pmap.h revision 1.108.4.1 1 /* $NetBSD: pmap.h,v 1.108.4.1 2011/02/08 16:19:26 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * Copyright (c) 2001 Wasabi Systems, Inc.
30 * All rights reserved.
31 *
32 * Written by Frank van der Linden for Wasabi Systems, Inc.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed for the NetBSD Project by
45 * Wasabi Systems, Inc.
46 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
47 * or promote products derived from this software without specific prior
48 * written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60 * POSSIBILITY OF SUCH DAMAGE.
61 */
62
63 #ifndef _I386_PMAP_H_
64 #define _I386_PMAP_H_
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_user_ldt.h"
68 #include "opt_xen.h"
69 #endif
70
71 #include <sys/atomic.h>
72
73 #include <i386/pte.h>
74 #include <machine/segments.h>
75 #if defined(_KERNEL)
76 #include <machine/cpufunc.h>
77 #endif
78
79 #include <uvm/uvm_object.h>
80 #ifdef XEN
81 #include <xen/xenfunc.h>
82 #include <xen/xenpmap.h>
83 #endif /* XEN */
84
85 /*
86 * see pte.h for a description of i386 MMU terminology and hardware
87 * interface.
88 *
89 * a pmap describes a processes' 4GB virtual address space. when PAE
90 * is not in use, this virtual address space can be broken up into 1024 4MB
91 * regions which are described by PDEs in the PDP. the PDEs are defined as
92 * follows:
93 *
94 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
95 * (the following assumes that KERNBASE is 0xc0000000)
96 *
97 * PDE#s VA range usage
98 * 0->766 0x0 -> 0xbfc00000 user address space
99 * 767 0xbfc00000-> recursive mapping of PDP (used for
100 * 0xc0000000 linear mapping of PTPs)
101 * 768->1023 0xc0000000-> kernel address space (constant
102 * 0xffc00000 across all pmap's/processes)
103 * 1023 0xffc00000-> "alternate" recursive PDP mapping
104 * <end> (for other pmaps)
105 *
106 *
107 * note: a recursive PDP mapping provides a way to map all the PTEs for
108 * a 4GB address space into a linear chunk of virtual memory. in other
109 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
110 * area. the PTE for page 1 is the second int. the very last int in the
111 * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
112 * address).
113 *
114 * all pmap's PD's must have the same values in slots 768->1023 so that
115 * the kernel is always mapped in every process. these values are loaded
116 * into the PD at pmap creation time.
117 *
118 * at any one time only one pmap can be active on a processor. this is
119 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
120 * will have all its PTEs mapped into memory at the recursive mapping
121 * point (slot #767 as show above). when the pmap code wants to find the
122 * PTE for a virtual address, all it has to do is the following:
123 *
124 * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
125 * = 0xbfc00000 + (VA / 4096) * 4
126 *
127 * what happens if the pmap layer is asked to perform an operation
128 * on a pmap that is not the one which is currently active? in that
129 * case we take the PA of the PDP of non-active pmap and put it in
130 * slot 1023 of the active pmap. this causes the non-active pmap's
131 * PTEs to get mapped in the final 4MB of the 4GB address space
132 * (e.g. starting at 0xffc00000).
133 *
134 * the following figure shows the effects of the recursive PDP mapping:
135 *
136 * PDP (%cr3)
137 * +----+
138 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
139 * | |
140 * | |
141 * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
142 * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
143 * | |
144 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
145 * +----+
146 *
147 * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
148 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
149 *
150 * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
151 * PTP:
152 *
153 * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
154 * +----+
155 * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
156 * | |
157 * | |
158 * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
159 * | 768| -> maps contents of first kernel PTP
160 * | |
161 * |1023|
162 * +----+
163 *
164 * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
165 * defined as "PDP_BASE".... within that mapping there are two
166 * defines:
167 * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
168 * which points back to itself.
169 * "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
170 * establishes the recursive mapping of the alternate pmap.
171 * to set the alternate PDP, one just has to put the correct
172 * PA info in *APDP_PDE.
173 *
174 * note that in the APTE_BASE space, the APDP appears at VA
175 * "APDP_BASE" (0xfffff000).
