Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.108.4.1
      1 /*	$NetBSD: pmap.h,v 1.108.4.1 2011/02/08 16:19:26 bouyer Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 /*
     29  * Copyright (c) 2001 Wasabi Systems, Inc.
     30  * All rights reserved.
     31  *
     32  * Written by Frank van der Linden for Wasabi Systems, Inc.
     33  *
     34  * Redistribution and use in source and binary forms, with or without
     35  * modification, are permitted provided that the following conditions
     36  * are met:
     37  * 1. Redistributions of source code must retain the above copyright
     38  *    notice, this list of conditions and the following disclaimer.
     39  * 2. Redistributions in binary form must reproduce the above copyright
     40  *    notice, this list of conditions and the following disclaimer in the
     41  *    documentation and/or other materials provided with the distribution.
     42  * 3. All advertising materials mentioning features or use of this software
     43  *    must display the following acknowledgement:
     44  *      This product includes software developed for the NetBSD Project by
     45  *      Wasabi Systems, Inc.
     46  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     47  *    or promote products derived from this software without specific prior
     48  *    written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     52  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     60  * POSSIBILITY OF SUCH DAMAGE.
     61  */
     62 
     63 #ifndef	_I386_PMAP_H_
     64 #define	_I386_PMAP_H_
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_user_ldt.h"
     68 #include "opt_xen.h"
     69 #endif
     70 
     71 #include <sys/atomic.h>
     72 
     73 #include <i386/pte.h>
     74 #include <machine/segments.h>
     75 #if defined(_KERNEL)
     76 #include <machine/cpufunc.h>
     77 #endif
     78 
     79 #include <uvm/uvm_object.h>
     80 #ifdef XEN
     81 #include <xen/xenfunc.h>
     82 #include <xen/xenpmap.h>
     83 #endif /* XEN */
     84 
     85 /*
     86  * see pte.h for a description of i386 MMU terminology and hardware
     87  * interface.
     88  *
     89  * a pmap describes a processes' 4GB virtual address space.  when PAE
     90  * is not in use, this virtual address space can be broken up into 1024 4MB
     91  * regions which are described by PDEs in the PDP.  the PDEs are defined as
     92  * follows:
     93  *
     94  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     95  * (the following assumes that KERNBASE is 0xc0000000)
     96  *
     97  * PDE#s	VA range		usage
     98  * 0->766	0x0 -> 0xbfc00000	user address space
     99  * 767		0xbfc00000->		recursive mapping of PDP (used for
    100  *			0xc0000000	linear mapping of PTPs)
    101  * 768->1023	0xc0000000->		kernel address space (constant
    102  *			0xffc00000	across all pmap's/processes)
    103  * 1023		0xffc00000->		"alternate" recursive PDP mapping
    104  *			<end>		(for other pmaps)
    105  *
    106  *
    107  * note: a recursive PDP mapping provides a way to map all the PTEs for
    108  * a 4GB address space into a linear chunk of virtual memory.  in other
    109  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
    110  * area.  the PTE for page 1 is the second int.  the very last int in the
    111  * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB
    112  * address).
    113  *
    114  * all pmap's PD's must have the same values in slots 768->1023 so that
    115  * the kernel is always mapped in every process.  these values are loaded
    116  * into the PD at pmap creation time.
    117  *
    118  * at any one time only one pmap can be active on a processor.  this is
    119  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
    120  * will have all its PTEs mapped into memory at the recursive mapping
    121  * point (slot #767 as show above).  when the pmap code wants to find the
    122  * PTE for a virtual address, all it has to do is the following:
    123  *
    124  * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
    125  *                = 0xbfc00000 + (VA / 4096) * 4
    126  *
    127  * what happens if the pmap layer is asked to perform an operation
    128  * on a pmap that is not the one which is currently active?  in that
    129  * case we take the PA of the PDP of non-active pmap and put it in
    130  * slot 1023 of the active pmap.  this causes the non-active pmap's
    131  * PTEs to get mapped in the final 4MB of the 4GB address space
    132  * (e.g. starting at 0xffc00000).
