
    346 #define pmap_pte_cas(p, o, n)		atomic_cas_64((p), (o), (n))
    347 #define pmap_pte_testset(p, n)		\
    348     atomic_swap_64((volatile uint64_t *)p, n)
    349 #define pmap_pte_setbits(p, b)		\
    350     atomic_or_64((volatile uint64_t *)p, b)
    351 #define pmap_pte_clearbits(p, b)	\
    352     atomic_and_64((volatile uint64_t *)p, ~(b))
    353 #else /* PAE */
    354 #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    355 #define pmap_pte_testset(p, n)		\
    356     atomic_swap_ulong((volatile unsigned long *)p, n)
    357 #define pmap_pte_setbits(p, b)		\
    358     atomic_or_ulong((volatile unsigned long *)p, b)
    359 #define pmap_pte_clearbits(p, b)	\
    360     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    361 #endif /* PAE */
    362 
    363 #else /* XEN */
    364 static __inline pt_entry_t
    365 pmap_pa2pte(paddr_t pa)
    366 {
    367 	return (pt_entry_t)xpmap_ptom_masked(pa);
    368 }
    369 
    370 static __inline paddr_t
    371 pmap_pte2pa(pt_entry_t pte)
    372 {
    373 	return xpmap_mtop_masked(pte & PG_FRAME);
    374 }
    375 static __inline void
    376 pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    377 {
    378 	int s = splvm();
    379 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    380 	splx(s);
    381 }
    382 
    383 static __inline pt_entry_t
    384 pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    385 {
    386 	int s = splvm();
    387 	pt_entry_t opte = *ptep;
    388 
    389 	if (opte == o) {
    390 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    391 		xpq_flush_queue();
    392 	}
    393 	splx(s);
    394 	return opte;
    395 }
    396 
    397 static __inline pt_entry_t
    398 pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    399 {
    400 	int s = splvm();
    401 	pt_entry_t opte = *pte;
    402 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    403 	    npte);
    404 	xpq_flush_queue();
    405 	splx(s);
    406 	return opte;
    407 }
    408 
    409 static __inline void
    410 pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    411 {
    412 	int s = splvm();
    413 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    414 	xpq_flush_queue();
    415 	splx(s);
    416 }
    417 
    418 static __inline void
    419 pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    420 {
    421 	int s = splvm();
    422 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    423 	    (*pte) & ~bits);
    424 	xpq_flush_queue();
    425 	splx(s);
    426 }
    427 
    428 static __inline void
    429 pmap_pte_flush(void)
    430 {
    431 	int s = splvm();
    432 	xpq_flush_queue();
    433 	splx(s);
    434 }
    435 
    436 #endif
    437 
    438 #ifdef PAE
    439 /* Address of the static kernel's L2 page */
    440 pd_entry_t *pmap_kl2pd;
    441 paddr_t pmap_kl2paddr;
    442 #endif
    443 
    444 
    445 struct trapframe;
    446 
    447 int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    448 void	pmap_ldt_cleanup(struct lwp *);
    449 
    450 #endif	/* _I386_PMAP_H_ */
    451