176 *
177 * - PAE support -
178 * ---------------
179 *
180 * PAE adds another layer of indirection during address translation, breaking
181 * up the translation process in 3 different levels:
182 * - L3 page directory, containing 4 * 64-bits addresses (index determined by
183 * bits [31:30] from the virtual address). This breaks up the address space
184 * in 4 1GB regions.
185 * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
186 * in 512 * 2MB regions.
187 * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
188 * the pages is still 4K).
189 *
190 * The kernel virtual space is mapped by the last entry in the L3 page,
191 * the first 3 entries mapping the user VA space.
192 *
193 * Because the L3 has only 4 entries of 1GB each, we can't use recursive
194 * mappings at this level for PDP_PDE and APDP_PDE (this would eat up 2 of
195 * the 4GB virtual space). There are also restrictions imposed by Xen on the
196 * last entry of the L3 PD (reference count to this page cannot be bigger
197 * than 1), which makes it hard to use one L3 page per pmap to switch
198 * between pmaps using %cr3.
199 *
200 * As such, each CPU gets its own L3 page that is always loaded into its %cr3
201 * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
202 * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
203 * pages long (corresponding to the 4 entries of the L3), and the different
204 * index/slots (like PDP_PDE) are adapted accordingly.
205 *
206 * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
207 * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
208 *
209 * PTE_BASE and APTE_BASE will need 4 entries in the L2 PD pages to map the
210 * L2 pages recursively.
211 *
212 * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
213 * count on this page to be exactly one), so we use a shadow PD page for
214 * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
215 * contiguous we'll allocate/copy one page per pmap.
216 */
217 /* XXX MP should we allocate one APDP_PDE per processor?? */
218
219 /*
220 * Mask to get rid of the sign-extended part of addresses.
221 */
222 #define VA_SIGN_MASK 0
223 #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
224 /*
225 * XXXfvdl this one's not right.
226 */
227 #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
228
229 /*
230 * the following defines identify the slots used as described above.
231 */
232 #ifdef PAE
233 #define L2_SLOT_PTE (KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
234 #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 1536: start of kernel space */
235 #ifndef XEN
236 #define L2_SLOT_APTE 2044 /* 2044: alternative recursive slot */
237 #else
238 #define L2_SLOT_APTE 1960 /* 1964-2047 reserved by Xen */
239 #endif
240 #else /* PAE */
241 #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
242 #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */
243 #ifndef XEN
244 #define L2_SLOT_APTE 1023 /* 1023: alternative recursive slot */
245 #else
246 #define L2_SLOT_APTE 1007 /* 1008-1023 reserved by Xen */
247 #endif
248 #endif /* PAE */
249
250 #define L2_SLOT_KERNBASE L2_SLOT_KERN
251
252 #define PDIR_SLOT_KERN L2_SLOT_KERN
253 #define PDIR_SLOT_PTE L2_SLOT_PTE
254 #define PDIR_SLOT_APTE L2_SLOT_APTE
255
256 /*
257 * the following defines give the virtual addresses of various MMU
258 * data structures:
259 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
260 * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
261 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
262 */
263
264 #define PTE_BASE ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
265 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
266
267 #define L1_BASE PTE_BASE
268 #define AL1_BASE APTE_BASE
269
270 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
271 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
272
273 #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE)
274 #if defined(PAE) && defined(XEN)
275 /*
276 * when PAE is in use under Xen, we can't write APDP_PDE through the recursive
277 * mapping, because it points to the shadow PD. Use the kernel PD instead,
278 * which is static
279 */
280 #define APDP_PDE (&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
281 #define APDP_PDE_SHADOW (L2_BASE + PDIR_SLOT_APTE)
282 #else /* PAE && XEN */
283 #define APDP_PDE (L2_BASE + PDIR_SLOT_APTE)
284 #endif /* PAE && XEN */
285
286 #define PDP_BASE L2_BASE
287 #define APDP_BASE AL2_BASE
288
289 /* largest value (-1 for APTP space) */
290 #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
291 #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
292
293 #define NKL2_KIMG_ENTRIES 0 /* XXX unused */
294
295 #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */
296 #define NKL1_START_ENTRIES 0 /* XXX unused */
297
298 #define NTOPLEVEL_PDES (PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
299
300 #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
301
302 #define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME }
303 #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT }
304 #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES }
305 #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
306 #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 }
307 #define PDES_INITIALIZER { L2_BASE }
308 #define APDES_INITIALIZER { AL2_BASE }
309
310 #define PTP_LEVELS 2
311
312 /*
313 * PG_AVAIL usage: we make use of the ignored bits of the PTE
314 */
315
316 #define PG_W PG_AVAIL1 /* "wired" mapping */
317 #define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
318 #define PG_X PG_AVAIL3 /* executable mapping */
319
320 /*
321 * Number of PTE's per cache line. 4 byte pte, 32-byte cache line
322 * Used to avoid false sharing of cache lines.