    133  *
    134  * the following figure shows the effects of the recursive PDP mapping:
    135  *
    136  *   PDP (%cr3)
    137  *   +----+
    138  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    139  *   |    |
    140  *   |    |
    141  *   | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000
    142  *   | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000)
    143  *   |    |
    144  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    145  *   +----+
    146  *
    147  * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE"
    148  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    149  *
    150  * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a
    151  * PTP:
    152  *
    153  * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000
    154  *   +----+
    155  *   |   0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000
    156  *   |    |
    157  *   |    |
    158  *   | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000
    159  *   | 768| -> maps contents of first kernel PTP
    160  *   |    |
    161  *   |1023|
    162  *   +----+
    163  *
    164  * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is
    165  * defined as "PDP_BASE".... within that mapping there are two
    166  * defines:
    167  *   "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP
    168  *      which points back to itself.
    169  *   "APDP_PDE" (0xbfeffffc) is the VA of the PDE in the PDP which
    170  *      establishes the recursive mapping of the alternate pmap.
    171  *      to set the alternate PDP, one just has to put the correct
    172  *	PA info in *APDP_PDE.
    173  *
    174  * note that in the APTE_BASE space, the APDP appears at VA
    175  * "APDP_BASE" (0xfffff000).
    176  *
    177  * - PAE support -
    178  * ---------------
    179  *
    180  * PAE adds another layer of indirection during address translation, breaking
    181  * up the translation process in 3 different levels:
    182  * - L3 page directory, containing 4 * 64-bits addresses (index determined by
    183  * bits [31:30] from the virtual address). This breaks up the address space
    184  * in 4 1GB regions.
    185  * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region
    186  * in 512 * 2MB regions.
    187  * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of
    188  * the pages is still 4K).
    189  *
    190  * The kernel virtual space is mapped by the last entry in the L3 page,
    191  * the first 3 entries mapping the user VA space.
    192  *
    193  * Because the L3 has only 4 entries of 1GB each, we can't use recursive
    194  * mappings at this level for PDP_PDE and APDP_PDE (this would eat up 2 of
    195  * the 4GB virtual space). There are also restrictions imposed by Xen on the
    196  * last entry of the L3 PD (reference count to this page cannot be bigger
    197  * than 1), which makes it hard to use one L3 page per pmap to switch
    198  * between pmaps using %cr3.
    199  *
    200  * As such, each CPU gets its own L3 page that is always loaded into its %cr3
    201  * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has
    202  * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous
    203  * pages long (corresponding to the 4 entries of the L3), and the different
    204  * index/slots (like PDP_PDE) are adapted accordingly.
    205  *
    206  * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching
    207  * between pmaps consists in modifying the first 3 entries of the CPU's L3 page.
    208  *
    209  * PTE_BASE and APTE_BASE will need 4 entries in the L2 PD pages to map the
    210  * L2 pages recursively.
    211  *
    212  * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref
    213  * count on this page to be exactly one), so we use a shadow PD page for
    214  * the last L2 PD. The shadow page could be static too, but to make pm_pdir[]
    215  * contiguous we'll allocate/copy one page per pmap.
    216  */
    217 /* XXX MP should we allocate one APDP_PDE per processor?? */
    218 
    219 /*
    220  * Mask to get rid of the sign-extended part of addresses.
    221  */
    222 #define VA_SIGN_MASK		0
    223 #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
    224 /*
    225  * XXXfvdl this one's not right.
    226  */
    227 #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
    228 
    229 /*
    230  * the following defines identify the slots used as described above.
    231  */
    232 #ifdef PAE
    233 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */
    234 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 1536: start of kernel space */
    235 #ifndef XEN
    236 #define L2_SLOT_APTE	2044		/* 2044: alternative recursive slot */
    237 #else
    238 #define L2_SLOT_APTE	1960		/* 1964-2047 reserved by Xen */
    239 #endif
    240 #else /* PAE */
    241 #define L2_SLOT_PTE	(KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */
    242 #define L2_SLOT_KERN	(KERNBASE/NBPD_L2)   /* 768: start of kernel space */
    243 #ifndef XEN
    244 #define L2_SLOT_APTE	1023		/* 1023: alternative recursive slot */
    245 #else
    246 #define L2_SLOT_APTE	1007		/* 1008-1023 reserved by Xen */
    247 #endif
    248 #endif /* PAE */
    249 
    250 #define	L2_SLOT_KERNBASE L2_SLOT_KERN
    251 
    252 #define PDIR_SLOT_KERN	L2_SLOT_KERN
    253 #define PDIR_SLOT_PTE	L2_SLOT_PTE
    254 #define PDIR_SLOT_APTE	L2_SLOT_APTE
    255 
    256 /*
    257  * the following defines give the virtual addresses of various MMU
    258  * data structures:
    259  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    260  * PDP_BASE and APDP_BASE: the base VA of the recursive mapping of the PDP
    261  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    262  */
    263 
    264 #define PTE_BASE  ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2))
    265 #define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((PDIR_SLOT_APTE * NBPD_L2))))
    266 
    267 #define L1_BASE		PTE_BASE
    268 #define AL1_BASE	APTE_BASE
    269 
    270 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1))
    271 #define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L2_SLOT_PTE * NBPD_L1))
    272 
    273 #define PDP_PDE		(L2_BASE + PDIR_SLOT_PTE)
    274 #if defined(PAE) && defined(XEN)
    275 /*
    276  * when PAE is in use under Xen, we can't write APDP_PDE through the recursive
    277  * mapping, because it points to the shadow PD. Use the kernel PD instead,
    278  * which is static
    279  */
    280 #define APDP_PDE	(&pmap_kl2pd[l2tol2(PDIR_SLOT_APTE)])
    281 #define APDP_PDE_SHADOW	(L2_BASE + PDIR_SLOT_APTE)
    282 #else /* PAE && XEN */
    283 #define APDP_PDE	(L2_BASE + PDIR_SLOT_APTE)
    284 #endif /* PAE && XEN */
    285 
    286 #define PDP_BASE	L2_BASE
    287 #define APDP_BASE	AL2_BASE
    288 
    289 /* largest value (-1 for APTP space) */
    290 #define NKL2_MAX_ENTRIES	(NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1)
    291 #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * NPDPG)
    292 
    293 #define NKL2_KIMG_ENTRIES	0	/* XXX unused */
    294 
    295 #define NKL2_START_ENTRIES	0	/* XXX computed on runtime */
    296 #define NKL1_START_ENTRIES	0	/* XXX unused */
    297 
    298 #define NTOPLEVEL_PDES		(PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t)))
    299 
    300 #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
    301 
    302 #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME }
    303 #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT }
    304 #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES }
    305 #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES }
    306 #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2 }
    307 #define PDES_INITIALIZER	{ L2_BASE }
    308 #define APDES_INITIALIZER	{ AL2_BASE }
    309 
    310 #define PTP_LEVELS	2
    311 
    312 /*
    313  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    314  */
    315 
    316 #define PG_W		PG_AVAIL1	/* "wired" mapping */
    317 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
    318 #define PG_X		PG_AVAIL3	/* executable mapping */
    319 
    320 /*
    321  * Number of PTE's per cache line.  4 byte pte, 32-byte cache line
    322  * Used to avoid false sharing of cache lines.