323 */
324 #ifdef PAE
325 #define NPTECL 4
326 #else
327 #define NPTECL 8
328 #endif
329
330 #include <x86/pmap.h>
331
332 #ifndef XEN
333 #define pmap_pa2pte(a) (a)
334 #define pmap_pte2pa(a) ((a) & PG_FRAME)
335 #define pmap_pte_set(p, n) do { *(p) = (n); } while (0)
336 #define pmap_pte_flush() /* nothing */
337
338 #ifdef PAE
339 #define pmap_pte_cas(p, o, n) atomic_cas_64((p), (o), (n))
340 #define pmap_pte_testset(p, n) \
341 atomic_swap_64((volatile uint64_t *)p, n)
342 #define pmap_pte_setbits(p, b) \
343 atomic_or_64((volatile uint64_t *)p, b)
344 #define pmap_pte_clearbits(p, b) \
345 atomic_and_64((volatile uint64_t *)p, ~(b))
346 #else /* PAE */
347 #define pmap_pte_cas(p, o, n) atomic_cas_32((p), (o), (n))
348 #define pmap_pte_testset(p, n) \
349 atomic_swap_ulong((volatile unsigned long *)p, n)
350 #define pmap_pte_setbits(p, b) \
351 atomic_or_ulong((volatile unsigned long *)p, b)
352 #define pmap_pte_clearbits(p, b) \
353 atomic_and_ulong((volatile unsigned long *)p, ~(b))
354 #endif /* PAE */
355
356 #else /* XEN */
357 static __inline pt_entry_t
358 pmap_pa2pte(paddr_t pa)
359 {
360 return (pt_entry_t)xpmap_ptom_masked(pa);
361 }
362
363 static __inline paddr_t
364 pmap_pte2pa(pt_entry_t pte)
365 {
366 return xpmap_mtop_masked(pte & PG_FRAME);
367 }
368 static __inline void
369 pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
370 {
371 int s = splvm();
372 xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
373 splx(s);
374 }
375
376 static __inline pt_entry_t
377 pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
378 {
379 int s = splvm();
380 pt_entry_t opte = *ptep;
381
382 if (opte == o) {
383 xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
384 xpq_flush_queue();
385 }
386 splx(s);
387 return opte;
388 }
389
390 static __inline pt_entry_t
391 pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
392 {
393 int s = splvm();
394 pt_entry_t opte = *pte;
395 xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
396 npte);
397 xpq_flush_queue();
398 splx(s);
399 return opte;
400 }
401
402 static __inline void
403 pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
404 {
405 int s = splvm();
406 xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
407 xpq_flush_queue();
408 splx(s);
409 }
410
411 static __inline void
412 pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
413 {
414 int s = splvm();
415 xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
416 (*pte) & ~bits);
417 xpq_flush_queue();
418 splx(s);
419 }
420
421 static __inline void
422 pmap_pte_flush(void)
423 {
424 int s = splvm();
425 xpq_flush_queue();
426 splx(s);
427 }
428
429 #endif
430
431 #ifdef PAE
432 /* Address of the static kernel's L2 page */
433 pd_entry_t *pmap_kl2pd;
434 paddr_t pmap_kl2paddr;
435 #endif
436
437
438 struct trapframe;
439
440 int pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
441 void pmap_ldt_cleanup(struct lwp *);
442
443 #include <x86/pmap_pv.h>
444
445 #define __HAVE_VM_PAGE_MD
446 #define VM_MDPAGE_INIT(pg) \
447 memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
448 PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
449
450 struct vm_page_md {
451 struct pmap_page mp_pp;
452 };
453
454 #endif /* _I386_PMAP_H_ */
455