    323  */
    324 #ifdef PAE
    325 #define NPTECL		4
    326 #else
    327 #define NPTECL		8
    328 #endif
    329 
    330 #include <x86/pmap.h>
    331 
    332 #ifndef XEN
    333 #define pmap_pa2pte(a)			(a)
    334 #define pmap_pte2pa(a)			((a) & PG_FRAME)
    335 #define pmap_pte_set(p, n)		do { *(p) = (n); } while (0)
    336 #define pmap_pte_flush()		/* nothing */
    337 
    338 #ifdef PAE
    339 #define pmap_pte_cas(p, o, n)		atomic_cas_64((p), (o), (n))
    340 #define pmap_pte_testset(p, n)		\
    341     atomic_swap_64((volatile uint64_t *)p, n)
    342 #define pmap_pte_setbits(p, b)		\
    343     atomic_or_64((volatile uint64_t *)p, b)
    344 #define pmap_pte_clearbits(p, b)	\
    345     atomic_and_64((volatile uint64_t *)p, ~(b))
    346 #else /* PAE */
    347 #define pmap_pte_cas(p, o, n)		atomic_cas_32((p), (o), (n))
    348 #define pmap_pte_testset(p, n)		\
    349     atomic_swap_ulong((volatile unsigned long *)p, n)
    350 #define pmap_pte_setbits(p, b)		\
    351     atomic_or_ulong((volatile unsigned long *)p, b)
    352 #define pmap_pte_clearbits(p, b)	\
    353     atomic_and_ulong((volatile unsigned long *)p, ~(b))
    354 #endif /* PAE */
    355 
    356 #else /* XEN */
    357 static __inline pt_entry_t
    358 pmap_pa2pte(paddr_t pa)
    359 {
    360 	return (pt_entry_t)xpmap_ptom_masked(pa);
    361 }
    362 
    363 static __inline paddr_t
    364 pmap_pte2pa(pt_entry_t pte)
    365 {
    366 	return xpmap_mtop_masked(pte & PG_FRAME);
    367 }
    368 static __inline void
    369 pmap_pte_set(pt_entry_t *pte, pt_entry_t npte)
    370 {
    371 	int s = splvm();
    372 	xpq_queue_pte_update(xpmap_ptetomach(pte), npte);
    373 	splx(s);
    374 }
    375 
    376 static __inline pt_entry_t
    377 pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n)
    378 {
    379 	int s = splvm();
    380 	pt_entry_t opte = *ptep;
    381 
    382 	if (opte == o) {
    383 		xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n);
    384 		xpq_flush_queue();
    385 	}
    386 	splx(s);
    387 	return opte;
    388 }
    389 
    390 static __inline pt_entry_t
    391 pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte)
    392 {
    393 	int s = splvm();
    394 	pt_entry_t opte = *pte;
    395 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    396 	    npte);
    397 	xpq_flush_queue();
    398 	splx(s);
    399 	return opte;
    400 }
    401 
    402 static __inline void
    403 pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits)
    404 {
    405 	int s = splvm();
    406 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits);
    407 	xpq_flush_queue();
    408 	splx(s);
    409 }
    410 
    411 static __inline void
    412 pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits)
    413 {
    414 	int s = splvm();
    415 	xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)),
    416 	    (*pte) & ~bits);
    417 	xpq_flush_queue();
    418 	splx(s);
    419 }
    420 
    421 static __inline void
    422 pmap_pte_flush(void)
    423 {
    424 	int s = splvm();
    425 	xpq_flush_queue();
    426 	splx(s);
    427 }
    428 
    429 #endif
    430 
    431 #ifdef PAE
    432 /* Address of the static kernel's L2 page */
    433 pd_entry_t *pmap_kl2pd;
    434 paddr_t pmap_kl2paddr;
    435 #endif
    436 
    437 
    438 struct trapframe;
    439 
    440 int	pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *);
    441 void	pmap_ldt_cleanup(struct lwp *);
    442 
    443 #include <x86/pmap_pv.h>
    444 
    445 #define	__HAVE_VM_PAGE_MD
    446 #define	VM_MDPAGE_INIT(pg) \
    447 	memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \
    448 	PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp)
    449 
    450 struct vm_page_md {
    451 	struct pmap_page mp_pp;
    452 };
    453 
    454 #endif	/* _I386_PMAP_H_ */
    455